Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 63(18): 8092-8098, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38657081

RESUMEN

Careful manipulation of the plutonium oxidation states is essential in the study and utilization of its rich redox chemistry. To achieve this level of control, a comprehensive mechanistic understanding of radiation-induced plutonium redox chemistry is critical due to the unavoidable exposure of plutonium to ionizing radiation fields, both inherent and from in-process applications. To this end, we have developed an experimentally evaluated multiscale computer model for the prediction of gamma radiation-induced Pu(IV) redox chemistry in concentrated nitric acid solutions (1.0, 3.0, and 6.0 M). Under these acidic, aqueous solution conditions, cobalt-60 gamma irradiation afforded marginal net conversion of Pu(IV) to Pu(VI), the extent of which was dependent on the concentration of HNO3 and absorbed gamma dose. Multiscale calculations, which are in excellent agreement with experimental data, indicate that this observation is due to a combination of inherent plutonium disproportionation reactions and several radiation-induced processes, including redox cycling between Pu(IV) and Pu(III), as achieved by the reduction of Pu(IV) by nitrous acid and hydrogen peroxide, the oxidation of Pu(III) by nitrate and hydroxyl radicals, and the sequential oxidation of Pu(IV) to Pu(V) and Pu(VI) by the remaining available yield of nitrate radicals.

2.
Inorg Chem ; 63(20): 9237-9244, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38722713

RESUMEN

Mixed-donor ligands, such as those containing a combination of O/N or O/S, have been studied extensively for the selective extraction of trivalent actinides, especially Am3+ and Cm3+, from lanthanides during the recycling of used nuclear fuel. Oxygen/sulfur donor ligand combinations also result from the hydrolytic and/or radiolytic degradation of dithiophosphates, such as the Cyanex class of extractants, which are initially converted to monothiophosphates. To understand potential differences between the binding of such degraded ligands to Nd3+ and Am3+, the monothiophosphate complexes [M(OPS(OEt)2)5(H2O)2]2- (M3+ = Nd3+, Am3+) were prepared and characterized by single-crystal X-ray diffraction and optical spectroscopy and studied as a function of pressure up to ca. 14 GPa using diamond-anvil techniques. Although Nd3+ and Am3+ have nearly identical eight-coordinated ionic radii, these structures reveal that while the M-O bond distances in these complexes are almost equal, the M-S distances are statistically different. Moreover, for [Nd(OPS(OEt)2)5(H2O)2]2-, the hypersensitive 4I9/2 → 4G5/2 transition shifts as a function of pressure by -11 cm-1/GPa. Whereas for [Am(OPS(OEt)2)5(H2O)2]2-, the 7F0 → 7F6 transition shows a slightly stronger pressure dependence with a shift of -13 cm-1/GPa and also exhibits broadening of the 5f → 5f transitions at high pressures. These data likely indicate an increased involvement of the 5f orbitals in bonding with Am3+ relative to that of Nd3+ in these complexes.

3.
Phys Chem Chem Phys ; 26(5): 4039-4046, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38224090

RESUMEN

Technetium is a problematic radioisotope for used nuclear fuel (UNF) and subsequent waste management owing to its high environmental mobility and coextraction in reprocessing technologies as the pertechnetate anion (TcO4-). Consequently, several strategies are under development to control the transport of this radioisotope. A proposed approach is to use diaminoguanidine (DAG) for TcO4- and transuranic ion redox control. Although the initial DAG molecule is ultimately consumed in the redox process, its susceptibility to radiolysis is currently unknown under envisioned UNF reprocessing conditions, which is a critical knowledge gap for evaluating its overall suitability for this role. To this end, we report the impacts of steady-state gamma irradiation on the rate of DAG radiolysis in water, aqueous 2.0 M nitric acid (HNO3), and in a biphasic solvent system composed of aqueous 2.0 M HNO3 in contact with 1.5 M N,N-di-(2-ethylhexyl)isobutyramide (DEHiBA) dissolved in n-dodecane. Additionally, we report chemical kinetics for the reaction of DAG with key transients arising from electron pulse radiolysis, specifically the hydrated electron (eaq-), hydrogen atom (H˙), and hydroxyl (˙OH) and nitrate (NO3˙) radicals. The DAG molecule exhibited significant reactivity with the ˙OH and NO3˙ radicals, indicating that oxidation would be the predominant degradation pathway in radiation environments. This is consistent with its role as a reducing agent. Steady-state gamma irradiations demonstrated that DAG is readily degraded within a few hundred kilogray, the rate of which was found to increase upon going from water to HNO3 containing solutions and solvents systems. This was attributed to a thermal reaction between DAG and the predominant HNO3 radiolysis product, nitrous acid (HNO2), k(DAG + HNO2) = 5480 ± 85 M-1 s-1. Although no evidence was found for the radiolysis of DAG altering the radiation chemistry of the contacted DEHiBA/n-dodecane phase in the investigated biphasic system, the utility of DAG as a redox control reagent will likely be limited by significant competition with its degradation by HNO2.

4.
J Phys Chem A ; 128(3): 590-598, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38215218

RESUMEN

Despite the availability of transuranic elements increasing in recent years, our understanding of their most basic and inherent radiation chemistry is limited and yet essential for the accurate interpretation of their physical and chemical properties. Here, we explore the transient interactions between trivalent californium ions (Cf3+) and select inorganic radicals arising from the radiolytic decomposition of common anions and functional group constituents, specifically the dichlorine (Cl2•-) and sulfate (SO4•-) radical anions. Chemical kinetics, as measured using integrated electron pulse radiolysis and transient absorption spectroscopy techniques, are presented for the reactions of these two oxidizing radicals with Cf3+ ions. The derived and ionic strength-corrected second-order rate coefficients (k) for these radiation-induced processes are k(Cf3+ + Cl2•-) = (8.28 ± 0.61) × 105 M-1 s-1 and k(Cf3+ + SO4•-) = (9.50 ± 0.43) × 108 M-1 s-1 under ambient temperature conditions (22 ± 1 °C).

5.
Chemphyschem ; 24(5): e202200749, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470592

RESUMEN

Acetohydroxamic acid (AHA) has been proposed for inclusion in advanced, single-cycle, used nuclear fuel reprocessing solvent systems for the reduction and complexation of plutonium and neptunium ions. For this application, a detailed description of the fundamental degradation of AHA in dilute aqueous nitric acid is required. To this end, we present a comprehensive, multiscale computer model for the coupled radiolytic and hydrolytic degradation of AHA in aqueous sodium nitrate and nitric acid solutions. Rate coefficients for the reactions of AHA and hydroxylamine (HA) with the oxidizing nitrate radical were measured for the first time using electron pulse radiolysis and used as inputs for the kinetic model. The computer model results are validated by comparison to experimental data from steady-state gamma ray irradiations, for which the agreement is excellent. The presented model accurately predicts the yields of the major degradation products of AHA: acetic acid, HA, nitrous oxide, and molecular hydrogen.

6.
Inorg Chem ; 62(32): 12905-12912, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37523261

RESUMEN

N,N,N',N'-tetramethyl diglycolamide (TMDGA), a methylated variant of the diglycolamide extractants being proposed as curium holdback reagents in advanced used nuclear fuel reprocessing technologies, has been crystallized with plutonium, a transuranic actinide that has multiple accessible oxidation states. Two plutonium TMDGA complexes, [PuIII(TMDGA)3][PuIII(NO3)6] and[PuIV(TMDGA)3][PuIV(NO3)6]2·0.75MeOH, were crystallized through solvent diffusion of a reaction mixture containing plutonium(III) nitrate and TMDGA. The sample was then partially oxidized by air to yield [PuIV(TMDGA)3][PuIV(NO3)6]2·0.75MeOH. Single-crystal X-ray diffraction reveals that the multinuclear systems crystallize with hexanitrato anionic species, providing insight into the first solid-state isolation of the elusive trivalent plutonium hexanitrato species. Crystallography data show a change in geometry around the TMDGA metal center from Pu3+ to Pu4+, with the symmetry increasing approximately from C4v to D3h. These complexes provide a rare opportunity to investigate the bond metrics of plutonium in two different oxidation states with similar coordination environments. Further, these new structures provide insight into the potential chemical and structural differences arising from the radiation-induced formation of transient tetravalent curium oxidation states in used nuclear fuel reprocessing streams.

7.
Phys Chem Chem Phys ; 25(48): 32948-32954, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38019140

RESUMEN

Chromium ions can make their way into the primary coolant of nuclear power reactors from the corrosion of stainless-steel reactor components, decreasing the material's corrosion resistance and resulting in increased transport of further corrosion products. Despite these potential effects, the radiation-induced redox speciation of chromium ions in aqueous solution is not well understood, especially at the elevated temperatures experienced by reactor coolants. In the present work, we report new experimental results demonstrating that in aerated aqueous solution, the radiolytic oxidation of Cr(III) to Cr(VI) occurs at pH 4, while the reduction of Cr(VI) to Cr(III) occurs at pH 2. The oxidation of Cr(III) is primarily attributed to the reaction of the hydroxyl radical (˙OH) with the Cr(OH)2+ species, while the reduction of Cr(VI) is attributed to reactions involving the hydrated electron (eaq-) and hydrogen atom (H˙). Additionally, the steady-state equilibrium yield of Cr(VI) from the gamma irradiation of pH 4 Cr(III) solutions decreased with increasing temperature (over a range of 37-195 °C). This observation indicates that the activation energy of the Cr(VI) reduction reactions is higher than that for the Cr(III) oxidation reactions, such that it becomes relatively more favorable at higher temperatures. Overall, these data are important for the development of complementary multiscale models for the prediction of metal ion speciation in high temperature radiation environments.

8.
Phys Chem Chem Phys ; 25(23): 16009-16017, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37272071

RESUMEN

The fate of fission-product iodine is critical for the deployment of next generation molten salt reactor technologies, owing to its volatility and biological impacts if it were to be released into the environment. To date, little is known on how ionizing radiation fields influence the redox chemistry, speciation, and transport of iodine in high temperature molten salts. Here we employ picosecond electron pulse irradiation techniques to elucidate for the first time the impact of iodide ions (I-) on the speciation and chemical kinetics of the primary radiation-induced transient radicals generated in molten chloride salt mixtures (eS- and Cl2˙-) as a function of temperature (400-700 °C). In the presence of I- ions (≥ 1 wt% KI in LiCl-KCl eutectic), we find that the transient spectrum following the electron pulse is composed of at least three overlapping species: the eS- and the Cl2˙- and ICl˙- radical anions, for which a deconvoluted spectrum of the latter is reported here for the first time in molten salts. This new transient spectrum was consistent with gas phase density functional theory calculations. The lifetime of the eS- was unaffected by the addition of I- ions. The newly observed interhalogen radical anion, ICl˙-, exhibited a lifetime on the order of microseconds over the investigated temperature range. The associated chemical kinetics indicate that the predominate mechanism of ICl˙- decay is via reaction with the Cl2˙- radical anion. The iodine containing product of this reaction is expected to be ICl2-, which will have implications for the transport of fission-product iodine in MSR technologies.

9.
Phys Chem Chem Phys ; 25(24): 16404-16413, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37294439

RESUMEN

The impact of trivalent lanthanide ion complexation and temperature on the chemical reactivity of N,N,N',N'-tetraoctyl diglycolamide (TODGA) with the n-dodecane radical cation (RH˙+) has been measured by electron pulse radiolysis and evaluated by quantum mechanical calculations. Additionally, Arrhenius parameters were determined for the reaction of the non-complexed TODGA ligand with the RH˙+ from 10-40 °C, giving the activation energy (Ea = 17.43 ± 1.64 kJ mol-1) and pre-exponential factor (A = (2.36 ± 0.05) × 1013 M-1 s-1). The complexation of Nd(III), Gd(III), and Yb(III) ions by TODGA yielded [LnIII(TODGA)3(NO3)3] complexes that exhibited significantly increased reactivity (up to 9.3× faster) with the RH˙+, relative to the non-complexed ligand: k([LnIII(TODGA)3(NO3)3] + RH˙+) = (8.99 ± 0.93) × 1010, (2.88 ± 0.40) × 1010, and (1.53 ± 0.34) × 1010 M-1 s-1, for Nd(III), Gd(III), and Yb(III) ions, respectively. The rate coefficient enhancement measured for these complexes exhibited a dependence on atomic number, decreasing as the lanthanide series was traversed. Preliminary reaction free energy calculations-based on a model [LnIII(TOGDA)]3+ complex system-indicate that both electron/hole and proton transfer reactions are energetically unfavorable for complexed TODGA. Furthermore, complementary average local ionization energy calculations showed that the most reactive region of model N,N,N',N'-tetraethyl diglycolamide (TEDGA) complexes, [LnIII(TEGDA)3(NO3)3], toward electrophilic attack is for the coordinated nitrate (NO3-) counter anions. Therefore, it is possible that radical reactions with the complexed NO3- counter anions dominate the differences in rates seen for the [LnIII(TODGA)3(NO3)3] complexes, and are likely responsible for the reported radioprotection in the presence of TODGA complexes.

10.
Inorg Chem ; 61(28): 10822-10832, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35776877

RESUMEN

Despite the significant impact of radiation-induced redox reactions on the accessibility and lifetimes of actinide oxidation states, fundamental knowledge of aqueous actinide metal ion radiation chemistry is limited, especially for the late actinides. A quantitative understanding of these intrinsic radiation-induced processes is essential for investigating the fundamental properties of these actinides. We present here a picosecond electron pulse reaction kinetics study into the radiation-induced redox chemistry of trivalent berkelium (Bk(III)) and californium (Cf(III)) ions in acidic aqueous solutions at ambient temperature. New and first-of-a-kind, second-order rate coefficients are reported for the transient radical-induced reduction of Bk(III) and Cf(III) by the hydrated electron (eaq-) and hydrogen atom (H•), demonstrating a significant reactivity (up to 1011 M-1 s-1) indicative of a preference of these metals to adopt divalent states. Additionally, we report the first-ever second-order rate coefficients for the transient radical-induced oxidation of these elements by a reaction with hydroxyl (•OH) and nitrate (NO3•) radicals, which also exhibited fast reactivity (ca. 108 M-1 s-1). Transient Cf(II), Cf(IV), and Bk(IV) absorption spectra are also reported. Overall, the presented data highlight the existence of rich, complex, intrinsic late actinide radiation-induced redox chemistry that has the potential to influence the findings of other areas of actinide science.

11.
Phys Chem Chem Phys ; 24(41): 25088-25098, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-35789354

RESUMEN

Molten chloride salts are currently under consideration as combined coolant and liquid fuel for next-generation molten salt nuclear reactors. Unlike complementary light-water reactor technologies, the radiation science underpinning molten salts is in its infancy, and thus requires a fundamental mechanistic investigation to elucidate the radiation-driven chemistry within molten salt reactors. Here we present an electron pulse radiolysis kinetics study into the behaviour of the primary radiolytic species generated in molten chloride systems, i.e., the solvated electron (eS-) and di-chlorine radical anion (Cl2˙-). We examine the reaction of eS- with Zn2+ from 400-600 °C (Ea = 30.31 ± 0.09 kJ mol-1), and the kinetics and decay mechanisms of Cl2˙- in molten lithium chloride-potassium chloride (LiCl-KCl) eutectic. In the absence of Zn2+, the lifetime of eS- was found to be dictated by residual impurities in ostensibly "pure" salts, and thus the observed decay is dependent on sample history rather than being an intrinsic property of the salt. The decay of Cl2˙- is complex, owing to the competition of Cl2˙- disproportionation with several other chemical pathways, one of which involves reduction by radiolytically-produced Zn+ species. Overall, the reported findings demonstrate the richness and complexity of chemistry involving the interactions of ionizing radiation with molten salts.

12.
Phys Chem Chem Phys ; 23(43): 24589-24597, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34710211

RESUMEN

Specialized extractant ligands - such as tri-butyl phosphate (TBP), N,N-di-(2-ethylhexyl)butyramide (DEHBA), and N,N-di-2-ethylhexylisobutryamide (DEHiBA) - have been developed for the recovery of uranium from used nuclear fuel by reprocessing solvent extraction technologies. These ligands must function in the presence of an intense multi-component radiation field, and thus it is critical that their radiolytic behaviour be thoroughly evaluated. This is especially true for their metal complexes, where there is negligible information on the influence of complexation on radiolytic reactivity, despite the prevalence of metal complexes in used nuclear fuel reprocessing solvent systems. Here we present a kinetic investigation into the effect of uranyl (UO22+) complexation on the reaction kinetics of the dodecane radical cation (RH˙+) with TBP, DEHBA, and DEHiBA. Complexation had negligible effect on the reaction of RH˙+ with TBP, for which a second-order rate coefficient (k) of (1.3 ± 0.1) × 1010 M-1 s-1 was measured. For DEHBA and DEHiBA, UO22+ complexation afforded an increase in their respective rate coefficients: k(RH˙+ + [UO2(NO3)2(DEHBA)2]) = (2.5 ± 0.1) × 1010 M-1 s-1 and k(RH˙+ + [UO2(NO3)2(DEHiBA)2]) = (1.6 ± 0.1) × 1010 M-1 s-1. This enhancement with complexation is indicative of an alternative RH˙+ reaction pathway, which is more readily accessible for [UO2(NO3)2(DEHBA)2] as it exhibited a much larger kinetic enhancement than [UO2(NO3)2(DEHiBA)2], 2.6× vs. 1.4×, respectively. Complementary quantum mechanical calculations suggests that the difference in reaction kinetic enhancement between TBP and DEHBA/DEHiBA is attributed to a combination of reaction pathway (electron/hole transfer vs. proton transfer) energetics and electron density distribution, wherein attendant nitrate counter anions effectively 'shield' TBP from RH˙+ electron transfer processes.

13.
Phys Chem Chem Phys ; 23(17): 10384-10394, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33889900

RESUMEN

Room temperature post-irradiation measurements of diffuse reflectance and electron paramagnetic resonance spectroscopies were made to characterize the long-lived radiation-induced species formed from the gamma irradiation of solid KCl, MgCl2, and ZnCl2 salts up to 100 kGy. The method used showed results consistent with those reported for electron and gamma irradiation of KCl in single crystals. Thermal bleaching of irradiated KCl demonstrated accelerated disaggregation of defect clusters above 400 K, due to decomposition of Cl3-. The defects formed in irradiated MgCl2 comprised a mixture of Cl3-, F-centers, and Mg+ associated as M-centers. Further, Mg metal cluster formation was also observed at 100 kGy, in addition to accelerated destruction of F-centers above 20 kGy. Irradiated ZnCl2 afforded the formation of Cl2- due to its high ionization potential and crystalline structure, which decreases recombination. The presence of aggregates in all cases indicates the high diffusion of radicals and the predominance of secondary processes at 295 K. Thermal bleaching studies showed that chloride aggregates' stability increases with the ionization potential of the cation present. The characterization of long-lived radiolytic transients of pure salts provides important information for the understanding of complex salt mixtures under the action of gamma radiation.

14.
Phys Chem Chem Phys ; 23(2): 1343-1351, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33367347

RESUMEN

The candidate An(iii)/Ln(iii) separation ligand hexa-n-octylnitrilo-triacetamide (HONTA) was irradiated under envisioned SELECT (Solvent Extraction from Liquid waste using Extractants of CHON-type for Transmutation) process conditions (n-dodecane/0.1 M HNO3) using a solvent test loop in conjunction with cobalt-60 gamma irradiation. The extent of HONTA radiolysis and complementary degradation product formation was quantified by HPLC-ESI-MS/MS. Further, the impact of HONTA radiolysis on process performance was evaluated by measuring the change in 243Am and 154Eu distribution ratios as a function of absorbed gamma dose. HONTA was found to decay exponentially with increasing dose, affording a dose coefficient of d = (4.48 ± 0.19) × 10-3 kGy-1. Multiple degradation products were detected by HPLC-ESI-MS/MS with dioctylamine being the dominant quantifiable species. Both 243Am and 154Eu distribution ratios exhibited an induction period of ∼70 kGy for extraction (0.1 M HNO3) and back-extraction (4.0 M HNO3) conditions, after which both values decreased with absorbed dose. The decrease in distribution ratios was attributed to a combination of the destruction of HONTA and ingrowth of dioctylamine, which is capable of interfering in metal ion complexation. The loss of HONTA with absorbed gamma dose was predominantly attributed to its reaction with the n-dodecane radical cation (R˙+). These R˙+ reaction kinetics were measured for HONTA and its 241Am and 154Eu complexes using picosecond pulsed electron radiolysis techniques. All three second-order rate coefficients (k) were essentially diffusion limited in n-dodecane indicating a significant reaction pathway: k(HONTA + R˙+) = (7.6 ± 0.8) × 109 M-1 s-1, k(Am(HONTA)2 + R˙+) = (7.1 ± 0.7) × 1010 M-1 s-1, and k(Eu(HONTA)2 + R˙+) = (9.5 ± 0.5) × 1010 M-1 s-1. HONTA-metal ion complexation afforded an order-of-magnitude increase in rate coefficient. Nanosecond time-resolved measurements showed that both direct and indirect HONTA radiolysis yielded the short-lived (<100 ns) HONTA radical cation and a second long-lived (µs) species identified as the HONTA triplet excited state. The latter was confirmed by a series of oxygen quenching picosecond pulsed electron measurements, affording a quenching rate coefficient of k(3[HONTA]* + O2) = 2.2 × 108 M-1 s-1. Overall, both the HONTA radical cation and triplet excited state are important precursors to the suite of measured HONTA degradation products.

15.
Phys Chem Chem Phys ; 22(43): 24978-24985, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33099596

RESUMEN

To mitigate third phase formation in next generation used nuclear fuel reprocessing technologies, the addition of 1-octanol has been trialed. However, contradictory reports on the radiolytic effect of 1-octanol incorporation on separation ligand degradation need to be resolved. Here, 50 mM N,N,N',N'-tetraoctyldiglycolamide (TODGA) dissolved in n-dodecane was gamma irradiated in the presence and absence of 1-octanol (2.5-10 vol%) and a 3.0 M HNO3 aqueous phase. Radiation-induced TODGA degradation exhibited pseudo-first-order decay kinetics as a function of absorbed gamma dose for all investigated solution and solvent system formulations. The addition of 1-octanol afforded diametrically different effects on the rate of TODGA degradation depending on solvent system formulation. For organic-only irradiations, 1-octanol promoted TODGA degradation (d = 0.0057 kGy-1 for zero 1-octanol present vs.∼0.0073 kGy-1 for 7.5-10 vol%) attributed to a favourable hydrogen atom abstraction reaction free energy (-0.31 eV) and the ability of 1-octanol to access a higher yield of n-dodecane radical cation (RH˙+) at sub-nanosecond timescales. This was rationalized by determination of the rate coefficient (k) for the reaction of 1-octanol with RH˙+, k = (1.23 ± 0.07) × 1010 M-1 s-1. In contrast, irradiation in the presence of 1-octanol and a 3.0 M HNO3 aqueous phase afforded significant radioprotection (d = 0.0054 kGy-1 for zero 1-octanol present vs.≤ 0.0044 kGy-1 for >2.5 vol%) that increases with 1-octanol concentration, relative to the single phase, organic-only solutions. This effect was attributed to the extraction of sufficiently high concentrations of HNO3 and H2O into the organic phase by TODGA and 1-octanol as adducts which interfere with the hydrogen atom abstraction process between the 1-octanol radical and TODGA. Our findings suggest that the addition of 1-octanol as a phase modifier will enhance the radiation robustness of TODGA-based separation technologies under envisioned solvent system conditions in the presence of aqueous HNO3.

16.
Hum Reprod ; 34(5): 920-931, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30868153

RESUMEN

STUDY QUESTION: Has birthweight (BW) changed over time among IVF-conceived singletons? SUMMARY ANSWER: Singleton BW has increased markedly over the past 25 years. WHAT IS KNOWN ALREADY: IVF conceived singletons have had a higher incidence of low BW compared to spontaneously conceived singletons, and this has raised concerns over long-term increased risks of cardio-metabolic disease. However, few causal links between IVF procedures and BW have been robustly established, and few studies have examined whether BW has changed over time as IVF techniques have developed. STUDY DESIGN, SIZE, DURATION: A total of 2780 live born singletons conceived via IVF or ICSI treated in the reproductive medicine department of a single publicly funded tertiary care centre between 1991 and 2015 were included in this retrospective study. The primary outcome measure was singleton BW adjusted for gestational age, maternal parity and child gender. Multivariable linear regression models were used to estimate the associations between patient prognostic factors and IVF treatment procedures with adjusted BW. PARTICIPANTS/MATERIALS, SETTING, METHODS: All singletons conceived at the centre following IVF/ICSI using the mother's own oocytes, and non-donated fresh or frozen/thawed embryos with complete electronic data records, were investigated. Available electronic records were retrieved from the Human Fertilization and Embryology Authority for dataset collation. Multiple linear regression analysis was used to evaluate associations between IVF treatment parameters and BW, after adjusting for the year of treatment and patient characteristics and pregnancy factors. MAIN RESULTS AND THE ROLE OF CHANCE: In the primary multivariable model, singleton BW increased by 7.4 g per year (95% CI: 3.2-11.6 g, P = 0.001), an increase of close to 180 g throughout the 25-year period after accounting for gestational age, maternal parity, child gender, IVF treatment parameters, patient prognostic characteristics and pregnancy factors. Fresh and frozen embryo transfer-conceived singletons showed a similar increase in BW. Frozen/thawed embryo transfer conceived singletons were on average 53 g heavier than their fresh embryo conceived counterparts (95% CI: 3.7-103.3 g, P = 0.035). LIMITATIONS, REASONS FOR CAUTION: The independent variables included in the study were limited to those that have been consistently recorded and stored electronically over the past two decades. WIDER IMPLICATIONS OF THE FINDINGS: There has been a progressive BW increase in IVF singletons over time in one large centre with consistent treatment eligibility criteria. Such a change is not seen in the general population of live born singletons in the UK or other developed countries, and seems to be specific to this IVF population. This may be a reflection of changes in practice such as undisturbed extended embryo culture to the blastocyst stage, optimized commercial culture media composition, single embryo transfer and ICSI. Moreover, singletons conceived from frozen/thawed embryos had higher birth weights when compared to their fresh embryo transfer counterparts. The causal pathway is unknown; however, it could be due to the impact on embryos of the freeze/thaw process, self-selection of embryos from couples who produce a surplus of embryos, and/or embryo replacement into a more receptive maternal environment. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the EU FP7 project grant, EpiHealthNet (FP7-PEOPLE-2012-ITN-317146). The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Peso al Nacer , Criopreservación/estadística & datos numéricos , Transferencia de Embrión/estadística & datos numéricos , Fertilización In Vitro/estadística & datos numéricos , Adulto , Estudios Transversales , Criopreservación/tendencias , Transferencia de Embrión/efectos adversos , Transferencia de Embrión/métodos , Transferencia de Embrión/tendencias , Femenino , Fertilización In Vitro/efectos adversos , Fertilización In Vitro/métodos , Fertilización In Vitro/tendencias , Edad Gestacional , Humanos , Recién Nacido , Masculino , Embarazo , Estudios Retrospectivos , Factores de Tiempo , Reino Unido , Adulto Joven
17.
Inorg Chem ; 58(13): 8551-8559, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31184869

RESUMEN

The recent development of facile methods to oxidize trivalent americium to its higher valence states holds promise for the discovery of new chemistries and critical insight into the behavior of the 5f electrons. However, progress in understanding high-valent americium chemistry has been hampered by americium's inherent ionizing radiation field and its concomitant effects on americium redox chemistry. Any attempt to understand high-valent americium reduction and/or disproportionation must account for the effects of these radiolytic processes. Therefore, we present a complete, quantitative, mechanistic description of the radiation-induced redox chemistry of the americyl oxidation states in aerated, aqueous nitric acid, as a function of radiation quality (type and energy) and solution composition using multiscale modeling calculations supported by experiment. The reduction of Am(VI) to Am(V) was found to be most sensitive to the effects of ionizing radiation, undergoing rapid reductions with the steady-state products of aqueous HNO3 radiolysis, i.e., HNO2, H2O2, and HO2•, which dictated its practical lifetime under acidic conditions. In contrast, Am(V) is only susceptible to radiolytic oxidation, mainly through its reactions with NO3•, and is notably radiation-resistant with respect to direct one-electron reduction to produce Am(IV). Our multiscale modeling calculations predict that the lifetime of Am(V) is dictated by its rate of disproportionation, 2AmO2+ + 4Haq+ → AmO22+ + Am4+ + 2H2O, with a fourth-order dependence on [Haq+] in agreement with previous experimental findings, giving an optimized rate coefficient of k = 2.27 × 10-6 M-5 s-1. This disproportionation initially produces Am(IV) and Am(VI) species, but the lack of any spectroscopic evidence in our study for Am(IV) suggests that solvent reduction of this cation occurs rapidly. The ultimate product of all the Am(VI)/Am(V) irradiations is Am(III), which shows great stability in an irradiation field.

19.
Inorg Chem ; 56(14): 8295-8301, 2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28661685

RESUMEN

The rate of reduction of hexavalent 243Am due to self-radiolysis was measured across a range of total americium and nitric acid concentrations. These so-called autoreduction rates exhibited zero-order kinetics with respect to the concentration of hexavalent americium, and pseudo-first-order kinetics with respect to the total concentration of americium. However, the rate constants did vary with nitric acid concentration, resulting in values of 0.0048 ± 0.0003, 0.0075 ± 0.0005, and 0.0054 ± 0.0003 h-1 for 1.0, 3.0, and 6.5 M HNO3, respectively. This indicates that reduction is due to reaction of hexavalent americium with the radiolysis products of total americium decay. The concentration changes of Am(III), Am(V), and Am(VI) were determined by UV-vis spectroscopy. The Am(III) molar extinction coefficients are known; however, the unknown values for the Am(V) and Am(VI) absorbances across the studied range of nitric acid concentrations were determined by sensitivity analysis in which a mass balance with the known total americium concentration was obtained. The new extinction coefficients and reduction rate constants have been tabulated here. Multiscale radiation chemical modeling using a reaction set with both known and optimized rate coefficients was employed to achieve excellent agreement with the experimental results, and indicates that radiolytically produced nitrous acid from nitric acid radiolysis and hydrogen peroxide from water radiolysis are the important reducing agents. Since these species also react with each other, modeling indicated that the highest concentrations of these species available for Am(VI) reduction occurred at 3.0 M HNO3. This is in agreement with the empirical finding that the highest rate constant for autoreduction occurred at the intermediate acid concentration.

20.
J Assist Reprod Genet ; 33(8): 1085-91, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27142041

RESUMEN

PURPOSE: Genetic variation may influence women's response to ovarian stimulation therapy. The purpose of this study was to investigate any effects of genetic variants in the anti-Müllerian hormone (AMH) and AMH type II receptor genes on ovarian response/treatment outcomes and on current markers of ovarian reserve in individuals undergoing in vitro fertilisation (IVF) treatment. METHODS: In this prospective observational study, we genotyped the AMH c.146G>T, p.(Ile49Ser) and AMHR2 -482A>G variants in 603 unrelated women undergoing their first cycle of controlled ovarian stimulation for IVF and ICSI (intracytoplasmic sperm injection) using gonadotrophins at a tertiary referral centre for reproductive medicine. Pelvic ultrasound and blood hormone levels were taken on days 2-3 of the cycle. Genotypes were determined using TaqMan allelic discrimination assay. Regression analysis was performed to assess the relationship between the genotypes and the ovarian reserve markers (FSH, AMH, antral follicle count) and the early outcomes of response (number of oocytes retrieved and gonadotropin dose) as well as the treatment outcome (live birth). RESULTS: There were no significant associations between the variants AMH c.146G>T and AMHR2 -482A>G with ovarian response in terms of number of oocytes retrieved (p = 0.08 and p = 0.64, respectively), live births (p = 0.28 and p = 0.52) and/or markers of ovarian reserve. CONCLUSIONS: Genotyping of the AMH c.146G>T and AMHR2 -482A>G polymorphisms does not provide additional useful information as a predictor of ovarian reserve or ovarian response and treatment outcomes.


Asunto(s)
Hormona Antimülleriana/genética , Reserva Ovárica/genética , Inducción de la Ovulación/métodos , Receptores de Péptidos/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Adulto , Femenino , Hormona Folículo Estimulante/metabolismo , Gonadotrofos/metabolismo , Humanos , Polimorfismo Genético/genética , Embarazo , Resultado del Embarazo , Estudios Prospectivos , Inyecciones de Esperma Intracitoplasmáticas , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA