Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mamm Genome ; 31(1-2): 30-48, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32060626

RESUMEN

The collaborative cross (CC) is a large panel of mouse-inbred lines derived from eight founder strains (NOD/ShiLtJ, NZO/HILtJ, A/J, C57BL/6J, 129S1/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Here, we performed a comprehensive and comparative phenotyping screening to identify phenotypic differences and similarities between the eight founder strains. In total, more than 300 parameters including allergy, behavior, cardiovascular, clinical blood chemistry, dysmorphology, bone and cartilage, energy metabolism, eye and vision, immunology, lung function, neurology, nociception, and pathology were analyzed; in most traits from sixteen females and sixteen males. We identified over 270 parameters that were significantly different between strains. This study highlights the value of the founder and CC strains for phenotype-genotype associations of many genetic traits that are highly relevant to human diseases. All data described here are publicly available from the mouse phenome database for analyses and downloads.


Asunto(s)
Ratones Endogámicos/genética , Fenotipo , Animales , Ratones de Colaboración Cruzada/genética , Bases de Datos Genéticas , Femenino , Estudios de Asociación Genética , Genotipo , Masculino , Ratones , Sitios de Carácter Cuantitativo , Especificidad de la Especie
2.
Haematologica ; 105(10): 2484-2495, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33054088

RESUMEN

Tissue factor is highly expressed in sub-endothelial tissue. The extracellular allosteric disulfide bond Cys186-Cys209 of human tissue factor shows high evolutionary conservation and in vitro evidence suggests that it significantly contributes to tissue factor procoagulant activity. To investigate the role of this allosteric disulfide bond in vivo, we generated a C213G mutant tissue factor mouse by replacing Cys213 of the corresponding disulfide Cys190-Cys213 in murine tissue factor. A bleeding phenotype was prominent in homozygous C213G tissue factor mice. Pre-natal lethality of 1/3rd of homozygous offspring was observed between E9.5 and E14.5 associated with placental hemorrhages. After birth, homozygous mice suffered from bleedings in different organs and reduced survival. Homozygous C213G tissue factor male mice showed higher incidence of lung bleedings and lower survival rates than females. In both sexes, C213G mutation evoked a reduced protein expression (about 10-fold) and severely reduced pro-coagulant activity (about 1000-fold). Protein glycosylation was impaired and cell membrane exposure decreased in macrophages in vivo. Single housing of homozygous C213G tissue factor males reduced the occurrence of severe bleeding and significantly improved survival, suggesting that inter-male aggressiveness might significantly account for the sex differences. These experiments show that the tissue factor allosteric disulfide bond is of crucial importance for normal in vivo expression, post-translational processing and activity of murine tissue factor. Although C213G tissue factor mice do not display the severe embryonic lethality of tissue factor knock-out mice, their postnatal bleeding phenotype emphasizes the importance of fully functional tissue factor for hemostasis.


Asunto(s)
Disulfuros , Tromboplastina , Animales , Femenino , Hemorragia/genética , Masculino , Ratones , Mutación , Fenotipo , Embarazo , Tromboplastina/genética
3.
Exp Eye Res ; 188: 107632, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30991053

RESUMEN

During an ENU (N-ethyl-N-nitrosourea) mutagenesis screen, we observed a dominant small-eye mutant mouse with viable homozygotes. A corresponding mutant line was established and referred to as Aey69 (abnormality of the eye #69). Comprehensive phenotyping of the homozygous Aey69 mutants in the German Mouse Clinic revealed only a subset of statistically significant alterations between wild types and homozygous mutants. The mutation causes microphthalmia without a lens but with retinal hyperproliferation. Linkage was demonstrated to mouse chromosome 3 between the markers D3Mit188 and D3Mit11. Sequencing revealed a 358 A-> C mutation (Ile120Leu) in the Hist2h3c1 gene and a 71 T-> C (Val24Ala) mutation in the Gja8 gene. Detailed analysis of eye development in the homozygous mutant mice documented a perturbed lens development starting from the lens vesicle stage including decreasing expression of crystallins as well as of lens-specific transcription factors like PITX3 and FOXE3. In contrast, we observed an early expression of retinal progenitor cells characterized by several markers including BRN3 (retinal ganglion cells) and OTX2 (cone photoreceptors). The changes in the retina at the early embryonic stages of E11.5-E15.5 happen in parallel with apoptotic processes in the lens at the respective stages. The excessive retinal hyperproliferation is characterized by an increased level of Ki67. The hyperproliferation, however, does not disrupt the differentiation and appearance of the principal retinal cell types at postnatal stages, even if the overgrowing retina covers finally the entire bulbus of the eye. Morpholino-mediated knock-down of the hist2h3ca1 gene in zebrafish leads to a specific perturbation of lens development. When injected into zebrafish zygotes, only the mutant mouse mRNA leads to severe malformations, ranging from cyclopia to severe microphthalmia. The wild-type Hist2h3c1 mRNA can rescue the morpholino-induced defects corroborating its specific function in lens development. Based upon these data, it is concluded that the ocular function of the Hist2h3c1 gene (encoding a canonical H3.2 variant) is conserved throughout evolution. Moreover, the data highlight also the importance of Hist2h3c1 in the coordinated formation of lens and retina during eye development.


Asunto(s)
Técnicas de Silenciamiento del Gen , Histonas/genética , Enfermedades del Cristalino/genética , Microftalmía/genética , Mutación , Animales , Cristalinas/metabolismo , Femenino , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Antígeno Ki-67/metabolismo , Enfermedades del Cristalino/embriología , Enfermedades del Cristalino/metabolismo , Enfermedades del Cristalino/patología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Microftalmía/embriología , Microftalmía/metabolismo , Microftalmía/patología , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/metabolismo , Pez Cebra
4.
Genome Res ; 25(9): 1295-308, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26156321

RESUMEN

DNase I hypersensitive sites (DHSs) are a hallmark of chromatin regions containing regulatory DNA such as enhancers and promoters; however, the factors affecting the establishment and maintenance of these sites are not fully understood. We now show that HMGN1 and HMGN2, nucleosome-binding proteins that are ubiquitously expressed in vertebrate cells, maintain the DHS landscape of mouse embryonic fibroblasts (MEFs) synergistically. Loss of one of these HMGN variants led to a compensatory increase of binding of the remaining variant. Genome-wide mapping of the DHSs in Hmgn1(-/-), Hmgn2(-/-), and Hmgn1(-/-)n2(-/-) MEFs reveals that loss of both, but not a single HMGN variant, leads to significant remodeling of the DHS landscape, especially at enhancer regions marked by H3K4me1 and H3K27ac. Loss of HMGN variants affects the induced expression of stress-responsive genes in MEFs, the transcription profiles of several mouse tissues, and leads to altered phenotypes that are not seen in mice lacking only one variant. We conclude that the compensatory binding of HMGN variants to chromatin maintains the DHS landscape, and the transcription fidelity and is necessary to retain wild-type phenotypes. Our study provides insight into mechanisms that maintain regulatory sites in chromatin and into functional compensation among nucleosome binding architectural proteins.


Asunto(s)
Sitios de Unión , Desoxirribonucleasa I/metabolismo , Elementos de Facilitación Genéticos , Proteínas HMGN/metabolismo , Animales , Línea Celular , Cromatina/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Proteínas HMGN/genética , Proteína HMGN1/genética , Proteína HMGN1/metabolismo , Proteína HMGN2/genética , Proteína HMGN2/metabolismo , Humanos , Ratones , Ratones Noqueados , Nucleosomas/metabolismo , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas , Estrés Fisiológico/genética
5.
Genome Res ; 24(4): 592-603, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24642863

RESUMEN

Genome-wide association studies (GWAS) identified the MEIS1 locus for Restless Legs Syndrome (RLS), but causal single nucleotide polymorphisms (SNPs) and their functional relevance remain unknown. This locus contains a large number of highly conserved noncoding regions (HCNRs) potentially functioning as cis-regulatory modules. We analyzed these HCNRs for allele-dependent enhancer activity in zebrafish and mice and found that the risk allele of the lead SNP rs12469063 reduces enhancer activity in the Meis1 expression domain of the murine embryonic ganglionic eminences (GE). CREB1 binds this enhancer and rs12469063 affects its binding in vitro. In addition, MEIS1 target genes suggest a role in the specification of neuronal progenitors in the GE, and heterozygous Meis1-deficient mice exhibit hyperactivity, resembling the RLS phenotype. Thus, in vivo and in vitro analysis of a common SNP with small effect size showed allele-dependent function in the prospective basal ganglia representing the first neurodevelopmental region implicated in RLS.


Asunto(s)
Elementos de Facilitación Genéticos , Proteínas de Homeodominio/genética , Proteínas de Neoplasias/genética , Síndrome de las Piernas Inquietas/genética , Telencéfalo/crecimiento & desarrollo , Alelos , Animales , Ganglios Basales/metabolismo , Ganglios Basales/patología , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Intrones , Ratones , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Polimorfismo de Nucleótido Simple , Telencéfalo/patología
6.
J Biomed Sci ; 24(1): 57, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28818080

RESUMEN

BACKGROUND: Increased levels of blood plasma urea were used as phenotypic parameter for establishing novel mouse models for kidney diseases on the genetic background of C3H inbred mice in the phenotype-driven Munich ENU mouse mutagenesis project. The phenotypically dominant mutant line HST014 was established and further analyzed. METHODS: Analysis of the causative mutation as well as the standardized, systemic phenotypic analysis of the mutant line was carried out. RESULTS: The causative mutation was detected in the potassium channel tetramerization domain containing 1 (Kctd1) gene which leads to the amino acid exchange Kctd1 I27N thereby affecting the functional BTB domain of the protein. This line is the first mouse model harboring a Kctd1 mutation. Kctd1 I27N homozygous mutant mice die perinatally. Standardized, systemic phenotypic analysis of Kctd1 I27N heterozygous mutants was carried out in the German Mouse Clinic (GMC). Systematic morphological investigation of the external physical appearance did not detect the specific alterations that are described in KCTD1 mutant human patients affected by the scalp-ear-nipple (SEN) syndrome. The main pathological phenotype of the Kctd1 I27N heterozygous mutant mice consists of kidney dysfunction and secondary effects thereof, without gross additional primary alterations in the other phenotypic parameters analyzed. Genome-wide transcriptome profiling analysis at the age of 4 months revealed about 100 differentially expressed genes (DEGs) in kidneys of Kctd1 I27N heterozygous mutants as compared to wild-type controls. CONCLUSIONS: In summary, the main alteration of the Kctd1 I27N heterozygous mutants consists in kidney dysfunction. Additional analyses in 9-21 week-old heterozygous mutants revealed only few minor effects.


Asunto(s)
Proteínas Co-Represoras/genética , Modelos Animales de Enfermedad , Enfermedades Renales/genética , Riñón/fisiopatología , Ratones , Mutación , Animales , Femenino , Masculino , Ratones Endogámicos C3H , Fenotipo
7.
Hum Mol Genet ; 23(21): 5597-614, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24895407

RESUMEN

Mutations in Peroxidasin (PXDN) cause severe inherited eye disorders in humans, such as congenital cataract, corneal opacity and developmental glaucoma. The role of peroxidasin during eye development is poorly understood. Here, we describe the first Pxdn mouse mutant which was induced by ENU (N-ethyl-N-nitrosourea) and led to a recessive phenotype. Sequence analysis of cDNA revealed a T3816A mutation resulting in a premature stop codon (Cys1272X) in the peroxidase domain. This mutation causes severe anterior segment dysgenesis and microphthalmia resembling the manifestations in patients with PXDN mutations. The proliferation and differentiation of the lens is disrupted in association with aberrant expression of transcription factor genes (Pax6 and Foxe3) in mutant eyes. Additionally, Pxdn is involved in the consolidation of the basement membrane and lens epithelium adhesion in the ocular lens. Lens material including γ-crystallin is extruded into the anterior and posterior chamber due to local loss of structural integrity of the lens capsule as a secondary damage to the anterior segment development leading to congenital ocular inflammation. Moreover, Pxdn mutants exhibited an early-onset glaucoma and progressive retinal dysgenesis. Transcriptome profiling revealed that peroxidasin affects the transcription of developmental and eye disease-related genes at early eye development. These findings suggest that peroxidasin is necessary for cell proliferation and differentiation and for basement membrane consolidation during eye development. Our studies provide pathogenic mechanisms of PXDN mutation-induced congenital eye diseases.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Ojo/embriología , Ojo/metabolismo , Organogénesis/genética , Peroxidasa/genética , Animales , Adhesión Celular , Proliferación Celular , Análisis Mutacional de ADN , Matriz Extracelular/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Estudios de Asociación Genética , Ligamiento Genético , Genotipo , Cristalino/embriología , Cristalino/metabolismo , Masculino , Ratones , Mutación , Disco Óptico/embriología , Disco Óptico/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , Retina/embriología , Retina/metabolismo , Retina/patología , Peroxidasina
8.
Mamm Genome ; 27(3-4): 111-21, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26803617

RESUMEN

We performed exome sequencing for mutation discovery of an ENU (N-ethyl-N-nitrosourea)-derived mouse model characterized by significant elevated plasma alkaline phosphatase (ALP) activities in female and male mutant mice, originally named BAP014 (bone screen alkaline phosphatase #14). We identified a novel loss-of-function mutation within the Fam46a (family with sequence similarity 46, member A) gene (NM_001160378.1:c.469G>T, NP_001153850.1:p.Glu157*). Heterozygous mice of this mouse line (renamed Fam46a (E157*Mhda)) had significantly high ALP activities and apparently no other differences in morphology compared to wild-type mice. In contrast, homozygous Fam46a (E157*Mhda) mice showed severe morphological and skeletal abnormalities including short stature along with limb, rib, pelvis, and skull deformities with minimal trabecular bone and reduced cortical bone thickness in long bones. ALP activities of homozygous mutants were almost two-fold higher than in heterozygous mice. Fam46a is weakly expressed in most adult and embryonic tissues with a strong expression in mineralized tissues as calvaria and femur. The FAM46A protein is computationally predicted as a new member of the superfamily of nucleotidyltransferase fold proteins, but little is known about its function. Fam46a (E157*Mhda) mice are the first mouse model for a mutation within the Fam46a gene.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Enfermedades del Desarrollo Óseo/patología , Codón sin Sentido , Exoma , Fosfatasa Alcalina/metabolismo , Animales , Huesos/metabolismo , Huesos/patología , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Expresión Génica , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Noqueados , Fenotipo
9.
Arch Biochem Biophys ; 589: 93-107, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26408941

RESUMEN

Fat cell metabolism has an impact on body homeostasis and its proper function. Nevertheless, the knowledge about simultaneous metabolic processes, which occur during adipogenesis and in mature adipocytes, is limited. Identification of key metabolic events associated with fat cell metabolism could be beneficial in the field of novel drug development, drug repurposing, as well as for the discovery of patterns predicting obesity risk. The main objective of our work was to provide comprehensive characterization of metabolic processes occurring during adipogenesis and in mature adipocytes. In order to globally determine crucial metabolic pathways involved in fat cell metabolism, metabolomics and transcriptomics approaches were applied. We observed significantly regulated metabolites correlating with significantly regulated genes at different stages of adipogenesis. We identified the synthesis of phosphatidylcholines, the metabolism of even and odd chain fatty acids, as well as the catabolism of branched chain amino acids (BCAA; leucine, isoleucine and valine) as key regulated pathways. Our further analysis led to identification of an enzymatic switch comprising the enzymes Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthase) and Auh (AU RNA binding protein/enoyl-CoA hydratase) which connects leucine degradation with cholesterol synthesis. In addition, propionyl-CoA, a product of isoleucine degradation, was identified as a putative substrate for odd chain fatty acid synthesis. The uncovered crosstalks between BCAA and lipid metabolism during adipogenesis might contribute to the understanding of molecular mechanisms of obesity and have potential implications in obesity prediction.


Asunto(s)
Adipogénesis , Perfilación de la Expresión Génica , Lípidos/biosíntesis , Metabolómica , Células 3T3-L1 , Aminoácidos de Cadena Ramificada , Animales , Colesterol/biosíntesis , Ácidos Grasos/biosíntesis , Ácidos Grasos/química , Ratones
10.
J Inherit Metab Dis ; 39(2): 309-19, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26830550

RESUMEN

Tetrahydrobiopterin (BH4) is an essential cofactor for the aromatic amino acid hydroxylases, alkylglycerol monooxygenase, and nitric oxide synthases (NOS). Inborn errors of BH4 metabolism lead to severe insufficiency of brain monoamine neurotransmitters while augmentation of BH4 by supplementation or stimulation of its biosynthesis is thought to ameliorate endothelial NOS (eNOS) dysfunction, to protect from (cardio-) vascular disease and/or prevent obesity and development of the metabolic syndrome. We have previously reported that homozygous knock-out mice for the 6-pyruvolytetrahydropterin synthase (PTPS; Pts-ko/ko) mice with no BH4 biosynthesis die after birth. Here we generated a Pts-knock-in (Pts-ki) allele expressing the murine PTPS-p.Arg15Cys with low residual activity (15% of wild-type in vitro) and investigated homozygous (Pts-ki/ki) and compound heterozygous (Pts-ki/ko) mutants. All mice showed normal viability and depending on the severity of the Pts alleles exhibited up to 90% reduction of PTPS activity concomitant with neopterin elevation and mild reduction of total biopterin while blood L-phenylalanine and brain monoamine neurotransmitters were unaffected. Yet, adult mutant mice with compromised PTPS activity (i.e., Pts-ki/ko, Pts-ki/ki or Pts-ko/wt) had increased body weight and elevated intra-abdominal fat. Comprehensive phenotyping of Pts-ki/ki mice revealed alterations in energy metabolism with proportionally higher fat content but lower lean mass, and increased blood glucose and cholesterol. Transcriptome analysis indicated changes in glucose and lipid metabolism. Furthermore, differentially expressed genes associated with obesity, weight loss, hepatic steatosis, and insulin sensitivity were consistent with the observed phenotypic alterations. We conclude that reduced PTPS activity concomitant with mildly compromised BH4-biosynthesis leads to abnormal body fat distribution and abdominal obesity at least in mice. This study associates a novel single gene mutation with monogenic forms of obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Biopterinas/análogos & derivados , Distribución de la Grasa Corporal , Obesidad Abdominal/genética , Liasas de Fósforo-Oxígeno/genética , Alelos , Animales , Biopterinas/biosíntesis , Biopterinas/genética , Peso Corporal/genética , Colesterol/genética , Femenino , Genotipo , Glucosa/genética , Heterocigoto , Homocigoto , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo III/genética , Fenilalanina/genética , Transcriptoma/genética
11.
J Immunol ; 192(8): 3507-17, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24639353

RESUMEN

Ag recognition via the TCR is necessary for the expansion of specific T cells that then contribute to adaptive immunity as effector and memory cells. Because CD4+ and CD8+ T cells differ in terms of their priming APCs and MHC ligands we compared their requirements of Ag persistence during their expansion phase side by side. Proliferation and effector differentiation of TCR transgenic and polyclonal mouse T cells were thus analyzed after transient and continuous TCR signals. Following equally strong stimulation, CD4+ T cell proliferation depended on prolonged Ag presence, whereas CD8+ T cells were able to divide and differentiate into effector cells despite discontinued Ag presentation. CD4+ T cell proliferation was neither affected by Th lineage or memory differentiation nor blocked by coinhibitory signals or missing inflammatory stimuli. Continued CD8+ T cell proliferation was truly independent of self-peptide/MHC-derived signals. The subset divergence was also illustrated by surprisingly broad transcriptional differences supporting a stronger propensity of CD8+ T cells to programmed expansion. These T cell data indicate an intrinsic difference between CD4+ and CD8+ T cells regarding the processing of TCR signals for proliferation. We also found that the presentation of a MHC class II-restricted peptide is more efficiently prolonged by dendritic cell activation in vivo than a class I bound one. In summary, our data demonstrate that CD4+ T cells require continuous stimulation for clonal expansion, whereas CD8+ T cells can divide following a much shorter TCR signal.


Asunto(s)
Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Animales , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Ciclo Celular/efectos de los fármacos , Diferenciación Celular , Análisis por Conglomerados , Células Dendríticas/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Expresión Génica , Perfilación de la Expresión Génica , Orden Génico , Vectores Genéticos/genética , Antígenos H-2/química , Antígenos H-2/inmunología , Memoria Inmunológica , Activación de Linfocitos/inmunología , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo
12.
J Biol Chem ; 289(15): 10769-10784, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24515116

RESUMEN

The majority of amyotrophic lateral sclerosis (ALS) cases as well as many patients suffering from frontotemporal lobar dementia (FTLD) with ubiquitinated inclusion bodies show TDP-43 pathology, the protein encoded by the TAR DNA-binding protein (Tardbp) gene. We used recombinase-mediated cassette exchange to introduce an ALS patient cDNA into the mouse Tdp-43 locus. Expression levels of human A315T TDP-43 protein were 300% elevated in heterozygotes, whereas the endogenous mouse Tdp-43 was decreased to 20% of wild type levels as a result of disturbed feedback regulation. Heterozygous TDP-43(A315TKi) mutants lost 10% of their body weight and developed insoluble TDP-43 protein starting as early as 3 months after birth, a pathology that was exacerbated with age. We analyzed the splicing patterns of known Tdp-43 target genes as well as genome-wide gene expression levels in different tissues that indicated mitochondrial dysfunction. In heterozygous mutant animals, we observed a relative decrease in expression of Parkin (Park2) and the fatty acid transporter CD36 along with an increase in fatty acids, HDL cholesterol, and glucose in the blood. As seen in transmission electron microscopy, neuronal cells in motor cortices of TDP-43(A315TKi) animals had abnormal neuronal mitochondrial cristae formation. Motor neurons were reduced to 90%, but only slight motoric impairment was detected. The observed phenotype was interpreted as a predisease model, which might be valuable for the identification of further environmental or genetic triggers of neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Mitocondrias/patología , Alelos , Esclerosis Amiotrófica Lateral/genética , Animales , Conducta Animal , Glucemia/metabolismo , Peso Corporal , Antígenos CD36/metabolismo , HDL-Colesterol/metabolismo , ADN Complementario/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Ácidos Grasos/metabolismo , Femenino , Técnicas de Sustitución del Gen , Genoma , Genotipo , Heterocigoto , Humanos , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Fenotipo , Ubiquitina-Proteína Ligasas/metabolismo
13.
Int J Cancer ; 136(10): 2293-303, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25348795

RESUMEN

Previous studies have evaluated the role of miRNAs in cancer initiation and progression. MiR-34a was found to be downregulated in several tumors, including medulloblastomas. Here we employed targeted transgenesis to analyze the function of miR-34a in vivo. We generated mice with a constitutive deletion of the miR-34a gene. These mice were devoid of mir-34a expression in all analyzed tissues, but were viable and fertile. A comprehensive standardized phenotypic analysis including more than 300 single parameters revealed no apparent phenotype. Analysis of miR-34a expression in human medulloblastomas and medulloblastoma cell lines revealed significantly lower levels than in normal human cerebellum. Re-expression of miR-34a in human medulloblastoma cells reduced cell viability and proliferation, induced apoptosis and downregulated the miR-34a target genes, MYCN and SIRT1. Activation of the Shh pathway by targeting SmoA1 transgene overexpression causes medulloblastoma in mice, which is dependent on the presence and upregulation of Mycn. Analysis of miR-34a in medulloblastomas derived from ND2:SmoA1(tg) mice revealed significant suppression of miR-34a compared to normal cerebellum. Tumor incidence was significantly increased and tumor formation was significantly accelerated in mice transgenic for SmoA1 and lacking miR-34a. Interestingly, Mycn and Sirt1 were strongly expressed in medulloblastomas derived from these mice. We here demonstrate that miR-34a is dispensable for normal development, but that its loss accelerates medulloblastomagenesis. Strategies aiming to re-express miR-34a in tumors could, therefore, represent an efficient therapeutic option.


Asunto(s)
Neoplasias Cerebelosas/patología , Cerebelo/metabolismo , Meduloblastoma/patología , MicroARNs/genética , MicroARNs/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones , Ratones Transgénicos , Fenotipo , Transducción de Señal
14.
Biometals ; 28(2): 293-306, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25636453

RESUMEN

Iron is essential for numerous cellular processes. For diagnostic purposes iron-related parameters in patients are assessed by clinical chemical blood analysis including the analysis of ferritin, transferrin and iron levels. Here, we retrospectively evaluated the use of these parameters in the phenotype-driven Munich N-ethyl-N-nitrosourea mouse mutagenesis project for the generation of novel animal models for human diseases. The clinical chemical blood analysis was carried out on more than 10,700 G1 and G3 offspring of chemically mutagenized inbred C3H mice to detect dominant and recessive mutations leading to deviations in the plasma levels of iron-related plasma parameters. We identified animals consistently exhibiting altered plasma ferritin or transferrin values. Transmission of the phenotypic deviations to the subsequent generations led to the successful establishment of three mutant lines with increased plasma ferritin levels. For two of these lines the causative mutations were identified in the Fth1gene and the Ireb2 gene, respectively. Thus, novel mouse models for the functional analysis of iron homeostasis were established by a phenotype-driven screen for mutant mice.


Asunto(s)
Etilnitrosourea/farmacología , Ferritinas/sangre , Mutágenos/farmacología , Animales , Secuencia de Bases , Análisis Mutacional de ADN , Femenino , Expresión Génica , Estudios de Asociación Genética , Ligamiento Genético , Pruebas Genéticas , Hierro/sangre , Masculino , Ratones Endogámicos C3H , Mutagénesis , Fenotipo , Transferrina/metabolismo
15.
J Biol Chem ; 288(23): 16690-16703, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23620591

RESUMEN

The nuclei of most vertebrate cells contain members of the high mobility group N (HMGN) protein family, which bind specifically to nucleosome core particles and affect chromatin structure and function, including transcription. Here, we study the biological role of this protein family by systematic analysis of phenotypes and tissue transcription profiles in mice lacking functional HMGN variants. Phenotypic analysis of Hmgn1(tm1/tm1), Hmgn3(tm1/tm1), and Hmgn5(tm1/tm1) mice and their wild type littermates with a battery of standardized tests uncovered variant-specific abnormalities. Gene expression analysis of four different tissues in each of the Hmgn(tm1/tm1) lines reveals very little overlap between genes affected by specific variants in different tissues. Pathway analysis reveals that loss of an HMGN variant subtly affects expression of numerous genes in specific biological processes. We conclude that within the biological framework of an entire organism, HMGNs modulate the fidelity of the cellular transcriptional profile in a tissue- and HMGN variant-specific manner.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas HMGN/metabolismo , Transcripción Genética/fisiología , Animales , Proteínas HMGN/genética , Ratones , Ratones Mutantes , Especificidad de Órganos/fisiología
16.
Hum Mol Genet ; 21(16): 3535-45, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22589248

RESUMEN

Osteogenesis imperfecta (OI) is an inherited connective tissue disorder with skeletal dysplasia of varying severity, predominantly caused by mutations in the collagen I genes (COL1A1/COL1A2). Extraskeletal findings such as cardiac and pulmonary complications are generally considered to be significant secondary features. Aga2, a murine model for human OI, was systemically analyzed in the German Mouse Clinic by means of in vivo and in vitro examinations of the cardiopulmonary system, to identify novel mechanisms accounting for perinatal lethality. Pulmonary and, especially, cardiac fibroblast of perinatal lethal Aga2/+ animals display a strong down-regulation of Col1a1 transcripts in vivo and in vitro, resulting in a loss of extracellular matrix integrity. In addition, dysregulated gene expression of Nppa, different types of collagen and Agt in heart and lung tissue support a bone-independent vicious cycle of heart dysfunction, including hypertrophy, loss of myocardial matrix integrity, pulmonary hypertension, pneumonia and hypoxia leading to death in Aga2. These murine findings are corroborated by a pediatric OI cohort study, displaying significant progressive decline in pulmonary function and restrictive pulmonary disease independent of scoliosis. Most participants show mild cardiac valvular regurgitation, independent of pulmonary and skeletal findings. Data obtained from human OI patients and the mouse model Aga2 provide novel evidence for primary effects of type I collagen mutations on the heart and lung. The findings will have potential benefits of anticipatory clinical exams and early intervention in OI patients.


Asunto(s)
Sistema Cardiovascular/fisiopatología , Colágeno Tipo I/genética , Pulmón/fisiopatología , Osteogénesis Imperfecta/fisiopatología , Adolescente , Animales , Insuficiencia de la Válvula Aórtica/fisiopatología , Niño , Preescolar , Cadena alfa 1 del Colágeno Tipo I , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Ratones , Miocardio/metabolismo , Osteogénesis Imperfecta/genética , Fenotipo , Insuficiencia de la Válvula Pulmonar/fisiopatología , Escoliosis/etiología , Adulto Joven
17.
J Cell Sci ; 124(Pt 8): 1245-55, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21406566

RESUMEN

MIM/MTSS1 is a tissue-specific regulator of plasma membrane dynamics, whose altered expression levels have been linked to cancer metastasis. MIM deforms phosphoinositide-rich membranes through its I-BAR domain and interacts with actin monomers through its WH2 domain. Recent work proposed that MIM also potentiates Sonic hedgehog (Shh)-induced gene expression. Here, we generated MIM mutant mice and found that full-length MIM protein is dispensable for embryonic development. However, MIM-deficient mice displayed a severe urinary concentration defect caused by compromised integrity of kidney epithelia intercellular junctions, which led to bone abnormalities and end-stage renal failure. In cultured kidney epithelial (MDCK) cells, MIM displayed dynamic localization to adherens junctions, where it promoted Arp2/3-mediated actin filament assembly. This activity was dependent on the ability of MIM to interact with both membranes and actin monomers. Furthermore, results from the mouse model and cell culture experiments suggest that full-length MIM is not crucial for Shh signaling, at least during embryogenesis. Collectively, these data demonstrate that MIM modulates interplay between the actin cytoskeleton and plasma membrane to promote the maintenance of intercellular contacts in kidney epithelia.


Asunto(s)
Actinas/metabolismo , Epitelio/metabolismo , Uniones Intercelulares/metabolismo , Riñón/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Línea Celular , Células Cultivadas , Perros , Humanos , Uniones Intercelulares/genética , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Neoplasias/genética , Unión Proteica
18.
Blood ; 117(2): 519-29, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20971954

RESUMEN

Fas ligand (FasL) not only induces apoptosis in Fas receptor-bearing target cells, it is also able to transmit signals into the FasL-expressing cell via its intracellular domain (ICD). Recently, we described a Notch-like proteolytic processing of FasL that leads to the release of the FasL ICD into the cytoplasm and subsequent translocation into the nucleus where it may influence gene transcription. To study the molecular mechanism underlying such reverse FasL signaling in detail and to analyze its physiological importance in vivo, we established a knockout/knockin mouse model, in which wild-type FasL was replaced with a deletion mutant lacking the ICD. Our results demonstrate that FasL ICD signaling impairs activation-induced proliferation in B and T cells by diminishing phosphorylation of phospholipase C γ, protein kinase C, and extracellular signal-regulated kinase 1/2. We also demonstrate that the FasL ICD interacts with the transcription factor lymphoid-enhancer binding factor-1 and inhibits lymphoid-enhancer binding factor-1-dependent transcription. In vivo, plasma cell numbers, generation of germinal center B cells, and, consequently, production of antigen-specific immunoglobulin M antibodies in response to immunization with T cell-dependent or T cell-independent antigen are negatively affected in presence of the FasL ICD, suggesting that FasL reverse signaling participates in negative fine-tuning of certain immune responses.


Asunto(s)
Linfocitos B/metabolismo , Proteína Ligando Fas/metabolismo , Inmunomodulación/inmunología , Activación de Linfocitos/inmunología , Transducción de Señal , Linfocitos T/metabolismo , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Proliferación Celular , Proteína Ligando Fas/inmunología , Regulación de la Expresión Génica/inmunología , Técnicas de Sustitución del Gen , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/citología , Linfocitos T/inmunología
19.
FASEB J ; 26(12): 5081-91, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22982378

RESUMEN

The hepatic phosphatidylcholine (PC) transporter ATP-binding cassette (ABC) B4 flops PC from hepatocytes into bile, and its dysfunction causes chronic cholestasis and fibrosis. Because a nuclear receptor-dependent PC pathway has been determined to exert antidiabetic effects, we now analyzed the role of ABCB4 in glucose metabolism. We bred congenic Abcb4-knockout (Abcb4(-/-)) mice on the fibrosis-susceptible BALB/cJ background. Knockout mice and wild-type controls were phenotyped by measuring plasma glucose concentrations, intraperitoneal glucose tolerance, hepatic RNA expression profiles, and liver histology. In addition, 4 procholestatic ABCB4 gene variants were correlated with blood glucose levels in 682 individuals from 2 independent European cohorts. Systemic glucose levels differ significantly between Abcb4(-/-) mice and wild-type controls, and knockout mice display improved glucose tolerance with significantly lower area under the curve values on intraperitoneal glucose challenge. Of note, hepatic expression of the antidiabetic nuclear receptor 5A2 (LRH-1) is induced consistently in Abcb4(-/-) mice, and its specific rare PC ligands are detected in liver by mass spectrometry imaging. In humans, serum glucose levels are associated significantly with the common ABCB4 variant c.711A>T. In summary, ABCB4 might play a critical role in glucose homeostasis in mice and humans. We speculate that the effects could be mediated via LRH-1-dependent PC pathways.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Glucemia/metabolismo , Homeostasis , Hígado/metabolismo , Fosfatidilcolinas/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Estudios de Cohortes , Femenino , Cálculos Biliares/sangre , Cálculos Biliares/genética , Cálculos Biliares/metabolismo , Perfilación de la Expresión Génica , Humanos , Hígado/patología , Masculino , Ratones , Ratones Congénicos , Ratones Endogámicos BALB C , Ratones Noqueados , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Adulto Joven , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
20.
J Biol Chem ; 286(21): 18614-22, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21467037

RESUMEN

ADAR2, an RNA editing enzyme that converts specific adenosines to inosines in certain pre-mRNAs, often leading to amino acid substitutions in the encoded proteins, is mainly expressed in brain. Of all ADAR2-mediated edits, a single one in the pre-mRNA of the AMPA receptor subunit GluA2 is essential for survival. Hence, early postnatal death of mice lacking ADAR2 is averted when the critical edit is engineered into both GluA2 encoding Gria2 alleles. Adar2(-/-)/Gria2(R/R) mice display normal appearance and life span, but the general phenotypic effects of global lack of ADAR2 have remained unexplored. Here we have employed the Adar2(-/-)/Gria2(R/R) mouse line, and Gria2(R/R) mice as controls, to study the phenotypic consequences of loss of all ADAR2-mediated edits except the critical one in GluA2. Our extended phenotypic analysis covering ∼320 parameters identified significant changes related to absence of ADAR2 in behavior, hearing ability, allergy parameters and transcript profiles of brain.


Asunto(s)
Adenosina Desaminasa/metabolismo , Edición de ARN/fisiología , Precursores del ARN/metabolismo , Adenosina Desaminasa/genética , Animales , Ratones , Ratones Noqueados , Especificidad de Órganos/fisiología , Precursores del ARN/genética , Proteínas de Unión al ARN , Receptores AMPA/genética , Receptores AMPA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA