Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(40): e2312141, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38801318

RESUMEN

Reactive oxygen species (ROS)-mediated emerging treatments exhibit unique advantages in cancer therapy in recent years. While the efficacy of ROS-involved tumor therapy is greatly restricted by complex tumor microenvironment (TME). Herein, a dual-metal CaO2@CDs-Fe (CCF) nanosphere, with TME response and regulation capabilities, are proposed to improve ROS lethal power by a multiple cascade synergistic therapeutic strategy with domino effect. In response to weak acidic TME, CCF will decompose, accompanied with intracellular Ca2+ upregulated and abundant H2O2 and O2 produced to reverse antitherapeutic TME. Then the exposed CF cores can act as both Fenton agent and sonosensitizer to generate excessive ROS in the regulated TME for enhanced synergistic CDT/SDT. In combination with calcium overloading, the augmented ROS induced oxidative stress will cause more severe mitochondrial damage and cellular apoptosis. Furthermore, CCF can also reduce GPX4 expression and enlarge the lipid peroxidation, causing ferroptosis and apoptosis in parallel. These signals of damage will finally initiate damage-associated molecular patterns to activate immune response and to realize excellent antitumor effect. This outstanding domino ROS/calcium loading synergistic effect endows CCF with excellent anticancer effect to efficiently eliminate tumor by apoptosis/ferroptosis/ICD both in vitro and in vivo.


Asunto(s)
Calcio , Ferroptosis , Hierro , Nanosferas , Especies Reactivas de Oxígeno , Microambiente Tumoral , Ferroptosis/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Hierro/química , Hierro/metabolismo , Humanos , Nanosferas/química , Línea Celular Tumoral , Ratones , Apoptosis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/terapia , Inmunidad/efectos de los fármacos
2.
J Bioenerg Biomembr ; 52(5): 311-320, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32770294

RESUMEN

This study probes the function and mechanism of lymphocyte-specific protein 1 (LSP1) in glioblastoma pathogenesis. According to the data acquired from TCGA, Oncomine and GEO databases, the expression and prognostic value of LSP1 and miR-920 in glioblastoma patients were analyzed. The expression levels of LSP1 in U251 and A172 cell lines were analyzed by qRT-PCR and western blotting. CCK8, colony formation and transwell assays were utilized to test glioblastoma cell malignant abilities. Furthermore, the associations between LSP1 and miR-920 were indentified by bioinformatics analysis and rescue assays. Moreover, the protein expression levels of p-JAK2, JAK2, p-STAT5 and STAT5, as the hallmark of JAK/STAT5 signaling, were detected by western blotting. The observations showed that LSP1 was highly augmented in glioblastoma samples. Additionally, up-regulation of LSP1 was associated with a unfavorable prognosis in glioblastoma patients. Biological experiments revealed that depletion of LSP1 significantly suppressed the proliferation, invasion and migration of U251 and A172 cells. MiR-920, as an upstream regulator of LSP1, negatively modulated LSP1 expression and promoted U251 cells malignant behaviors after miR-920 inhibitor treatment. However, together knockdown LSP1 and miR-920 inhibited these effects. Moreover, the expression levels of p-JAK2 and p-STAT5 were increased or decreased in U251 cells after transfection of miR-920 inhibitor or si-LPS1. Taken together, miR-920 might blocked the malignant development of glioblastoma cells, which is possibly realized by targeting LSP1 and modulation of JAK/STAT5 pathway. These findings implied that miR-920/LSP1 was a potential therapeutic target for glioblastoma treatment.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Janus Quinasa 2/metabolismo , MicroARNs/metabolismo , Proteínas de Microfilamentos/metabolismo , Factor de Transcripción STAT5/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Glioblastoma/genética , Glioblastoma/patología , Humanos , MicroARNs/genética , Proteínas de Microfilamentos/genética , Transducción de Señal , Transfección
3.
Jpn J Clin Oncol ; 45(5): 464-73, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25646356

RESUMEN

OBJECTIVE: The incidence of brain metastases greatly varies in patients with non-small-cell lung cancer, and molecular markers are considered to predict brain metastases. Therefore, this study sought to identify the predictive value and potential mechanisms of miRNA-328 and miRNA-378 for brain metastases in non-small-cell lung cancer. METHODS: Patients who received a curable surgery for their lung cancer were screened according to our criteria. Formalin-fixed paraffin-embedded samples from the patients were examined for the expression of miRNA-328 and miRNA-378 using real-time polymerase chain reaction and the expression of N-cadherin, E-cadherin, vascular endothelial growth factor, protein kinase Cα and S100B were investigated using immunohistochemical staining. RESULTS: In total, 86 patients were screened for this study and 23 patients were diagnosed with brain metastases during the follow-up period. Comparing patients with and without brain metastases, the expression of miRNA-328 and miRNA-378 in tumor tissues were significantly different (P = 6.2 × 10(-5) and P = 2.8 × 10(-5), respectively). For the patients with brain metastases, the expression of miRNA-328 and miRNA-378 in tumor tissues compared with para-carcinoma tissues were also significantly different (P = 2.2 × 10(-5) and P = 1.6 × 10(-5), respectively). For patients with brain metastases, the association between miRNA-328 and protein kinase Cα was significant (r = 0.591, P = 0.003), but that between miRNA-378 and protein kinase Cα was not significant (r = 0.259, P = 0.232). CONCLUSIONS: The expression of miRNA-328 and miRNA-378 in tumor tissues can be used to predict brain metastases in patients with non-small-cell lung cancer. miRNA-328 might promote brain metastases by regulating the expression of protein kinase Cα. However, the mechanisms of miRNA-378 to promote brain metastases should be studied in the future.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundario , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/secundario , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/análisis , Proteína Quinasa C-alfa/análisis , Anciano , Biomarcadores de Tumor/sangre , Neoplasias Encefálicas/enzimología , Cadherinas/análisis , Carcinoma de Pulmón de Células no Pequeñas/química , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/química , Neoplasias Pulmonares/cirugía , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reacción en Cadena en Tiempo Real de la Polimerasa , Subunidad beta de la Proteína de Unión al Calcio S100/análisis , Técnicas de Cultivo de Tejidos , Factor A de Crecimiento Endotelial Vascular/análisis
4.
Int J Biol Macromol ; 258(Pt 2): 129120, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171436

RESUMEN

Ultrasound (US)-mediated sonodynamic therapy (SDT) has received extensive attention in pathogen elimination for non-invasiveness and high spatial and temporal accuracy. Considering that hydrogel can provide a healing-friendly environment for wounds, in this work, hybrid hydrogels are constructed by embedding Ag doped TiO2 nanoparticles in chitosan-polyvinyl alcohol hydrogels for enhanced sonodynamic antibacterial therapy. With metal silver doped, TiO2 nanoparticles sonosensitivity is improved to generate more reactive oxygen species (ROS), which endows hybrid hydrogels with high-efficient antibacterial properties. In vivo results show that hybrid hydrogel dressing can prevent infection and promote wound closure within 2 days. The healing ratio excess 95 % with no pus produced at the end of treatment. The therapeutic mechanism was identified that heterojunction formed in Ag doped TiO2 facilitates the separation of charge carriers under US irradiation, leading to elevating ROS generation. The generated ROS promote hybrid hydrogels sonodynamic antibacterial therapeutic efficacy to thoroughly eliminate pathogen via disrupting bacterial cell membrane integrity, decreasing membrane fluidity and increasing membrane permeability. Besides, biofilm formation could be effectively inhibited. This work developed a hybrid hydrogel with amplified SDT effect for wound healing, which is expected to provide inspiration of hybrid hydrogels design and Ti-based nanomaterials sonosensitivity enhancement.


Asunto(s)
Quitosano , Infecciones Estafilocócicas , Humanos , Quitosano/farmacología , Staphylococcus aureus , Alcohol Polivinílico/farmacología , Especies Reactivas de Oxígeno/farmacología , Titanio/farmacología , Antibacterianos/farmacología , Vendajes , Hidrogeles/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico
5.
ACS Nano ; 18(11): 7769-7795, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38420949

RESUMEN

Tumor-associated macrophages (TAMs) play pivotal roles in tumor development. As primary contents of tumor environment (TME), TAMs secrete inflammation-related substances to regulate tumoral occurrence and development. There are two kinds of TAMs: the tumoricidal M1-like TAMs and protumoral M2-like TAMs. Reprogramming TAMs from immunosuppressive M2 to immunocompetent M1 phenotype is considered a feasible way to improve immunotherapeutic efficiency. Notably, nanomaterials show great potential for biomedical fields due to their controllable structures and properties. There are many types of nanomaterials that exhibit great regulatory activities for TAMs' reprogramming. In this review, the recent progress of nanomaterials-involved TAMs' reprogramming is comprehensively discussed. The various nanomaterials for TAMs' reprogramming and the reprogramming strategies are summarized and introduced. Additionally, the challenges and perspectives of TAMs' reprogramming for efficient therapy are discussed, aiming to provide inspiration for TAMs' regulator design and promote the development of TAMs-mediated immunotherapy.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Macrófagos Asociados a Tumores , Inmunoterapia , Inmunosupresores , Inflamación , Nanoestructuras/uso terapéutico , Microambiente Tumoral , Neoplasias/terapia
6.
J Mater Chem B ; 11(38): 9128-9154, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37698045

RESUMEN

Nanomaterial-based cancer therapy has recently emerged as a new therapeutic modality with the advantages of minimal invasiveness and negligible normal tissue toxicity over traditional cancer treatments. However, the complex microenvironment and self-protective mechanisms of tumors have suppressed the therapeutic effect of emerging antitumor modalities, which seriously hindered the transformation of these modalities to clinical settings. Due to the excellent biocompatibility, unique physicochemical properties and easy surface modification, carbon dots, as promising nanomaterials in the biomedical field, can effectively improve the therapeutic effect of emerging antitumor modalities as multifunctional nanoplatforms. In this review, the mechanism and limitations of emerging therapeutic modalities are described. Further, the recent advances related to carbon dot-based nanoplatforms in overcoming the therapeutic barriers of various emerging therapies are systematically summarized. Finally, the prospects and potential obstacles for the clinical translation of carbon dot-based nanoplatforms in tumor therapy are also discussed. This review is expected to provide a reference for nanomaterial design and its development for the efficacy enhancement of emerging therapeutic modalities.


Asunto(s)
Nanopartículas , Nanoestructuras , Neoplasias , Humanos , Carbono/química , Nanoestructuras/química , Nanomedicina Teranóstica , Neoplasias/terapia , Nanopartículas/uso terapéutico , Nanopartículas/química , Microambiente Tumoral
7.
J Colloid Interface Sci ; 607(Pt 1): 1-15, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34500412

RESUMEN

The intracellular O2-supply not only can relieve tumor hypoxia but also enhance the effects of photodynamic therapy (PDT). In this work, metallic Mo2C@N-carbon@PEG nanoparticles were constructed to reveal the near infrared (NIR)-photocatalytic O2 generation and promote photodynamic therapy (PDT). Here, (NH4)6Mo7O24·4H2O nanorods and urea were adopted as resources that were calcined to obtain Mo2C@N-carbon nanoparticles (20 nm). All samples displayed high NIR absorption as well as photothermal conversion efficiency of up to 52.7 % (Mo2C@N-Carbon-3@PEG). The density functional theory calculations demonstrated the metallic characteristic of Mo2C and that the consecutive interband/intraband charge-transition was responsible for the high NIR harvest and redox ability of electron-hole pairs, making the NIR-photocatalytic O2 and reactive oxygen species (ROS) generation. In comparison with the pure Mo2C, the heterostructure displayed twice the performance due to the enhanced charge-segregation between Mo2C and N-carbon. Given the high X-ray absorption coefficient and photothermal ability, the nanocomposite could be used in novel computer tomography and photothermal imaging contrast. Furthermore, the novel biodegradation and metabolism behaviors of nanocomposites were investigated, which were reflected as elimination from the body (mouse) via feces and urine within 14 days. The as-synthesized Mo2C@N-Carbon@PEG nanocomposites integrated the dual-model imaging, intracellular O2-supply, and phototherapy into one nanoplatform, revealing its potential for anti-cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Carbono , Línea Celular Tumoral , Ratones , Molibdeno , Neoplasias/tratamiento farmacológico , Oxígeno , Fototerapia
8.
J Colloid Interface Sci ; 625: 145-157, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35716610

RESUMEN

Tumor hypoxia not only promotes the proliferation, invasion and metastasis of cancer cells but also seriously hinders photodynamic therapy (PDT). Here, second near-infrared (NIR-II) photocatalytic O2 generation is introduced to relieve hypoxia. FeS2/CoS2@PEG (FCs@PEG) nanosheets (∼80 nm) are prepared with Fe-Co layered double hydroxides (LDHs) as precursor. As-synthesized samples have great NIR-II harvest and photothermal conversion efficiency (50.5 %, 1064 nm). In addition, photothermal effect can elevate the thermal energy of nanocomposite to supply extra energy and to excite FeS2 (1.16 eV) and CoS2 (1.37 eV) simultaneously by low-energy NIR-II (1064 nm, 1.16 eV) irradiation. Band structure is further investigated to discover the Z-Scheme mechanism of FCs@PEG, whose photogenerated charges remains high redox potential to oxidize water forming O2 and to capture O2 producing reactive oxygen species (ROS), respectively. In addition, FC2@PEG enhances peroxidase and catalase activities attributing to the lower resistance for charge transfer in heterostructure. Besides, the nanocomposite also can be used as glutathione oxidase (GSHOD) to deplete GSH and break intracellular redox balance, facilitating oxidative stress. Most importantly, FC2@PEG reveals excellent biodegradation and elimination via feces and urine within 14 D. FCs@PEG integrate magnetic resonance and photothermal imaging (MRI and PTI), O2 in situ supply, and synergistic photothermal therapy (PTT)/PDT/chemotherapy (CDT) to arouse immune response for anticancer.


Asunto(s)
Neoplasias , Fotoquimioterapia , Línea Celular Tumoral , Cobalto , Compuestos Ferrosos , Humanos , Hipoxia/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Oxígeno , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química
9.
Onco Targets Ther ; 15: 771-776, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847381

RESUMEN

Primary spinal cord glioblastoma (PSC GBM) is a rare disease with limited treatment options. Here, we describe a case of PSC GBM treated with anlotinib in this report. Molecular characterization confirmed the presence of the MGMT promoter unmethylated, IDH wild type, FGFR3 p.S249C and p53 p.V73fs mutations in the patient. Anlotinib is a multitarget tyrosine kinase inhibitor that target VEGFR2/3, FGFR1-4, PDGFRα/ß, and c-kit. After a partial resection of the tumor at the extramedullary invasion site, the patient was administered anlotinib 12 mg p.o. once every day (days 1-14, 21-day cycle) in combination with irinotecan chemotherapy (days 1 and 8, 21-day cycle). The patient exhibited significant symptom remission and partial response and was maintained for more than 10 months of follow-up. This case study showed that FGFR3 S249C may be a new marker for the treatment of PSC GBM with anlotinib. This case is also another strong support for molecular diagnosis and precision medicine.

10.
Comput Math Methods Med ; 2022: 4261329, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060650

RESUMEN

Skin cutaneous melanoma (SKCM) is a common malignant skin cancer. Early diagnosis could effectively reduce SKCM patient's mortality to a large extent. We managed to construct a model to examine the prognosis of SKCM patients. The methylation-related data and clinical data of The Cancer Gene Atlas- (TCGA-) SKCM were downloaded from TCGA database. After preprocessing the methylation data, 21,861 prognosis-related methylated sites potentially associated with prognosis were obtained using the univariate Cox regression analysis and multivariate Cox regression analysis. Afterward, unsupervised clustering was used to divide the patients into 4 clusters, and weighted correlation network analysis (WGCNA) was applied to construct coexpression modules. By overlapping the CpG sites between the clusters and turquoise model, a prognostic model was established by LASSO Cox regression and multivariate Cox regression. It was found that 9 methylated sites included cg01447831, cg14845689, cg20895058, cg06506470, cg09558315, cg06373660, cg17737409, cg21577036, and cg22337438. After constructing the prognostic model, the performance of the model was validated by survival analysis and receiver operating characteristic (ROC) curve, and the independence of the model was verified by univariate and multivariate regression. It was represented that the prognostic model was reliable, and riskscore could be used as an independent prognostic factor in SKCM patients. At last, we combined clinical data and patient's riskscore to establish and testify the nomogram that could determine patient's prognosis. The results found that the reliability of the nomogram was relatively good. All in all, we constructed a prognostic model that could determine the prognosis of SKCM patients and screened 9 key methylated sites through analyzing data in TCGA-SKCM dataset. Finally, a prognostic nomogram was established combined with clinical diagnosed information and riskscore. The results are significant for improving the prognosis of SKCM patients in the future.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Metilación , Pronóstico , Reproducibilidad de los Resultados , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Melanoma Cutáneo Maligno
11.
Pathol Res Pract ; 216(9): 153087, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32825955

RESUMEN

Methyltransferase-like 3 (METTL3) is identified as a methyltransferase responsible for N6-methyladenosine (m6A) modification of mRNA, miRNA and lncRNA. Emerging evidences suggest that METTL3 is involved in tumorigenesis and progression of multiple tumor types. However, the functional role of METTL3 in esophageal cancer (EC) remains unclear. We used specific shRNA to down-regulate the METTL3 expression, and used pcDNA3.1-METTL3 cDNA plasmid to up-regulate the METTL3 expression in Eca-109 and KY-SE150 cells. Biological functions of METTL3 were performed by CCK-8, colony formation, apoptosis analysis, transwell and wound healing assays. Finally, an in-depth mechanism study was performed by an AKT inhibitor. METTL3 knockdown reduced the proliferation, clonality, migration and invasion of Eca-109 and KY-SE150 cells, and induced cell apoptosis, which may be mediated by activation of the mitochondrial apoptotic pathway. Further, METTL3 overexpression promoted the proliferation, clonality, migration and invasion of Eca-109 and KY-SE150 cells, and inhibited cell apoptosis. In addition, METTL3 regulated the expression of Wnt/ß-catenin and AKT signaling pathway components. A double-effect inhibitor (BEZ235) inhibited AKT and mTOR phosphorylation and hindered the effect of METTL3 overexpression on the proliferation and migration of Eca-109 and KY-SE150 cells. Our data suggest that METTL3 plays a carcinogenic role in human EC progression partially through AKT signaling pathways, suggesting that METTL3 may serve as a potential therapeutic target for EC therapy.


Asunto(s)
Proliferación Celular/fisiología , Neoplasias Esofágicas/patología , Regulación Neoplásica de la Expresión Génica/genética , Metiltransferasas/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Transformación Celular Neoplásica/genética , Neoplasias Esofágicas/metabolismo , Humanos , Transducción de Señal/fisiología , beta Catenina/metabolismo
12.
Cell Prolif ; 52(4): e12617, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31012173

RESUMEN

OBJECTIVES: The roles and related mechanisms of six2 in regulating non-small cell lung cancer (NSCLC) cells progression are unclear. This work aimed to explore the roles of six2 in NSCLC cell stemness. MATERIALS AND METHODS: Kaplan-Meier plotter analysis was used to examine the correlation between six2 expression and the survival of NSCLC patients. Quantitative reverse transcription PCR and Western blot were performed to detect six2 expression in clinical samples. Moreover, transwell migration, tumour spheroid formation and in vivo tumour formation assays were used to examine the effects of six2 on NSCLC cell progression. Additionally, methylation analysis was carried out to measure E-cadherin methylation level in different cells. Finally, cell viability assay was performed to explore the effects of six2 on chemotherapeutic sensitivity of NSCLC cells. RESULTS: Lung cancer patients with a higher six2 expression level displayed a shorter overall survival. Six2 expression was higher in lung cancer tissues than in normal adjacent tissues. Additionally, six2 knockdown suppressed NSCLC cell stemness. Mechanistically, six2 overexpression inhibited epithelial marker E-cadherin expression via stimulating its promoter methylation. And E-cadherin knockdown rescued six2 knockdown-induced decrease of NSCLC cancer cell stemness. Notably, six2 knockdown enhanced cisplatin sensitivity in parental NSCLC cells and attenuated cisplatin resistance in cisplatin-resistant NSCLC cells. CONCLUSIONS: Our results suggest that six2 facilitates NSCLC cell stemness and attenuates chemotherapeutic sensitivity via suppressing E-cadherin expression.


Asunto(s)
Antígenos CD/genética , Cadherinas/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Epigénesis Genética/genética , Proteínas de Homeodominio/genética , Neoplasias Pulmonares/genética , Proteínas del Tejido Nervioso/genética , Transcripción Genética/genética , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cisplatino/farmacología , Progresión de la Enfermedad , Epigénesis Genética/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Masculino , Metilación/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Transcripción Genética/efectos de los fármacos
13.
Biomed Rep ; 3(1): 63-69, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25469249

RESUMEN

Radiotherapy is commonly used in the treatment of brain tumors but can cause significant damage to surrounding normal brain. The radioprotective effects of valproic acid (VPA) on normal tissue in the rat brain were evaluated following irradiation. Male Wistar rats were used in the present study and 48 rats were randomly divided into four groups consisting of 12 rats each. The whole-brain irradiation (WBI) was delivered by X-ray and the rats received the following treatment once a day for 5 days. The control group (sham-exposed group) received sham irradiation plus physiological saline. The VPA group received sham irradiation plus 150 mg VPA/kg. The X-ray group received WBI plus physiological saline. The combined group received WBI plus 150 mg/kg intraperitoneally VPA. A total of 6 months post-irradiation, the rats were sacrificed and the brains were harvested. Cell apoptosis in the cortex was determined by immunohistochemistry 24 h post-irradiation using an antibody for protein caspase-3. Transmission electron microscope (TEM) analyses were used to assess the effects of VPA on the radioprotection of rat normal brain cells 6 months post-irradiation. The weights of the animals in the TEM group measured over the two weeks after the first injection of VPA were also observed. Histological findings demonstrated that apoptosis occurred on the cortex 1 day after treatment, peaking in the X-ray group. The cells of the combined group showed a moderate caspase-3 staining compared to the X-ray group. There was a trend towards a lower body weight of the X-ray group following irradiation compared to either no-irradiation or rats of the combined group, although there was no significant difference in the average weight between the combined group and irradiated rats. Mild swelling of the capillary endothelial cells in the irregular lumen was observed in the combined group, whereas the X-ray group showed a severe structural disorder. In conclusion, VPA supplementation during radiotherapy may be beneficial for radioprotection following WBI by reducing normal brain cell injury.

14.
Oncol Lett ; 7(1): 203-208, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24348849

RESUMEN

Valproic acid (VPA) is a well-tolerated drug that is used to treat seizure disorders and that has recently been shown to inhibit histone deacetylase. The present study investigated the effects of VPA on the radiosensitization of the rat C6 glioma cell line in vitro. To select an appropriate treatment concentration and time, MTT and flow cytometry assays were performed to measure the inhibitory effects of VPA at various concentrations and incubation time-points. The radiosensitizing effect of VPA was determined using clonogenic experiments. VPA- and radiation-induced C6 apoptosis was analyzed using quantitative polymerase chain reaction and western blot analysis. Cell proliferation was significantly inhibited by VPA in a time- and dose-dependent manner (P<0.05). VPA enhanced radiation-induced C6 cell death and there was clear inhibition of clonogenic formation [sensitizer enhancement ratio (SER), 1.30]. This effect was closely associated with the concentration of VPA. VPA treatment decreased the mRNA and protein levels of Bcl-2, whereas increased changes were detected with Bax. At a concentration of 0.5 mmol/l, VPA had a low toxicity and enhanced the radiosensitization of the C6 cells. VPA may radiosensitize glioma cells by inhibiting cellular proliferation and inducing apoptosis by regulating apoptosis-related molecular changes.

15.
Asian Pac J Cancer Prev ; 15(3): 1233-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24606446

RESUMEN

BACKGROUND: The incidence of brain metastases (BM) varies in patients with non-small cell lung cancer (NSCLC), calls into question the value of prophylactic cranial irradiation (PCI). It is possible that clinicopathologic characteristics are associated with the development of BM, but these have yet to be identified in detail. Thus, we conducted the present meta-analysis on risk factors for BM and the value of PCI in patients with NSCLC. METHODS: Eligible data were extracted and the risk factors for BM and the value of PCI in patients with NSCLC were analyzed by calculating the pooled odds ratio (OR). Heterogeneity was detected using Q and I-squared statistics, and publication bias was tested by funnel plots and Egger's test. RESULTS: Six randomized controlled trials with a focus on the value of PCI and 13 eligible studies with a focus on risk factors for BM were included. PCI significantly reduced the incidence of BM in patients with NSCLC (p=0.000, pooled OR=0.34, 95% confidence interval = 0.37-0.59). Compared with non-squamous cell carcinoma, squamous cell carcinoma was associated with a low incidence of BM in patients with NSCLC (p=0.000, pooled OR=0.47, 95% confidence interval =0.34- 0.65). The funnel plot and Egger's test suggested that there was no publication bias in the current meta-analysis. CONCLUSIONS: This meta-analysis provides statistical evidence that compared with non-squamous cell carcinoma, squamous cell carcinoma can be used as a predictor for BM in patients with NSCLC, and PCI might reduce the incidence of BM in patients with NSCLC, but does not provide a survival benefit.


Asunto(s)
Neoplasias Encefálicas/prevención & control , Neoplasias Encefálicas/secundario , Irradiación Craneana , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/patología , Humanos , Neoplasias Pulmonares/patología , Factores de Riesgo
16.
Asian Pac J Cancer Prev ; 14(11): 6411-3, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24377542

RESUMEN

Adenocarcinoma of esophagus (AE) is a complex disease, affected by a variety of genetic and environmental factors. Much evidence has shown that the MutY glycosylase homologue (MUTYH) plays a key role in the pathogenesis of many cancers. However, there have been no reports on influence on AE in the Han Chinese population. The objective of this study was to investigate this issue. A gene-based association study was conducted using three single nucleotide polymorphisms(SNPs) reported in previous studies. The three SNPs (rs3219463, rs3219472, rs3219489) were genotyped in 207 unrelated AE patients and 249 healthy controls in a case-control study using polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). The results revealed that the genotype distribution of rs3219472 differed between the case and control groups (OR=1.66,95%CI=1.11-2.48, P=0.012 ), indicating that an association may exist between MUTYH and AE. These findings support a signifcant role for MUTYH in AE pathogenesis in the Han Chinese population.


Asunto(s)
Adenocarcinoma/genética , Pueblo Asiatico/genética , ADN Glicosilasas/genética , Neoplasias Esofágicas/genética , Adenocarcinoma/epidemiología , Estudios de Casos y Controles , China/epidemiología , Neoplasias Esofágicas/epidemiología , Femenino , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA