Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 33(13)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34936998

RESUMEN

This research investigates the optimal region to achieve balanced thermal and electrical insulation properties of epoxy (EP) under high frequency (HF) and high temperature (HT) via integration of surface-modified hexagonal boron nitride (h-BN) nanoparticles. The effects of nanoparticle content and high temperature on various electrical (DC, AC, and high frequency) and thermal properties of EP are investigated. It is found that the nano h-BN addition enhances thermal performance and weakens electrical insulation properties. On the other side, under HF and HT stress, the presence of h-BN nanoparticles significantly improves the electrical performance of BN/EP nanocomposites. The EP has superior insulation properties at low temperature and low frequency, whereas the BN/EP nanocomposites exhibit better insulation performance than EP under HF and HT. The factors such as homogeneous nanoparticle dispersion in EP, enhanced thermal conductivity, nanoparticle surface modification, weight percent of nanoparticles, the mismatch between the relative permittivity of EP and nano h-BN, and the presence of voids in nanocomposites play the crucial role. The optimal nanoparticle content and homogenous dispersion can produce suitable EP composites for the high frequency and high temperature environment, particularly solid-state transformer applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA