Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Vet Sci ; 10(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37756059

RESUMEN

Machine learning (ML) offers potential opportunities to enhance the learning, teaching, and assessments within veterinary medical education including but not limited to assisting with admissions processes as well as student progress evaluations. The purpose of this primer is to assist veterinary educators in appraising and potentially adopting these rapid upcoming advances in data science and technology. In the first section, we introduce ML concepts and highlight similarities/differences between ML and classical statistics. In the second section, we provide a step-by-step worked example using simulated veterinary student data to answer a hypothesis-driven question. Python syntax with explanations is provided within the text to create a random forest ML prediction model, a model composed of decision trees with each decision tree being composed of nodes and leaves. Within each step of the model creation, specific considerations such as how to manage incomplete student records are highlighted when applying ML algorithms within the veterinary education field. The results from the simulated data demonstrate how decisions by the veterinary educator during ML model creation may impact the most important features contributing to the model. These results highlight the need for the veterinary educator to be fully transparent during the creation of ML models and future research is needed to establish guidelines for handling data not missing at random in medical education, and preferred methods for model evaluation.

2.
Toxics ; 10(2)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202259

RESUMEN

With over a quarter of the world's bats species facing extinction, there is a need for ecotoxicological studies to assess if acute and sublethal exposure to newer pesticides such as neonicotinoids and carbonates contribute to population declines. Pesticide exposure studies in bats have been limited to terminal sampling methods, therefore we developed a non-invasive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method utilizing hair trimmings. The hair of big brown bats (Eptesicus fuscus) was collected and pooled by county to assess the best extraction solvent and solid-phase-extraction (SPE) clean-up cartridges. Using the best performing extraction solvent, methanol, and the best performing SPE cartridge, Chromabond HR-X, we developed an optimized multiple reaction monitoring (MRM) LC-MS/MS method for simultaneous determination of 3 neonicotinoids, clothianidin, imidacloprid, and thiamethoxam; 1 carbonate, carbaryl; and 4 systemic herbicides, 2,4-D, atrazine, dicamba, and glyphosate. The optimized protocol yielded the detection of 3-8 of the compounds in the county-level bat hair pools. 2,4-D, glyphosate, and imidacloprid were found in all samples with two of the county-level hair samples having glyphosate concentrations of over 3500 pg/mg of hair. This approach has great potential to facilitate non-terminal ecotoxicological studies assessing the effects of subacute (chronic) pesticide exposure in threatened and endangered bat species and other species experiencing population declines.

3.
J Wildl Dis ; 56(4): 759-767, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32609601

RESUMEN

Pseudogymnoascus destructans colonizes the wing membrane of hibernating bats with the potential to form dense fungal hyphae aggregates within cupping erosions. These fungal cupping erosions emit a characteristic fluorescent orange-yellow color when the wing membrane is transilluminated with 385 nm ultraviolet (UV) light. The purpose of this study was to create and validate the R package, countcolors, for quantifying the distinct orange-yellow UV fluorescence in bat-wing membrane lesions caused by P. destructans. Validation of countcolors was completed by first quantifying the percent area of 20, 2.5 cm2 images. These generated images were of two known pixel colors ranging from 0% to 100% of the pixels. The countcolors package accurately measured the known proportion of a given color in each image. Next, 40, 2.5 cm2 sections of UV transilluminated photographs of little brown bat (Myotis lucifugus) wings were given to a single evaluator. The area of fluorescence was both manually measured and calculated using image analysis software and quantified with countcolors. There was good agreement between the two methods (Pearson's correlation=0.915); however, the manual use of imaging software showed a consistent negative bias. Reproducibility of the analysis methods was tested by providing the same images to naive evaluators who previously never used the software; no significant difference (P=0.099) was found among evaluators. Using the R package countcolors takes less time than does manually measuring the fluorescence in image analysis software, and our results showed that countcolors can improve the accuracy when quantifying the area of P. destructans infection in bat wing-membranes.


Asunto(s)
Ascomicetos/fisiología , Quirópteros/microbiología , Hibernación , Procesamiento de Imagen Asistido por Computador/métodos , Alas de Animales/microbiología , Animales , Dermatomicosis/diagnóstico , Dermatomicosis/veterinaria , Fluorescencia , Reproducibilidad de los Resultados , Rayos Ultravioleta
4.
J Vis Exp ; (156)2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32150166

RESUMEN

Body condition scoring systems and body condition indices are common techniques used for assessing the health status or fitness of a species. Body condition scoring systems are evaluator dependent and have the potential to be highly subjective. Body condition indices can be confounded by foraging, the effects of body weight, as well as statistical and inferential problems. An alternative to body condition scoring systems and body condition indices is using a stable isotope such as deuterium oxide to determine body composition. The deuterium oxide dilution method is a repeatable, quantitative technique used to estimate body composition in humans, wildlife, and domestic species. Additionally, the deuterium oxide dilution technique can be used to determine the water consumption of an individual animal. Here, we describe the adaption of the deuterium oxide dilution technique for assessing body composition in big brown bats (Eptesicus fuscus) and for assessing water consumption in cats (Felis catis).


Asunto(s)
Tejido Adiposo/química , Composición Corporal , Peso Corporal , Óxido de Deuterio/química , Ingestión de Líquidos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Animales , Gatos , Quirópteros
6.
J Feline Med Surg ; 20(2): 83-90, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29172936

RESUMEN

Objectives The aim of this report is to describe the identification of a novel vitamin D metabolite, a C-3, alpha-epimer of 25-hydroxycholecalciferol (3-epi-25(OH)D3), in serum and plasma extracts of cat blood and compare its abundance in cat, dog and rat serum to 25-hydroxycholecalciferol (25(OH)D3), a conventional marker of vitamin D status. Methods Serum 25(OH)D3 and 3-epi-25(OH)D3 concentrations were measured in healthy cohorts of cats (n = 8), dogs (n = 8) and rats (n = 17) using validated reverse and normal-phase high-performance liquid chromatography methods. The methods were verified using liquid chromatography tandem mass spectrophotometry. Dietary intake and dietary concentrations of vitamin D were also measured for evaluation of species differences and effect of dietary change on vitamin D metabolite concentrations. Differences between cat serum and plasma metabolite concentrations were determined. Results Detectable concentrations of 3-epi-25(OH)D3 were observed in all cats and rats. No 3-epi-25(OH)D3 was detected in dogs, where our limit of detection was 5 ng/ml. There were significant differences ( P <0.05) in serum concentrations of 25(OH)D3 and 3-epi-25(OH)D3 among species, with cats having the greatest concentrations of both metabolites. Serum and plasma results were not significantly different. A diet change, which resulted in an increase in vitamin D intake among the cats, affected serum concentration with an increase ( P = 0.004) in 3-epi-25(OH)D3 but no significant change in 25(OH)D3. Conclusions and relevance Serum and plasma of cats contain 3-epi-25(OH)D3 in varied and extraordinary concentrations, much greater than in rats and certainly than that of dogs, a species for which the metabolite was not detected. Importantly, this finding indicates a C-3 epimerization pathway is quantitatively significant for vitamin D metabolism in domestic cats, making 3-epi-25(OH)D3 assays essential for the evaluation of vitamin D status in cats and positioning the cat as a novel model for study of this pathway.


Asunto(s)
Calcifediol/sangre , Gatos/metabolismo , Perros/metabolismo , Ratas/metabolismo , Vitaminas/sangre , Animales , Cromatografía Líquida de Alta Presión , Masculino
7.
J Mammal ; 98(3): 744-751, 2017 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-29674784

RESUMEN

The ability to recognize individuals within an animal population is fundamental to conservation and management. Identification of individual bats has relied on artificial marking techniques that may negatively affect the survival and alter the behavior of individuals. Biometric systems use biological characteristics to identify individuals. The field of animal biometrics has expanded to include recognition of individuals based upon various morphologies and phenotypic variations including pelage patterns, tail flukes, and whisker arrangement. Biometric systems use 4 biologic measurement criteria: universality, distinctiveness, permanence, and collectability. Additionally, the system should not violate assumptions of capture-recapture methods that include no increased mortality or alterations of behavior. We evaluated whether individual bats could be uniquely identified based upon the collagen-elastin bundles that are visible with gross examination of their wings. We examined little brown bats (Myotis lucifugus), northern long-eared bats (M. septentrionalis), big brown bats (Eptesicus fuscus), and tricolored bats (Perimyotis subflavus) to determine whether the "wing prints" from the bundle network would satisfy the biologic measurement criteria. We evaluated 1,212 photographs from 230 individual bats comparing week 0 photos with those taken at weeks 3 or 6 and were able to confirm identity of individuals over time. Two blinded evaluators were able to successfully match 170 individuals in hand to photographs taken at weeks 0, 3, and 6. This study suggests that bats can be successfully re-identified using photographs taken at previous times. We suggest further evaluation of this methodology for use in a standardized system that can be shared among bat conservationists.

8.
J Am Assoc Lab Anim Sci ; 55(2): 224-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27025816

RESUMEN

Economical, injectable antibiotics are beneficial when clinical manifestations of an animal model prevent the use of oral antibiotics. Ceftiofur crystalline-free acid (CCFA) is an injectable, sustained-release form of ceftiofur, a third-generation cephalosporin that is labeled for use in swine, cattle, and horses. Because CCFA is an economical, injectable antibiotic that could be of value for use in research dogs, the objective of this study was to determine the pharmacokinetic properties of CCFA in apparently healthy dogs and to determine the minimal inhibitory concentrations of ceftiofur for veterinary pathogens cultured during 2011 through 2014 from the respiratory system, integumentary system, and urinary system of dogs. The study population comprised of 5 dogs (age, 1 y; weight, 24.7 to 26.9 kg) that were deemed healthy after no abnormalities were found on physical exam, CBC analysis, and clinical chemistry panel. Each dog received CCFA at 5.0 mg/kg SC, and blood samples were collected before administration of CCFA and at 1, 4, 8, 12, 24, 36, 48, 72, 96, 120, 144, 168, 192, 216, and 240 h after injection. The maximal plasma concentration (mean ± 1 SD) of CCFA was 1.98 ± 0.40 µ g/mL, time to reach maximal concentration was 22.3 ± 8.9 h, half-life was 56.6 ± 16.9 h, and AUC0-last was 124.98 ± 18.45 µ g-h/mL. The minimal inhibitory concentrations of ceftiofur ranged from ≤ 0.25 to ≥ 8.0 µ g/mL; ceftiofur was most effective against Pasteurella spp., Proteus spp., and Escherichia coli haemolytica and least effective against Bordatella bronchiseptica, Enterococcus spp., and Pseudomonas aeruginosa.


Asunto(s)
Antibacterianos/farmacocinética , Cefalosporinas/farmacocinética , Perros/metabolismo , Animales , Antibacterianos/administración & dosificación , Bacterias/efectos de los fármacos , Cefalosporinas/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Semivida , Masculino , Pruebas de Sensibilidad Microbiana
9.
Lab Anim (NY) ; 43(6): 197-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24845004

RESUMEN

Bats are useful animal models for the study of unique physiological mechanisms such as echolocation and sensory integration as well as for research on white-nose syndrome. These studies may involve collecting blood samples from bats. This column describes safe techniques for restraint, weighing, fluid administration and blood collection from the little brown bat (Myotis lucifugus).


Asunto(s)
Recolección de Muestras de Sangre/métodos , Recolección de Muestras de Sangre/veterinaria , Pesos y Medidas Corporales/veterinaria , Quirópteros/sangre , Hipodermoclisis/veterinaria , Restricción Física/veterinaria , Animales , Pesos y Medidas Corporales/métodos , Hipodermoclisis/métodos , Restricción Física/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA