Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605196

RESUMEN

Polar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional Ca3Co3O8. This material crystallizes with alternating stacking of oxygen tetrahedral CoO4 monolayers and octahedral CoO6 bilayers. The ferromagnetic metallic state is confined within the quasi-two-dimensional CoO6 layers, and the broken inversion symmetry arises simultaneously from the Co displacements. The breaking of both spatial-inversion and time-reversal symmetries, along with their strong coupling, gives rise to an intrinsic magnetochiral anisotropy with exotic magnetic field-free non-reciprocal electrical resistivity. An extraordinarily robust topological Hall effect persists over a broad temperature-magnetic field phase space, arising from dipole-induced Rashba spin-orbit coupling. Our work not only provides a rich platform to explore the coupling between polarity and magnetism in a metallic system, with extensive potential applications, but also defines a novel design strategy to access exotic correlated electronic states.

3.
Cancer Cell Int ; 24(1): 32, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229092

RESUMEN

BACKGROUND: Bladder cancer is the second most common genitourinary malignancy worldwide. The death rate of bladder cancer has increased every year. However, the molecular mechanism of bladder cancer is not sufficiently studied. Deubiquitinating enzymes (DUBs) play an important role in carcinogenesis. Several studies have demonstrated that USP5 associated with malignancy and pathological progression in hepatocellular carcinoma, colorectal and non-small cell lung cancer. However, the role of USP5 in bladder cancer need to be explored. METHODS: The USP5 expression was analysed using the web server GEPIA. To explore USP5 function in bladder cancer, we constructed USP5-knockout cell lines in T24 cells. A FLAG-USP5 (WT USP5) plasmid and a plasmid FLAG-USP5 C335A (catalytic-inactive mutant) used to overexpress USP5 in EJ cells. CCK8, colony formation, transwell and scratch assays were used to assess cell viability, proliferation and migration. RNA sequencing (RNA-seq) and dual-luciferase reporter assays were performed to screen the pathway. Coimmunoprecipitation and immunofluorescence were used to explore the interaction between USP5 and c-Jun. Cycloheximide (CHX) chase assays were performed to establish the effect of USP5 on c-Jun stability. Xenograft mouse model was used to study the role of USP5 in bladder cancer. RESULTS: USP5 expression is increased in bladder cancer patients. Genetic ablation of USP5 markedly inhibited bladder cancer cell proliferation, viability, and migration both in vitro and in vivo. RNA-seq and luciferase pathway screening showed that USP5 activated JNK signalling, and we identified the interaction between USP5 and c-Jun. USP5 was found to activate c-Jun by inhibiting its ubiquitination. CONCLUSIONS: Our results show that high USP5 expression promotes bladder cancer progression by stabilizing c-Jun and that USP5 is a potential therapeutic target in bladder cancer.

4.
Biomacromolecules ; 25(3): 1923-1932, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38394470

RESUMEN

Fatty acid cellulose esters (FACE) are common cellulose-based thermoplastics, and their thermoplasticity is determined by both the contents and the lengths of the side chains. Herein, various FACE were synthesized by the ball-milling esterification of cellulose and fatty acyl chlorides containing 10-18 carbons, and their structures and thermoplasticity were thoroughly studied. The results showed that FACE with high degrees of substitution (DS) and low melting flow temperatures (Tf) were achieved as the chain lengths of the fatty acyl chlorides were reduced. In particular, a cellulose decanoate with a DS of 1.85 and a Tf of 186 °C was achieved by feeding 3 mol of decanoyl chloride per mole anhydroglucose units of cellulose. However, cellulose stearate (DS = 1.53) synthesized by the same protocols cannot melt even at 250 °C. More interestingly, the fatty acyl chlorides with 10 and 12 carbons resulted in FACE with superior toughness (elongation at break up to 94.4%). In contrast, due to their potential crystallization of the fatty acyl groups with 14-18 carbons, the corresponding FACE showed higher tensile strength and Young's modulus than the others. This study provides some theoretical basis for the mechanochemical synthesis of thermoplastic FACE with designated properties.


Asunto(s)
Cloruros , Ésteres , Ésteres/química , Estudios de Factibilidad , Esterificación , Celulosa/química
5.
J Biochem Mol Toxicol ; 38(1): e23573, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37934567

RESUMEN

Natural compounds, such as carotenoids, flavonoids, anthocyanins, or terpenoids, are physiologically active components found in plants (pigments), often known as phytochemicals or phytonutrients. The in vitro cytotoxic and anticolon cancer effects of biologically bavachin, bavachinin, artepillin C, and aromadendrin compounds against SW48, SNU-C1, COLO 205, RKO, LS411N, and SW1417 cancer cell lines were assessed. Results of enzymes and antibacterial, antifungal were in level of micromolar that is good impacts. These natural compounds may be antidiabetic, anticancer, and antibacterial candidates for drug design. IC50 results were obtained between 14-19 and 5-119 µM for α-amylase and α-glucosidase, respectively. Good inhibitor Bavachinin was detected for both enzymes (IC50 for α-amylase: 14.37 µM and IC50 for α-glucosidase: 5.27 µM). The chemical activities of aromadendrin, artepillin C, bavachin, and bavachinin against pancreatic α-amylase and α-glucosidase were assessed by conducting the molecular docking study. The chemical activities of aromadendrin, artepillin C, bavachin, and bavachinin against some of the expressed surface receptor proteins (CD44, CD47, CXCR4, EGFR, folate receptor, HER2, and endothelin receptor) in the mentioned cell lines were investigated using the molecular docking calculations. The results illustrated the atomic-level properties and potential interactions. These chemicals have high binding affinities to the enzymes and proteins, according to the docking scores. In addition, the compounds formed strong contacts with the enzymes and receptors. Thus, these compounds could be potential inhibitors for enzymes and cancer cells.


Asunto(s)
Antocianinas , Neoplasias , Fenilpropionatos , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/química , alfa-Amilasas , Antibacterianos
6.
PLoS Genet ; 17(1): e1009233, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476325

RESUMEN

Runx1 is highly expressed in osteoblasts, however, its function in osteogenesis is unclear. We generated mesenchymal progenitor-specific (Runx1f/fTwist2-Cre) and osteoblast-specific (Runx1f/fCol1α1-Cre) conditional knockout (Runx1 CKO) mice. The mutant CKO mice with normal skeletal development displayed a severe osteoporosis phenotype at postnatal and adult stages. Runx1 CKO resulted in decreased osteogenesis and increased adipogenesis. RNA-sequencing analysis, Western blot, and qPCR validation of Runx1 CKO samples showed that Runx1 regulates BMP signaling pathway and Wnt/ß-catenin signaling pathway. ChIP assay revealed direct binding of Runx1 to the promoter regions of Bmp7, Alk3, and Atf4, and promoter mapping demonstrated that Runx1 upregulates their promoter activity through the binding regions. Bmp7 overexpression rescued Alk3, Runx2, and Atf4 expression in Runx1-deficient BMSCs. Runx2 expression was decreased while Runx1 was not changed in Alk3 deficient osteoblasts. Atf4 overexpression in Runx1-deficient BMSCs did not rescue expression of Runx1, Bmp7, and Alk3. Smad1/5/8 activity was vitally reduced in Runx1 CKO cells, indicating Runx1 positively regulates the Bmp7/Alk3/Smad1/5/8/Runx2/ATF4 signaling pathway. Notably, Runx1 overexpression in Runx2-/- osteoblasts rescued expression of Atf4, OCN, and ALP to compensate Runx2 function. Runx1 CKO mice at various osteoblast differentiation stages reduced Wnt signaling and caused high expression of C/ebpα and Pparγ and largely increased adipogenesis. Co-culture of Runx1-deficient and wild-type cells demonstrated that Runx1 regulates osteoblast-adipocyte lineage commitment both cell-autonomously and non-autonomously. Notably, Runx1 overexpression rescued bone loss in OVX-induced osteoporosis. This study focused on the role of Runx1 in different cell populations with regards to BMP and Wnt signaling pathways and in the interacting network underlying bone homeostasis as well as adipogenesis, and has provided new insight and advancement of knowledge in skeletal development. Collectively, Runx1 maintains adult bone homeostasis from bone loss though up-regulating Bmp7/Alk3/Smad1/5/8/Runx2/ATF4 and WNT/ß-Catenin signaling pathways, and targeting Runx1 potentially leads to novel therapeutics for osteoporosis.


Asunto(s)
Proteína Morfogenética Ósea 7/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Osteogénesis/genética , Osteoporosis/genética , Factor de Transcripción Activador 4/genética , Adipocitos/metabolismo , Adipogénesis/genética , Animales , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Homeostasis/genética , Humanos , Células Madre Mesenquimatosas , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteoporosis/patología , Regiones Promotoras Genéticas/genética , RNA-Seq , Proteínas Represoras/genética , Proteína Smad1/genética , Proteína 1 Relacionada con Twist/genética , Vía de Señalización Wnt/genética
7.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731610

RESUMEN

Many liqueurs, including spirits infused with botanicals, are crafted not only for their taste and flavor but also for potential medicinal benefits. However, the scientific evidence supporting their medicinal effects remains limited. This study aims to verify in vitro anticancer activity and bioactive compounds in shochu spirits infused with Cordyceps militaris, a Chinese medicine. The results revealed that a bioactive fraction was eluted from the spirit extract with 40% ethanol. The infusion time impacted the inhibitory effect of the spirit extract on the proliferation of colon cancer-derived cell line HCT-116 cells, and a 21-day infusion showed the strongest inhibitory effect. Furthermore, the spirit extract was separated into four fractions, A-D, by high-performance liquid chromatography (HPLC), and Fractions B, C, and D, but not A, exerted the effects of proliferation inhibition and apoptotic induction of HCT-116 cells and HL-60 cells. Furthermore, Fractions B, C, and D were, respectively, identified as adenosine, cordycepin, and N6-(2-hydroxyethyl)-adenosine (HEA) by comprehensive chemical analyses, including proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FT-IR), and electrospray ionization mass spectrometry (ESI-MS). To better understand the bioactivity mechanisms of cordycepin and HEA, the agonist and antagonist tests of the A3 adenosine receptor (A3AR) were performed. Cell viability was suppressed by cordycepin, and HEA was restored by the A3AR antagonist MR1523, suggesting that cordycepin and HEA possibly acted as agonists to activate A3ARs to inhibit cell proliferation. Molecular docking simulations revealed that both adenosine and cordycepin bound to the same pocket site of A3ARs, while HEA exhibited a different binding pattern, supporting a possible explanation for the difference in their bioactivity. Taken together, the present study demonstrated that cordycepin and HEA were major bioactive ingredients in Cordyceps militaries-infused sweet potato shochu spirits, which contributed to the in vitro anticancer activity.


Asunto(s)
Apoptosis , Proliferación Celular , Cordyceps , Humanos , Cordyceps/química , Proliferación Celular/efectos de los fármacos , Células HCT116 , Apoptosis/efectos de los fármacos , Adenosina/farmacología , Adenosina/análogos & derivados , Adenosina/química , Desoxiadenosinas/farmacología , Desoxiadenosinas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Simulación del Acoplamiento Molecular , Células HL-60 , Cromatografía Líquida de Alta Presión , Extractos Vegetales/farmacología , Extractos Vegetales/química , Línea Celular Tumoral
8.
Molecules ; 29(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38792269

RESUMEN

Quercetin, a flavonoid polyphenol found in many plants, has garnered significant attention due to its potential cancer chemoprevention. Our previous studies have shown that acetyl modification of the hydroxyl group of quercetin altered its antitumor effects in HepG2 cells. However, the antitumor effect in other cancer cells with different gene mutants remains unknown. In this study, we investigated the antitumor effect of quercetin and its methylated derivative 3,3',4',7-O-tetramethylquercetin (4Me-Q) and acetylated derivative 3,3',4',7-O-tetraacetylquercetin (4Ac-Q) on two human breast cancer cells, MCF-7 (wt-p53, caspase-3-ve) and MDA-MB-231 (mt-p53, caspase-3+ve). The results demonstrated that 4Ac-Q exhibited significant cell proliferation inhibition and apoptosis induction in both MCF-7 and MDA-MB-231 cells. Conversely, methylation of quercetin was found to lose the activity. The human apoptosis antibody array revealed that 4Ac-Q might induce apoptosis in MCF-7 cells via a p53-dependent pathway, while in MDA-MB-231 cells, it was induced via a caspase-3-dependent pathway. Furthermore, an evaluation using a superoxide inhibitor, MnTBAP, revealed 4Ac-Q-induced apoptosis in MCF-7 cells in a superoxide-independent manner. These findings provide valuable insights into the potential of acetylated quercetin as a new approach in cancer chemoprevention and offer new avenues for health product development.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Proliferación Celular , Quercetina , Humanos , Quercetina/farmacología , Quercetina/análogos & derivados , Quercetina/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Acetilación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Metilación , Femenino , Proliferación Celular/efectos de los fármacos , Células MCF-7 , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proteína p53 Supresora de Tumor/metabolismo , Caspasa 3/metabolismo
9.
NMR Biomed ; 36(10): e4985, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37283179

RESUMEN

Metabolically healthy or unhealthy obesity is closely related to metabolic syndrome (MetS). To validate a more accurate diagnostic method for obesity that reflects the risk of metabolic disorders in a pre-clinical mouse model, C57BL/6J mice were fed high-sucrose-high-fat and chow diets for 12 weeks to induce obesity. MRI was performed and analysed by chemical shift-encoded fat-water separation based on the transition region extraction method. Abdominal fat was divided into upper and lower abdominal regions at the horizontal lower border of the liver. Blood samples were collected, and the glucose level, lipid profile, liver function, HbA1c and insulin were tested. k-means clustering and stepwise logistic regression were applied to validate the diagnosis of hyperglycaemia, dyslipidaemia and MetS, and to ascertain the predictive effect of MRI-derived parameters to the metabolic disorders. Pearson or Spearman correlation was used to assess the relationship between MRI-derived parameters and metabolic traits. The receiver-operating characteristic curve was used to evaluate the diagnostic effect of each logistic regression model. A two-sided p value less than 0.05 was considered to indicate statistical significance for all tests. We made the precise diagnosis of obesity, dyslipidaemia, hyperglycaemia and MetS in mice. In all, 14 mice could be diagnosed as having MetS, and the levels of body weight, HbA1c, triglyceride, total cholesterol and low-density lipoprotein cholesterol were significantly higher than in the normal group. Upper abdominal fat better predicted dyslipidaemia (odds ratio, OR = 2.673; area under the receiver-operating characteristic curve, AUCROC = 0.9153) and hyperglycaemia (OR = 2.456; AUCROC = 0.9454), and the abdominal visceral adipose tissue (VAT) was better for predicting MetS risk (OR = 1.187; AUCROC = 0.9619). We identified the predictive effect of fat volume and distribution in dyslipidaemia, hyperglycaemia and MetS. The upper abdominal fat played a better predictive role for the risk of dyslipidaemia and hyperglycaemia, and the abdominal VAT played a better predictive role for the risk of MetS.


Asunto(s)
Dislipidemias , Hiperglucemia , Síndrome Metabólico , Ratones , Animales , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/metabolismo , Hiperglucemia/metabolismo , Hemoglobina Glucada , Ratones Endogámicos C57BL , Obesidad/metabolismo , Grasa Intraabdominal/diagnóstico por imagen , Colesterol , Dislipidemias/metabolismo
10.
Connect Tissue Res ; 64(5): 491-504, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37227119

RESUMEN

PURPOSE: Osteocytes in vivo exhibit different functional states, but no specific marker to distinguish these is currently available. MATERIALS AND METHODS: To simulate the differentiation process of pre-osteoblasts to osteocytes in vitro, MC3T3-E1 cells were cultured on type I collagen gel and a three-dimensional (3D) culture system was established. The Notch expression of osteocyte-like cells in 3D culture system was compared with that of in situ osteocytes in bone tissues. RESULTS: Immunohistochemistry demonstrated that Notch1 was not detected in "resting" in situ osteocytes, but was detected in normal cultured osteocyte-like cell line MLO-Y4. Osteocytes obtained from conventional osteogenic-induced osteoblasts and long-term cultured MLO-Y4 cells could not replicate the Notch1 expression pattern from in situ osteocytes. From day 14-35 of osteogenic induction, osteoblasts in 3D culture system gradually migrated into the gel to form canaliculus-like structures similar to bone canaliculus. On day 35, stellate-shaped osteocyte-like cells were observed, and expression of DMP1 and SOST, but not Runx2, was detected. Notch1 was not detected by immunohistochemistry, and Notch1 mRNA level was not significantly different from that of in situ osteocytes. In MC3T3-E1 cells, down-regulation of Notch2 increased Notch1, Notch downstream genes (ß-catenin and Nfatc1), and Dmp1. In MLO-Y4 cells, Notch2 decreased after Notch1 siRNA transfection. Downregulation of Notch1 or Notch2 decreased Nfatc1, ß-catenin, and Dmp1, and increased Sost. CONCLUSIONS: We established "resting state" osteocytes using an in vitro 3D model. Notch1 can be a useful marker to help differentiate the functional states of osteocytes (activated vs. resting state).


Asunto(s)
Osteocitos , beta Catenina , Osteocitos/metabolismo , beta Catenina/metabolismo , Osteoblastos/metabolismo , Diferenciación Celular , Línea Celular , Factores de Transcripción/metabolismo
11.
J Clin Gastroenterol ; 57(8): 835-840, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36200958

RESUMEN

GOALS: This study investigated the feasibility of using erythrocyte (RBC) lifespan determined by Levitt's CO breath test (LCOBT) to predict esophageal varices needing treatment (VNT) in patients with cirrhosis. BACKGROUND: Esophageal varix bleeding is a common fatal complication of cirrhosis and portal hypertension. The gold standard for identifying VNT is esophagogastroduodenoscopy (EGD), an invasive procedure with low patient compliance. VNT screening based on Baveno VI criteria has mediocre specificity. STUDY: RBC lifespan was determined by LCOBT in 53 cirrhotic patients (13 without varices, 11 mild/moderate varices, and 29 severe varices). Correlation of varix severity with RBC lifespan and other variables was analyzed. Rates of shortened RBC lifespan and thrombocytopenia (Baveno VI criteria) were compared. RESULTS: RBC lifespan correlated inversely with severity of varices ( r =-0.793, P <0.001). Mean RBC lifespans were 129±31, 96±21, and 59±21 days for Nonvarix, Mild/Moderate, and Severe groups. Shortened RBC lifespan (<75 d) was observed in 79.3% (23/29) of patients with severe varices, a frequency similar or identical to thrombocytopenia rates [original Baveno VI criteria, 86.2% (25/29), P =0.487; expanded criteria, 79.3% (23/29), P >0.999]. Among 24 patients without severe varices, shortened RBC lifespan was observed in 1 patient whereas thrombocytopenia was detected in 13 and 8 patients based on the original ( P <0.001) and expanded criteria ( P =0.010), respectively. CONCLUSIONS: RBC lifespan correlates inversely with varix severity in patients with cirrhosis. LCOBT may enable specific screening for VNT.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Várices Esofágicas y Gástricas , Trombocitopenia , Várices , Humanos , Várices Esofágicas y Gástricas/etiología , Várices Esofágicas y Gástricas/complicaciones , Prueba de Estudio Conceptual , Recuento de Plaquetas , Cirrosis Hepática/complicaciones , Trombocitopenia/etiología , Trombocitopenia/complicaciones , Pruebas Respiratorias , Diagnóstico por Imagen de Elasticidad/métodos
12.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068974

RESUMEN

Quercetin, a flavonoid compound widely distributed in many plants, is known to have potent antitumor effects on several cancer cells. Our previous study revealed that the acetylation of quercetin enhanced its antitumor effect. However, the mechanisms remain unknown. This study aimed to elucidate the bioavailability of acylated quercetin in the HepG2 cell model based on its antitumor effect. The positions of quercetin 3,7,3',4'-OH were acetylated as 3,7,3',4'-O-tetraacetylquercetin (4Ac-Q). The inhibitory effect of 4Ac-Q on HepG2 cell proliferation was assessed by measuring cell viability. The apoptosis was characterized by apoptotic proteins and mitochondrial membrane potential shifts, as well as mitochondrial reactive oxygen species (ROS) levels. The bioavailability of 4Ac-Q was analyzed by measuring the uptake and metabolites in HepG2 cells with high performance liquid chromatography (HPLC)-photodiode array detector (PDA) and-ultraviolet/visible detector (UV/Vis). The results revealed that 4Ac-Q enhanced the inhibitory effect on HepG2 cell proliferation and induced its apoptosis significantly higher than quercetin. Protein array analysis of apoptosis-related protein indicated that 4Ac-Q increased the activation or expression of pro-apoptotic proteins, including caspase-3, -9, as well as second mitochondria-derived activator of caspases (SMAC), and suppressed the expression of apoptosis inhibiting proteins such as cellular inhibitor of apoptosis (cIAP)-1, -2, Livin, Survivin, and X-linked inhibitor of apoptosis (XIAP). Furthermore, 4Ac-Q stimulated mitochondrial cytochrome c release into the cytosol by enhancing ROS level and depolarizing the mitochondrial membrane. Finally, the analysis of uptake and metabolites of 4Ac-Q in HpG2 cells with HPLC-PDA and -UV/Vis revealed that 4Ac-Q was metabolized to quercetin and several different acetylated quercetins which caused 2.5-fold higher quercetin present in HepG2 cells than parent quercetin. These data demonstrated that acetylation of the quercetin hydroxyl group significantly increased its intracellular absorption. Taken together, our findings provide the first evidence that acetyl modification of quercetin not only substantially augments the intracellular absorption of quercetin but also bolsters its metabolic stability to elongate its intracellular persistence. Therefore, acetylation could serve as a strategic approach to enhance the ability of quercetin and analogous flavonoids to suppress cancer cell proliferation.


Asunto(s)
Apoptosis , Quercetina , Humanos , Quercetina/farmacología , Quercetina/metabolismo , Células Hep G2 , Especies Reactivas de Oxígeno/metabolismo , Acetilación , Flavonoides/farmacología
13.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139286

RESUMEN

Quercetin forms complexes with various metals due to its structural attributes. It predominantly exhibits chelating activity at the 3-hydroxy/4-carbonyl group. Previously, coordination in synthetically obtained quercetin-zinc (II) complexes has been limited to this group. However, the expanded coordination observed in quercetin-iron complexes has opened avenues for diverse applications. Thus, synthesizing novel quercetin-zinc complexes with different coordination positions is a significant advance. In our study, we not only synthesized and comprehensively characterized a new quercetin-zinc (II) complex, Zn-Q, but also evaluated the structure and bioactivity of chelate complexes (Q+Zn) derived from co-treatment in cell culture mediums. The structure of the new compound Zn-Q was comprehensively characterized using 1D 1H and 2D correlation spectroscopy (COSY), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), electrospray ionization mass spectrometer (ESI-MS), and X-ray diffraction analysis (XRD) analysis. Subcellular localization and absorption of these zinc (II) complexes were determined using the ZnAF-2 DA zinc ion fluorescence probe. Throughout the experiments, both Zn-Q and Q+Zn exhibited significant antioxidant, cell growth inhibitory, and anticancer effects in HepG2 and HCT116 cells, with Zn-Q showing the highest potential for inducing apoptosis via the caspase pathway. Tracking intracellular zinc complex absorption using zinc fluorescent probes revealed zinc (II) localization around the cell nucleus. Interestingly, there was a proportional increase in intracellular quercetin absorption in conjunction with zinc (II) uptake. Our research highlights the advantages of quercetin complexation with zinc (II): enhanced anticancer efficacy compared to the parent compound and improved bioavailability of both quercetin and zinc (II). Notably, our findings, which include enhanced intracellular uptake of both quercetin and zinc (II) upon complex formation and its implications in apoptosis, contribute significantly to the understanding of metal-polyphenol complexes. Moving forward, comprehensive functional assessments and insights into its mechanism of action, supported by animal studies, are anticipated.


Asunto(s)
Complejos de Coordinación , Zinc , Humanos , Animales , Zinc/química , Quercetina/farmacología , Quercetina/química , Células HCT116 , Espectroscopía Infrarroja por Transformada de Fourier , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Apoptosis
14.
J Med Virol ; 94(5): 1967-1975, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34967028

RESUMEN

We aimed to assess whether blood glucose control can be used as predictors for the severity of 2019 coronavirus disease (COVID-19) and to improve the management of diabetic patients with COVID-19. A two-center cohort with a total of 241 confirmed cases of COVID-19 with definite outcomes was studied. After the diagnosis of COVID-19, the clinical data and laboratory results were collected, the fasting blood glucose levels were followed up at initial, middle stage of admission and discharge, the severity of the COVID-19 was assessed at any time from admission to discharge. Hyperglycemia patients with COVID-19 were divided into three groups: good blood glucose control, fair blood glucose control, and blood glucose deterioration. The relationship of blood glucose levels, blood glucose control status, and severe COVID-19 were analyzed by univariate and multivariable regression analysis. In our cohort, 21.16% were severe cases and 78.84% were nonsevere cases. Admission hyperglycemia (adjusted odds ratio [aOR], 1.938; 95% confidence interval [95% CI], 1.387-2.707), mid-term hyperglycemia (aOR, 1.758; 95% CI, 1.325-2.332), and blood glucose deterioration (aOR, 22.783; 95% CI, 2.661-195.071) were identified as the risk factors of severe COVID-19. Receiver operating characteristic (ROC) curve analysis, reaching an area under ROC curve of 0.806, and a sensitivity and specificity of 80.40% and 68.40%, respectively, revealed that hyperglycemia on admission and blood glucose deterioration of diabetic patients are potential predictive factors for severe COVID-19. Our results indicated that admission hyperglycemia and blood glucose deterioration were positively correlated with the risk factor for severe COVID-19, and deterioration of blood glucose may be more likely to the occurrence of severe illness in COVID-19.


Asunto(s)
COVID-19 , Diabetes Mellitus , Hiperglucemia , Glucemia/análisis , COVID-19/complicaciones , COVID-19/epidemiología , Estudios de Cohortes , Diabetes Mellitus/epidemiología , Humanos , Hiperglucemia/epidemiología , Pronóstico , Estudios Retrospectivos , Factores de Riesgo
15.
Semin Dial ; 35(3): 215-221, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34734675

RESUMEN

INTRODUCTION: Uremic toxin-induced shortening of red blood cell (RBC) lifespan is an important mechanism of anemia in end-stage renal disease (ESRD). Conventional hemodialysis does not improve RBC lifespan; the efficacy of hemodiafiltration (HDF) for alleviating RBC lifespan has not yet been evaluated in patients with ESRD. METHODS: Twenty-three patients with ESRD in maintenance hemodialysis were enrolled. Baseline data for sex, age, dialysis vintage, pre-dialysis hemoglobin (Hb), blood urea nitrogen (BUN), intact parathyroid hormone (iPTH), single pool Kt/V (spKt/V), and plasma indophenol sulfate (IS) were collected. RBC lifespans before and after one session of HDF were compared. The resultant differences were subjected to correlational analyses with baseline data. RESULTS: RBC lifespan increased from 73 (66, 89) days at baseline to 77 (71, 102) days after a single HDF treatment (p = 0.034). Meanwhile, plasma IS concentration decreased from 113.05 (80.67, 133.05) mg/L to 83.87 (62.98, 96.78) mg/L (p < 0.001). RBC lifespan increases correlated negatively with Hb levels. CONCLUSIONS: A single HDF treatment improved RBC lifespan in ESRD patients on maintenance hemodialysis, with more severe pre-HDF anemia at baseline being associated with greater increases in RBC lifespan.


Asunto(s)
Anemia , Hemodiafiltración , Fallo Renal Crónico , Anemia/etiología , Anemia/terapia , Eritrocitos , Femenino , Humanos , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/terapia , Longevidad , Masculino , Diálisis Renal/efectos adversos
16.
Gastroenterol Nurs ; 45(2): 85-90, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34269707

RESUMEN

The Brussels Infant and Toddler Stool Scale was developed to improve the reliability of constipation diagnosis in non-toilet-trained children. The aim of this study was to evaluate the validity of simplified Chinese versions of the Brussels Infant and Toddler Stool Scale when used by parents, community doctors, pediatricians, and nurses. Photographs of the Scale were categorized into four categories (hard stools, formed stools, loose stools, and watery stools) and subjects assigned each photograph to a category. The study included two stages. In the first stage (n = 237 observers), percent correct allocations of the seven photographs ranged from 68.4% to 93.2%. We observed poorer recognition of the three hard stool items (77.4%, 85.8%, and 74.0%) than had been reported in the original Brussels Infant and Toddler Stool Scale validity study (95.9%, 93.4%, and 96.2%). Because hard stool items were commonly miscategorized as formed stools (21.6%, 9.5%, and 26.0%), we modified the descriptors "hard stools" and "formed stools" into "dry/hard stools" and "formed loose stools," respectively, and examined the performance of the modified Chinese Brussels Infant and Toddler Stool Scale in stage 2 of our study. The proportions of correct allocations of the three "hard stool" items in the modified Chinese Brussels Infant and Toddler Stool Scale increased to 94.7%, 90.4%, and 84.6%, values that were statistically similar to those reported previously in the original Brussels Infant and Toddler Stool Scale publisher. Renaming these categories to remove ambiguity in Chinese improved the identifiability of these items. The resultant Chinese Brussels Infant and Toddler Stool Scale was found to be valid for use with Chinese observers.


Asunto(s)
Estreñimiento , Diarrea , Preescolar , China , Estreñimiento/diagnóstico , Heces , Humanos , Lactante , Reproducibilidad de los Resultados
17.
J Biol Chem ; 295(33): 11669-11681, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32571873

RESUMEN

Despite years of research investigating osteoblast differentiation, the mechanisms by which transcription factors regulate osteoblast maturation, bone formation, and bone homeostasis is still unclear. It has been reported that runt-related transcription factor 1 (Runx1) is expressed in osteoblast progenitors, pre-osteoblasts, and mature osteoblasts; yet, surprisingly, the exact function of RUNX1 in osteoblast maturation and bone formation remains unknown. Here, we generated and characterized a pre-osteoblast and differentiating chondrocyte-specific Runx1 conditional knockout mouse model to study RUNX1's function in bone formation. Runx1 ablation in osteoblast precursors and differentiating chondrocytes via osterix-Cre (Osx-Cre) resulted in an osteoporotic phenotype and decreased bone density in the long bones and skulls of Runx1f/fOsx-Cre mice compared with Runx1f/f and Osx-Cre mice. RUNX1 deficiency reduced the expression of SRY-box transcription factor 9 (SOX9), Indian hedgehog signaling molecule (IHH), Patched (PTC), and cyclin D1 in the growth plate, and also reduced the expression of osteocalcin (OCN), OSX, activating transcription factor 4 (ATF4), and RUNX2 in osteoblasts. ChIP assays and promoter activity mapping revealed that RUNX1 directly associates with the Runx2 gene promoter and up-regulates Runx2 expression. Furthermore, the ChIP data also showed that RUNX1 associates with the Ocn promoter. In conclusion, RUNX1 up-regulates the expression of Runx2 and multiple bone-specific genes, and plays an indispensable role in bone formation and homeostasis in both trabecular and cortical bone. We propose that stimulating Runx1 activity may be useful in therapeutic approaches for managing some bone diseases such as osteoporosis.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos/citología , Osteogénesis , Animales , Diferenciación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteoporosis/genética , Osteoporosis/metabolismo
18.
FASEB J ; 34(9): 12308-12323, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32721050

RESUMEN

Genetic variation of insulin receptor substrate 1 (IRS-1) was found to modulate the insulin resistance of adipose tissues, but the underlying mechanism was not clear. To investigate how the IRS-1 was involved in the browning of white adipose tissue through miRNA, we identified a mutated Irs-1 (Irs-1-/- ) mice model and found that this mice had a reduced subcutaneous WAT (sWAT) and increased brown adipose tissue (BAT) in the interscapular region. So we isolated the bone marrow stromal cells and analyzed differentially expressed miRNAs and adipogenesis-related genes with miRNA arrays and PCR arrays. Irs-1-/- mice showed decreased miR-503 expression, but increased expression of its target, bone morphogenetic protein receptor type 1a (BMPR1a). Overexpression of miR-503 in preadipocytes downregulated BMPR1a and impaired adipogenic activity through the phosphotidylinositol 3-kinase (PI3K/Akt) pathway, while the inhibitor had the opposite effect. In both Irs-1-/- and cold-induced models, sWAT exhibited BAT features, and showed tissue-specific increased BMPR1a expression, PI3K expression, and Akt phosphorylation. Thus, our results showed that IRS-1 regulated brown preadipocyte differentiation and induced browning in sWAT through the miR-503-BMPR1a pathway, which played important roles in high-fat diet-induced obesity.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Dieta Alta en Grasa , Proteínas Sustrato del Receptor de Insulina/fisiología , MicroARNs/fisiología , Obesidad/prevención & control , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Diferenciación Celular , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo
19.
Biochem J ; 477(13): 2421-2438, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32391876

RESUMEN

One of the fundamental questions in bone biology is where osteoblasts originate and how osteoblast differentiation is regulated. The mechanism underlying which factors regulate chondrocyte to osteoblast lineage commitment remains unknown. Our data showed that Runt-related transcription factor 1 (Runx1) is expressed at different stages of both chondrocyte and osteoblast differentiation. Runx1 chondrocyte-specific knockout (Runx1f/fCol2α1-cre) mice exhibited impaired cartilage formation, decreased bone density, and an osteoporotic phenotype. The expressions of chondrocyte differentiation regulation genes, including Sox9, Ihh, CyclinD1, PTH1R, and hypertrophic chondrocyte marker genes including Col2α1, Runx2, MMP13, Col10α1 in the growth plate were significantly decreased in Runx1f/fCol2α1-cre mice chondrocytes. Importantly, the expression of osteoblast differentiation regulation genes including Osx, Runx2, ATF4, and osteoblast marker genes including osteocalcin (OCN) and osteopontin (OPN) were significantly decreased in the osteoblasts of Runx1f/fCol2α1-cre mice. Notably, our data showed that osteoblast differentiation regulation genes and marker genes are also expressed in chondrocytes and the expressions of these marker genes were significantly decreased in the chondrocytes of Runx1f/fCol2α1-cre mice. Our data showed that chromatin immunoprecipitation (ChIP) and promoter mapping analysis revealed that Runx1 directly binds to the Indian hedgehog homolog (Ihh) promoter to regulate its expression, indicating that Runx1 directly regulates the transcriptional expression of chondrocyte genes. Collectively, we revealed that Runx1 signals chondrocyte to osteoblast lineage commitment and promotes endochondral bone formation through enhancing both chondrogenesis and osteogenesis genes expressions, indicating Runx1 may be a therapeutic target to enhance endochondral bone formation and prevent osteoporosis fractures.


Asunto(s)
Condrocitos/citología , Condrocitos/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Adipogénesis/genética , Adipogénesis/fisiología , Animales , Western Blotting , Células Cultivadas , Condrogénesis/genética , Condrogénesis/fisiología , Inmunoprecipitación de Cromatina , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Ratones , Osteogénesis/genética , Osteogénesis/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Mediators Inflamm ; 2020: 7903140, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32831640

RESUMEN

OBJECTIVE: Neuropeptide Y (NPY), an orexigenic peptide known to cause hyperphagia, has been involved in the occurrence and development of obesity. However, differences in the distribution of serum NPY levels in obese phenotypes (including metabolically unhealthy obesity (MUO) phenotype and metabolically healthy obesity (MHO) phenotype) and the association of NPY with MUO phenotype have not been unequivocally established. We therefore determined associations of serum NPY levels with MUO phenotype in obese Chinese adults. METHODS: A cross-sectional study was conducted from 400 obese adults in Hunan province, who underwent a health examination in the Second Xiangya Hospital, and 164 participants were finally enrolled in the study and divided into MHO and MUO groups. Serum NPY levels were examined; univariate and multivariate analyses as well as smooth curve fitting analyses were conducted to measure the association of NPY serum levels with the MUO phenotype. RESULTS: Serum NPY levels were significantly elevated in the MUO group compared with the MHO group ((667.69 ± 292.90) pg/mL vs. (478.89 ± 145.53) pg/mL, p < 0.001). A threshold and nonlinear association between serum NPY levels and MUO was found (p = 0.001). When serum NPY levels exceeded the turning point (471.5 pg/mL), each 10 pg/mL increment in the NPY serum level was significantly associated with an 18% increased odds ratio of MUO phenotype (OR: 1.18, 95% CI: 1.07-1.29, p = 0.0007) after adjusted for confounders. CONCLUSIONS: Higher NPY serum levels were positively correlated with MUO phenotype in obese Chinese adults.


Asunto(s)
Neuropéptido Y/sangre , Obesidad/sangre , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Síndrome Metabólico/sangre , Persona de Mediana Edad , Análisis Multivariante , Obesidad Metabólica Benigna/sangre , Oportunidad Relativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA