Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 85(2): 56-70, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34488563

RESUMEN

Di-n-butyl phthalate (DBP) is commonly used as a plasticizer and its usage continues to increase in conjunction with plastic consumption. DBP is readily released into air, drinking water, and soil, and unfortunately, is a potent endocrine disrupter that impairs central nervous system functions. Previously DBP was found to (1) arrest the cell cycle of C17.2 neural progenitor cells (NPCs) at the G1 phase, (2) reduce numbers of newly generated neural stem cells in the mouse hippocampus, and (3) adversely affect learning and memory. Other investigators also noted DBP-mediated neurotoxic effects, but as yet, no study has addressed the adverse effects of DBP on neuronal differentiation. Data demonstrated that at 200 µM DBP induced apoptosis in rat embryo primary neurons by increasing reactive oxygen species levels and inducing mitochondrial dysfunction. However, no significant effect was detected on neurons at concentrations of ≤100 µM. In contrast, doublecortin/microtubule associated protein-2 (DCX/MAP2) immunocytochemistry showed that DBP at 100 µM delayed neuronal maturation by increasing protein levels of DCX (an immature neuronal marker), without markedly affecting cell viability. Further in vivo studies confirmed that DCX+ cell numbers were significantly elevated in the hippocampus of DBP-treated mice, indicating that DBP delayed neuronal maturation, which is known to be associated with impaired memory retention. Data demonstrated that DBP might disrupt neuronal maturation, which is correlated with reduced neurocognitive functions.


Asunto(s)
Dibutil Ftalato/toxicidad , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Plastificantes/toxicidad , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Embrión de Mamíferos , Hipocampo/efectos de los fármacos , Hipocampo/patología , Memoria/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Neuronas/citología , Estrés Oxidativo/efectos de los fármacos , Ratas
2.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35055183

RESUMEN

Parkinson's disease (PD) is a progressive movement disorder caused by nigrostriatal neurodegeneration. Since chronically activated neuroinflammation accelerates neurodegeneration in PD, we considered that modulating chronic neuroinflammatory response might provide a novel therapeutic approach. Glycogen synthase kinase 3 (GSK-3) is a multifunctional serine/threonine protein kinase with two isoforms, GSK-3α and GSK-3ß, and GSK-3ß plays crucial roles in inflammatory response, which include microglial migration and peripheral immune cell activation. GSK-3ß inhibitory peptide (IAGIP) is specifically activated by activated inhibitory kappa B kinase (IKK), and its therapeutic effects have been demonstrated in a mouse model of colitis. Here, we investigated whether the anti-inflammatory effects of IAGIP prevent neurodegeneration in the rodent model of PD. IAGIP significantly reduced MPP+-induced astrocyte activation and inflammatory response in primary astrocytes without affecting the phosphorylations of ERK or JNK. In addition, IAGIP inhibited LPS-induced cell migration and p65 activation in BV-2 microglial cells. In vivo study using an MPTP-induced mouse model of PD revealed that intravenous IAGIP effectively prevented motor dysfunction and nigrostriatal neurodegeneration. Our findings suggest that IAGIP has a curative potential in PD models and could offer new therapeutic possibilities for targeting PD.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Quinasa I-kappa B/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Péptidos/administración & dosificación , Animales , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Células HCT116 , Humanos , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Péptidos/farmacología , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/farmacología
3.
Int J Mol Sci ; 23(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36142491

RESUMEN

Neurodegenerative diseases such as Parkinson's disease (PD) are known to be related to oxidative stress and neuroinflammation, and thus, modulating neuroinflammation offers a possible means of treating PD-associated pathologies. Morin (2',3,4',5,7-pentahydroxy flavone) is a flavonol with anti-oxidative and anti-inflammatory effects found in wines, herbs, and fruits. The present study was undertaken to determine whether a morin-containing diet has protective effects in an MPTP-induced mouse model of PD. Mice were fed a control or morin diet for 34 days, and then MPTP (30 mg/kg, i.p.) was administered daily for 5 days to induce a PD-like pathology. We found that dietary morin prevented MPTP-induced motor dysfunction and ameliorated dopaminergic neuronal damage in striatum (STR) and substantia nigra (SN) in our mouse model. Furthermore, MPTP-induced neuroinflammation was significantly reduced in mice fed morin. In vitro studies showed that morin effectively suppressed glial activations in primary microglia and astrocytes, and biochemical analysis and a docking simulation indicated that the anti-inflammatory effects of morin were mediated by blocking the extracellular signal-regulated kinase (ERK)-p65 pathway. These findings suggest that morin effectively inhibits glial activations and has potential use as a functional food ingredient with therapeutic potential for the treatment of PD and other neurodegenerative diseases associated with neuroinflammation.


Asunto(s)
Flavonas , Ingredientes Alimentarios , Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Flavonas/farmacología , Flavonoles/metabolismo , Flavonoles/farmacología , Flavonoles/uso terapéutico , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/patología , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/etiología
4.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672606

RESUMEN

Oxidative stress, mitochondrial dysfunction, and neuroinflammation are strongly associated with the pathogenesis of Parkinson's disease (PD), which suggests that anti-oxidative and anti-inflammatory compounds might provide an alternative treatment for PD. Here, we evaluated the neuroprotective effects of evernic aid (EA), which was screened from a lichen library provided by the Korean Lichen Research Institute at Sunchon National University. EA is a secondary metabolite generated by lichens, including Ramalina, Evernia, and Hypogymnia, and several studies have described its anticancer, antifungal, and antimicrobial effects. However, the neuroprotective effects of EA have not been studied. We found that EA protected primary cultured neurons against 1-methyl-4-phenylpyridium (MPP+)-induced cell death, mitochondrial dysfunction, and oxidative stress, and effectively reduced MPP+-induced astroglial activation by inhibiting the NF-κB pathway. In vivo, EA ameliorated MPTP-induced motor dysfunction, dopaminergic neuronal loss, and neuroinflammation in the nigrostriatal pathway in C57BL/6 mice. Taken together, our findings demonstrate that EA has neuroprotective and anti-inflammatory effects in PD models and suggest that EA is a potential therapeutic candidate for PD.


Asunto(s)
Antiinflamatorios/uso terapéutico , Hidroxibenzoatos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Células Cultivadas , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Evaluación Preclínica de Medicamentos , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacología , Líquenes/química , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Actividad Motora/efectos de los fármacos , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Transducción de Señal/efectos de los fármacos
5.
Neuromolecular Med ; 26(1): 1, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38294608

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder that results in motor impairment due to dopaminergic neuronal loss. The pathology of PD is closely associated with neuroinflammation, which can be characterized by astrocyte activation. Thus, targeting the inflammatory response in astrocytes might provide a novel therapeutic approach. We conducted a luciferase assay on an in-house chemical library to identify compounds with anti-inflammatory effects capable of reducing MPP+-induced NF-κB activity in astrocytes. Among the compounds identified, EI-16004, a novel 3-benzyl-N-phenyl-1H-pyrazole-5-carboxamides, exhibited a significant anti-inflammatory effect by significantly reducing MPP+-induced astrocyte activation. Biochemical analysis and docking simulation indicated that EI-16004 inhibited the MPP+-induced phosphorylation of p65 by attenuating ERK phosphorylation, and EI-16004 reduced pro-inflammatory cytokine and chemokine levels in astrocytes. In vivo studies on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model in male C57BL/6 mice showed that EI-16004 ameliorated motor impairment and protected against dopaminergic neuronal loss, and EI-16004 effectively mitigated the MPTP-induced astrocyte activation in striatum (STR) and substantia nigra (SN). These results indicate EI-16004 is a potential neuroprotective agent for the prevention and treatment of astrocyte-mediated neuroinflammatory conditions in PD.


Asunto(s)
Neuroprotección , Enfermedad de Parkinson , Masculino , Ratones , Animales , Ratones Endogámicos C57BL , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Astrocitos , Enfermedades Neuroinflamatorias , Dopamina , Antiinflamatorios
6.
Antioxidants (Basel) ; 10(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34829726

RESUMEN

Parkinson's disease (PD) is one of the most common neurodegenerative disorders, and is caused by the death of dopamine neurons and neuroinflammation in the striatum and substantia nigra. Furthermore, the inflammatory response in PD is closely related to glial cell activation. This study examined the neuroprotective effects of the barbiturate derivative, MHY2699 [5-(4-hydroxy 3,5-dimethoxybenzyl)-2 thioxodihydropyrimidine-4,6(1H,5H)-dione] in a mouse model of PD. MHY2699 ameliorated MPP⁺-induced astrocyte activation and ROS production in primary astrocytes and inhibited the MPP⁺-induced phosphorylation of MAPK and NF-κB. The anti-inflammatory effects of MHY2699 in protecting neurons were examined in an MPTP-induced mouse model of PD. MHY2699 inhibited MPTP-induced motor dysfunction and prevented dopaminergic neuronal death, suggesting that it attenuated neuroinflammation. Overall, MHY2699 has potential as a neuroprotective treatment for PD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA