Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 147(5): 1040-53, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22118461

RESUMEN

DNA mismatch repair (MMR) increases replication fidelity by eliminating mispaired bases resulting from replication errors. In Saccharomyces cerevisiae, mispairs are primarily detected by the Msh2-Msh6 complex and corrected following recruitment of the Mlh1-Pms1 complex. Here, we visualized functional fluorescent versions of Msh2-Msh6 and Mlh1-Pms1 in living cells. We found that the Msh2-Msh6 complex is an S phase component of replication centers independent of mispaired bases; this localized pool accounted for 10%-15% of MMR in wild-type cells but was essential for MMR in the absence of Exo1. Unexpectedly, Mlh1-Pms1 formed nuclear foci that, although dependent on Msh2-Msh6 for formation, rarely colocalized with Msh2-Msh6 replication-associated foci. Mlh1-Pms1 foci increased when the number of mispaired bases was increased; in contrast, Msh2-Msh6 foci were unaffected. These findings suggest the presence of replication machinery-coupled and -independent pathways for mispair recognition by Msh2-Msh6, which direct formation of superstoichiometric Mlh1-Pms1 foci that represent sites of active MMR.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Animales , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Humanos , Proteína 2 Homóloga a MutS/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Cell ; 142(2): 203-17, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20637498

RESUMEN

N-linked glycosylation is the most frequent modification of secreted and membrane-bound proteins in eukaryotic cells, disruption of which is the basis of the congenital disorders of glycosylation (CDGs). We describe a new type of CDG caused by mutations in the steroid 5alpha-reductase type 3 (SRD5A3) gene. Patients have mental retardation and ophthalmologic and cerebellar defects. We found that SRD5A3 is necessary for the reduction of the alpha-isoprene unit of polyprenols to form dolichols, required for synthesis of dolichol-linked monosaccharides, and the oligosaccharide precursor used for N-glycosylation. The presence of residual dolichol in cells depleted for this enzyme suggests the existence of an unexpected alternative pathway for dolichol de novo biosynthesis. Our results thus suggest that SRD5A3 is likely to be the long-sought polyprenol reductase and reveal the genetic basis of one of the earliest steps in protein N-linked glycosylation.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Anomalías Múltiples/metabolismo , Dolicoles/metabolismo , Discapacidad Intelectual/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Animales , Butadienos/metabolismo , Consanguinidad , Embrión de Mamíferos/metabolismo , Estudio de Asociación del Genoma Completo , Glicosilación , Hemiterpenos/metabolismo , Humanos , Proteínas de la Membrana/genética , Ratones , Pentanos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Respuesta de Proteína Desplegada
3.
Mol Cell ; 55(2): 291-304, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24981171

RESUMEN

Genetic evidence has implicated multiple pathways in eukaryotic DNA mismatch repair (MMR) downstream of mispair recognition and Mlh1-Pms1 recruitment, including Exonuclease 1 (Exo1)-dependent and -independent pathways. We identified 14 mutations in POL30, which encodes PCNA in Saccharomyces cerevisiae, specific to Exo1-independent MMR. The mutations identified affected amino acids at three distinct sites on the PCNA structure. Multiple mutant PCNA proteins had defects either in trimerization and Msh2-Msh6 binding or in activation of the Mlh1-Pms1 endonuclease that initiates excision during MMR. The latter class of mutations led to hyperaccumulation of repair intermediate Mlh1-Pms1 foci and were enhanced by an msh6 mutation that disrupted the Msh2-Msh6 interaction with PCNA. These results reveal a central role for PCNA in the Exo1-independent MMR pathway and suggest that Msh2-Msh6 localizes PCNA to repair sites after mispair recognition to activate the Mlh1-Pms1 endonuclease for initiating Exo1-dependent repair or for driving progressive excision in Exo1-independent repair.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Reparación de la Incompatibilidad de ADN , ADN de Hongos/genética , Activación Enzimática , Modelos Moleculares , Homólogo 1 de la Proteína MutL , Proteínas MutL , Mutación Missense , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Transducción de Señal
4.
Nucleic Acids Res ; 48(1): 264-277, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31647103

RESUMEN

The accumulation of mutations is frequently associated with alterations in gene function leading to the onset of diseases, including cancer. Aiming to find novel genes that contribute to the stability of the genome, we screened the Saccharomyces cerevisiae deletion collection for increased mutator phenotypes. Among the identified genes, we discovered MET7, which encodes folylpolyglutamate synthetase (FPGS), an enzyme that facilitates several folate-dependent reactions including the synthesis of purines, thymidylate (dTMP) and DNA methylation. Here, we found that Met7-deficient strains show elevated mutation rates, but also increased levels of endogenous DNA damage resulting in gross chromosomal rearrangements (GCRs). Quantification of deoxyribonucleotide (dNTP) pools in cell extracts from met7Δ mutant revealed reductions in dTTP and dGTP that cause a constitutively active DNA damage checkpoint. In addition, we found that the absence of Met7 leads to dUTP accumulation, at levels that allowed its detection in yeast extracts for the first time. Consequently, a high dUTP/dTTP ratio promotes uracil incorporation into DNA, followed by futile repair cycles that compromise both mitochondrial and nuclear DNA integrity. In summary, this work highlights the importance of folate polyglutamylation in the maintenance of nucleotide homeostasis and genome stability.


Asunto(s)
Nucleótidos de Desoxiuracil/metabolismo , Ácido Fólico/metabolismo , Genoma Fúngico , Péptido Sintasas/genética , Saccharomyces cerevisiae/genética , Nucleótidos de Timina/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Daño del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Inestabilidad Genómica , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Péptido Sintasas/deficiencia , Saccharomyces cerevisiae/metabolismo , Uracilo/metabolismo
5.
Nucleic Acids Res ; 47(1): 237-252, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30462295

RESUMEN

The balance and the overall concentration of intracellular deoxyribonucleoside triphosphates (dNTPs) are important determinants of faithful DNA replication. Despite the established fact that changes in dNTP pools negatively influence DNA replication fidelity, it is not clear why certain dNTP pool alterations are more mutagenic than others. As intracellular dNTP pools are mainly controlled by ribonucleotide reductase (RNR), and given the limited number of eukaryotic RNR mutations characterized so far, we screened for RNR1 mutations causing mutator phenotypes in Saccharomyces cerevisiae. We identified 24 rnr1 mutant alleles resulting in diverse mutator phenotypes linked in most cases to imbalanced dNTPs. Among the identified rnr1 alleles the strongest mutators presented a dNTP imbalance in which three out of the four dNTPs were elevated (dCTP, dTTP and dGTP), particularly if dGTP levels were highly increased. These rnr1 alleles caused growth defects/lethality in DNA replication fidelity-compromised backgrounds, and caused strong mutator phenotypes even in the presence of functional DNA polymerases and mismatch repair. In summary, this study pinpoints key residues that contribute to allosteric regulation of RNR's overall activity or substrate specificity. We propose a model that distinguishes between different dNTP pool alterations and provides a mechanistic explanation why certain dNTP imbalances are particularly detrimental.


Asunto(s)
Replicación del ADN/genética , Desoxirribonucleótidos/genética , Ribonucleótido Reductasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Alelos , Reparación de la Incompatibilidad de ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Homeostasis , Mutación/genética , Saccharomyces cerevisiae/genética
6.
Proc Natl Acad Sci U S A ; 114(22): E4442-E4451, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28416670

RESUMEN

Eukaryotic DNA replication fidelity relies on the concerted action of DNA polymerase nucleotide selectivity, proofreading activity, and DNA mismatch repair (MMR). Nucleotide selectivity and proofreading are affected by the balance and concentration of deoxyribonucleotide (dNTP) pools, which are strictly regulated by ribonucleotide reductase (RNR). Mutations preventing DNA polymerase proofreading activity or MMR function cause mutator phenotypes and consequently increased cancer susceptibility. To identify genes not previously linked to high-fidelity DNA replication, we conducted a genome-wide screen in Saccharomyces cerevisiae using DNA polymerase active-site mutants as a "sensitized mutator background." Among the genes identified in our screen, three metabolism-related genes (GLN3, URA7, and SHM2) have not been previously associated to the suppression of mutations. Loss of either the transcription factor Gln3 or inactivation of the CTP synthetase Ura7 both resulted in the activation of the DNA damage response and imbalanced dNTP pools. Importantly, these dNTP imbalances are strongly mutagenic in genetic backgrounds where DNA polymerase function or MMR activity is partially compromised. Previous reports have shown that dNTP pool imbalances can be caused by mutations altering the allosteric regulation of enzymes involved in dNTP biosynthesis (e.g., RNR or dCMP deaminase). Here, we provide evidence that mutations affecting genes involved in RNR substrate production can cause dNTP imbalances, which cannot be compensated by RNR or other enzymatic activities. Moreover, Gln3 inactivation links nutrient deprivation to increased mutagenesis. Our results suggest that similar genetic interactions could drive mutator phenotypes in cancer cells.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Replicación del ADN/genética , Mutagénesis/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Daño del ADN/genética , Fosfatos de Dinucleósidos/genética , Fosfatos de Dinucleósidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
PLoS Genet ; 10(5): e1004327, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24811092

RESUMEN

In Saccharomyces cerevisiae, the essential mismatch repair (MMR) endonuclease Mlh1-Pms1 forms foci promoted by Msh2-Msh6 or Msh2-Msh3 in response to mispaired bases. Here we analyzed the Mlh1-Mlh2 complex, whose role in MMR has been unclear. Mlh1-Mlh2 formed foci that often colocalized with and had a longer lifetime than Mlh1-Pms1 foci. Mlh1-Mlh2 foci were similar to Mlh1-Pms1 foci: they required mispair recognition by Msh2-Msh6, increased in response to increased mispairs or downstream defects in MMR, and formed after induction of DNA damage by phleomycin but not double-stranded breaks by I-SceI. Mlh1-Mlh2 could be recruited to mispair-containing DNA in vitro by either Msh2-Msh6 or Msh2-Msh3. Deletion of MLH2 caused a synergistic increase in mutation rate in combination with deletion of MSH6 or reduced expression of Pms1. Phylogenetic analysis demonstrated that the S. cerevisiae Mlh2 protein and the mammalian PMS1 protein are homologs. These results support a hypothesis that Mlh1-Mlh2 is a non-essential accessory factor that acts to enhance the activity of Mlh1-Pms1.


Asunto(s)
Disparidad de Par Base , ADN de Hongos/genética , Proteínas Nucleares/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Proteínas Portadoras/fisiología , Daño del ADN , Mutación del Sistema de Lectura , Proteínas MutL
8.
Chromosoma ; 124(4): 443-62, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25862369

RESUMEN

The genome of all organisms is constantly being challenged by endogenous and exogenous sources of DNA damage. Errors like base:base mismatches or small insertions and deletions, primarily introduced by DNA polymerases during DNA replication are repaired by an evolutionary conserved DNA mismatch repair (MMR) system. The MMR system, together with the DNA replication machinery, promote repair by an excision and resynthesis mechanism during or after DNA replication, increasing replication fidelity by up-to-three orders of magnitude. Consequently, inactivation of MMR genes results in elevated mutation rates that can lead to increased cancer susceptibility in humans. In this review, we summarize our current understanding of MMR with a focus on the different MMR protein complexes, their function and structure. We also discuss how recent findings have provided new insights in the spatio-temporal regulation and mechanism of MMR.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Replicación del ADN , Eucariontes , Humanos
9.
PLoS Genet ; 9(10): e1003869, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204293

RESUMEN

Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Portadoras/genética , Reparación de la Incompatibilidad de ADN/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Dominio Catalítico/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Proteínas de Unión al ADN/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Homólogo 1 de la Proteína MutL , Proteínas MutL , Mutación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
10.
Curr Biol ; 31(6): 1268-1276.e6, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33417883

RESUMEN

Mismatch repair (MMR) safeguards genome stability through recognition and excision of DNA replication errors.1-4 How eukaryotic MMR targets the newly replicated strand in vivo has not been established. MMR reactions reconstituted in vitro are directed to the strand containing a preexisting nick or gap,5-8 suggesting that strand discontinuities could act as discrimination signals. Another candidate is the proliferating cell nuclear antigen (PCNA) that is loaded at replication forks and is required for the activation of Mlh1-Pms1 endonuclease.7-9 Here, we discovered that overexpression of DNA ligase I (Cdc9) in Saccharomyces cerevisiae causes elevated mutation rates and increased chromatin-bound PCNA levels and accumulation of Pms1 foci that are MMR intermediates, suggesting that premature ligation of replication-associated nicks interferes with MMR. We showed that yeast Pms1 expression is mainly restricted to S phase, in agreement with the temporal coupling between MMR and DNA replication.10 Restricting Pms1 expression to the G2/M phase caused a mutator phenotype that was exacerbated in the absence of the exonuclease Exo1. This mutator phenotype was largely suppressed by increasing the lifetime of replication-associated DNA nicks, either by reducing or delaying Cdc9 ligase activity in vivo. Therefore, Cdc9 dictates a window of time for MMR determined by transient DNA nicks that direct the Mlh1-Pms1 in a strand-specific manner. Because DNA nicks occur on both newly synthesized leading and lagging strands,11 these results establish a general mechanism for targeting MMR to the newly synthesized DNA, thus preventing the accumulation of mutations that underlie the development of human cancer.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Replicación del ADN , Proteínas de Saccharomyces cerevisiae , ADN Ligasa (ATP) , Reparación del ADN , Homólogo 1 de la Proteína MutL , Proteínas MutL , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
PLoS Biol ; 5(6): e155, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17550305

RESUMEN

Protein phosphatase 2A (PP2A) is a prime example of the multisubunit architecture of protein serine/threonine phosphatases. Until substrate-specific PP2A holoenzymes assemble, a constitutively active, but nonspecific, catalytic C subunit would constitute a risk to the cell. While it has been assumed that the severe proliferation impairment of yeast lacking the structural PP2A subunit, TPD3, is due to the unrestricted activity of the C subunit, we recently obtained evidence for the existence of the C subunit in a low-activity conformation that requires the RRD/PTPA proteins for the switch into the active conformation. To study whether and how maturation of the C subunit is coupled with holoenzyme assembly, we analyzed PP2A biogenesis in yeast. Here we show that the generation of the catalytically active C subunit depends on the physical and functional interaction between RRD2 and the structural subunit, TPD3. The phenotype of the tpd3Delta strain is therefore caused by impaired, rather than increased, PP2A activity. TPD3/RRD2-dependent C subunit maturation is under the surveillance of the PP2A methylesterase, PPE1, which upon malfunction of PP2A biogenesis, prevents premature generation of the active C subunit and holoenzyme assembly by counteracting the untimely methylation of the C subunit. We propose a novel model of PP2A biogenesis in which a tightly controlled activation cascade protects cells from untargeted activity of the free catalytic PP2A subunit.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Ciclo Celular/metabolismo , Activación Enzimática/fisiología , Holoenzimas/metabolismo , Metilación , Modelos Biológicos , Fosfoproteínas Fosfatasas/biosíntesis , Proteína Fosfatasa 2 , Especificidad por Sustrato
12.
Commun Biol ; 3(1): 751, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303966

RESUMEN

Inactivating mutations affecting key mismatch repair (MMR) components lead to microsatellite instability (MSI) and cancer. However, a number of patients with MSI-tumors do not present alterations in classical MMR genes. Here we discovered that specific missense mutations in the MutL homolog MLH2, which is dispensable for MMR, confer a dominant mutator phenotype in S. cerevisiae. MLH2 mutations elevated frameshift mutation rates, and caused accumulation of long-lasting nuclear MMR foci. Both aspects of this phenotype were suppressed by mutations predicted to prevent the binding of Mlh2 to DNA. Genetic analysis revealed that mlh2 dominant mutations interfere with both Exonuclease 1 (Exo1)-dependent and Exo1-independent MMR. Lastly, we demonstrate that a homolog mutation in human hPMS1 results in a dominant mutator phenotype. Our data support a model in which yeast Mlh1-Mlh2 or hMLH1-hPMS1 mutant complexes act as roadblocks on DNA preventing MMR, unraveling a novel mechanism that can account for MSI in human cancer.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Proteínas MutL/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Daño del ADN , Eliminación de Gen , Humanos , Proteínas MutL/genética , Mutación , Proteínas de Neoplasias/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
13.
Nat Commun ; 11(1): 5508, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139726

RESUMEN

The ubiquitous redox coenzyme nicotinamide adenine dinucleotide (NAD) acts as a non-canonical cap structure on prokaryotic and eukaryotic ribonucleic acids. Here we find that in budding yeast, NAD-RNAs are abundant (>1400 species), short (<170 nt), and mostly correspond to mRNA 5'-ends. The modification percentage of transcripts is low (<5%). NAD incorporation occurs mainly during transcription initiation by RNA polymerase II, which uses distinct promoters with a YAAG core motif for this purpose. Most NAD-RNAs are 3'-truncated. At least three decapping enzymes, Rai1, Dxo1, and Npy1, guard against NAD-RNA at different cellular locations, targeting overlapping transcript populations. NAD-mRNAs are not translatable in vitro. Our work indicates that in budding yeast, most of the NAD incorporation into RNA seems to be disadvantageous to the cell, which has evolved a diverse surveillance machinery to prematurely terminate, decap and reject NAD-RNAs.


Asunto(s)
Endorribonucleasas/metabolismo , NAD/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Regiones no Traducidas 5' , Núcleo Celular/genética , Pirofosfatasas/metabolismo , Estabilidad del ARN , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
14.
Curr Biol ; 13(23): 2058-64, 2003 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-14653995

RESUMEN

Protein phosphatase 2A (PP2A) holoenzymes consist of a catalytic C subunit, a scaffolding A subunit, and one of several regulatory B subunits that recruit the AC dimer to substrates. PP2A is required for chromosome segregation, but PP2A's substrates in this process remain unknown. To identify PP2A substrates, we carried out a two-hybrid screen with the regulatory B/PR55 subunit. We isolated a human homolog of C. elegans HCP6, a protein distantly related to the condensin subunit hCAP-D2, and we named this homolog hHCP-6. Both C. elegans HCP-6 and condensin are required for chromosome organization and segregation. HCP-6 binding partners are unknown, whereas condensin is composed of the structural maintenance of chromosomes proteins SMC2 and SMC4 and of three non-SMC subunits. Here we show that hHCP-6 becomes phosphorylated during mitosis and that its dephosphorylation by PP2A in vitro depends on B/PR55, suggesting that hHCP-6 is a B/PR55-specific substrate of PP2A. Unlike condensin, hHCP-6 is localized in the nucleus in interphase, but similar to condensin, hHCP-6 associates with chromosomes during mitosis. hHCP-6 is part of a complex that contains SMC2, SMC4, kleisin-beta, and the previously uncharacterized HEAT repeat protein FLJ20311. hHCP-6 is therefore part of a condensin-related complex that associates with chromosomes in mitosis and may be regulated by PP2A.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Proteínas de Unión al ADN/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Mapeo Cromosómico , Electroforesis en Gel de Poliacrilamida , Humanos , Immunoblotting , Complejos Multiproteicos , Fosforilación , Pruebas de Precipitina , Proteína Fosfatasa 2 , Especificidad por Sustrato
15.
DNA Repair (Amst) ; 38: 58-67, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26725956

RESUMEN

DNA mismatch repair (MMR) is a surveillance mechanism present in most living organisms, which repairs errors introduced by DNA polymerases. Importantly, loss of MMR function due to inactivating mutations and/or epigenetic silencing results in the accumulation of mutations and as consequence increased cancer susceptibility, as observed in Lynch syndrome patients. During the past decades important progress has been made in the MMR field resulting in the identification and characterization of essential MMR components, culminating in the in vitro reconstitution of 5' and 3' nick-directed MMR. However, several mechanistic aspects of the MMR reaction remain not fully understood, therefore alternative approaches and further investigations are needed. Recently, the use of imaging techniques and, more specifically, visualization of MMR components in living cells, has broadened our mechanistic understanding of the repair reaction providing more detailed information about the spatio-temporal organization of MMR in vivo. In this review we would like to comment on mechanistic aspects of the MMR reaction in light of these and other recent findings. Moreover, we will discuss the current limitations and provide future perspectives regarding imaging of mismatch repair components in diverse organisms.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Microscopía Fluorescente/métodos , Complejos Multiproteicos/metabolismo , Animales , Replicación del ADN , Humanos
16.
Cell Rep ; 4(1): 174-88, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23810556

RESUMEN

DNA damage activates checkpoint kinases that induce several downstream events, including widespread changes in transcription. However, the specific connections between the checkpoint kinases and downstream transcription factors (TFs) are not well understood. Here, we integrate kinase mutant expression profiles, transcriptional regulatory interactions, and phosphoproteomics to map kinases and downstream TFs to transcriptional regulatory networks. Specifically, we investigate the role of the Saccharomyces cerevisiae checkpoint kinases (Mec1, Tel1, Chk1, Rad53, and Dun1) in the transcriptional response to DNA damage caused by methyl methanesulfonate. The result is a global kinase-TF regulatory network in which Mec1 and Tel1 signal through Rad53 to synergistically regulate the expression of more than 600 genes. This network involves at least nine TFs, many of which have Rad53-dependent phosphorylation sites, as regulators of checkpoint-kinase-dependent genes. We also identify a major DNA damage-induced transcriptional network that regulates stress response genes independently of the checkpoint kinases.


Asunto(s)
Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2/genética , Daño del ADN , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2/metabolismo , ADN de Hongos/metabolismo , Redes Reguladoras de Genes , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
17.
Science ; 334(6063): 1713-6, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22194578

RESUMEN

In eukaryotes, it is unknown whether mismatch repair (MMR) is temporally coupled to DNA replication and how strand-specific MMR is directed. We fused Saccharomyces cerevisiae MSH6 with cyclins to restrict the availability of the Msh2-Msh6 mismatch recognition complex to either S phase or G2/M phase of the cell cycle. The Msh6-S cyclin fusion was proficient for suppressing mutations at three loci that replicate at mid-S phase, whereas the Msh6-G2/M cyclin fusion was defective. However, the Msh6-G2/M cyclin fusion was functional for MMR at a very late-replicating region of the genome. In contrast, the heteroduplex rejection function of MMR during recombination was partially functional during both S phase and G2/M phase. These results indicate a temporal coupling of MMR, but not heteroduplex rejection, to DNA replication.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Replicación del ADN , ADN de Hongos/metabolismo , Ácidos Nucleicos Heterodúplex/metabolismo , Saccharomyces cerevisiae/metabolismo , División Celular , Ciclina B/genética , Ciclina B/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación del Sistema de Lectura , Fase G2 , Genes Fúngicos , Mutación , Proteínas Recombinantes de Fusión/metabolismo , Recombinación Genética , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
J Cell Biol ; 185(3): 423-37, 2009 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-19398760

RESUMEN

We studied the function of the cyclin-dependent kinase Cdc28 (Cdk1) in the DNA damage response and maintenance of genome stability using Saccharomyces cerevisiae. Reduced Cdc28 activity sensitizes cells to chronic DNA damage, but Cdc28 is not required for cell viability upon acute exposure to DNA-damaging agents. Cdc28 is also not required for activation of the DNA damage and replication checkpoints. Chemical-genetic analysis reveals that CDC28 functions in an extensive network of pathways involved in maintenance of genome stability, including homologous recombination, sister chromatid cohesion, the spindle checkpoint, postreplication repair, and telomere maintenance. In addition, Cdc28 and Mre11 appear to cooperate to prevent mitotic catastrophe after DNA replication arrest. We show that reduced Cdc28 activity results in suppression of gross chromosomal rearrangements (GCRs), indicating that Cdc28 is required for formation or recovery of GCRs. Thus, we conclude that Cdc28 functions in a genetic network that supports cell viability during DNA damage while promoting the formation of GCRs.


Asunto(s)
Proteína Quinasa CDC2/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Inestabilidad Genómica , Fleomicinas/farmacología , Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Supervivencia Celular/efectos de los fármacos , Daño del ADN/genética , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Mitosis/genética , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/efectos de la radiación , Rayos Ultravioleta
19.
Genes Dev ; 17(17): 2138-50, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12952889

RESUMEN

Protein phosphatase 2A (PP2A) is an essential intracellular serine/threonine phosphatase containing a catalytic subunit that possesses the potential to dephosphorylate promiscuously tyrosine-phosphorylated substrates in vitro. How PP2A acquires its intracellular specificity and activity for serine/threonine-phosphorylated substrates is unknown. Here we report a novel and phylogenetically conserved mechanism to generate active phospho-serine/threonine-specific PP2A in vivo. Phosphotyrosyl phosphatase activator (PTPA), a protein of so far unknown intracellular function, is required for the biogenesis of active and specific PP2A. Deletion of the yeast PTPA homologs generated a PP2A catalytic subunit with a conformation different from the wild-type enzyme, as indicated by its altered substrate specificity, reduced protein stability, and metal dependence. Complementation and RNA-interference experiments showed that PTPA fulfills an essential function conserved from yeast to man.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , Células 3T3 , Animales , Apoptosis/fisiología , Sitios de Unión , Células HeLa , Humanos , Metales/metabolismo , Ratones , Mutación , Fosfoproteínas Fosfatasas/genética , Proteína Fosfatasa 2 , Interferencia de ARN/fisiología , Especificidad por Sustrato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA