RESUMEN
The heat-stable live-attenuated classical swine fever virus (CSFV) vaccine is an urgent need in many countries of Asia, Europe and Latin America. In this study, the thermostability of lyophilized live-attenuated CSFV vaccine formulations were investigated using accelerated stability at 37 °C for 10 days. The freeze-dried heat-stable formulation ST16, containing excipient combinations of trehalose, glycine, thiourea and phosphate buffer shows the superior thermostability. Moreover, the lyophilized vaccine with formula ST16 kept loss of viral activity less than 0.5 log10 during 24 months at storage temperatures of 2-8 °C. In thermal study, ST16 stabilized the vaccine within 1.0 log10 loss after storage at up to 25 °C for 6 months and room temperature for 7 months. Even under the harshest storage conditions of 37 °C for 25 days and 45 °C for 2 weeks, the virus titer dropped less than 1.0 log10 using ST16. Besides, it is notable that ST16 excluded gelatin and exogenous proteins, which might cause allergic reactions, thus avoiding immune side effects. The vaccine formulated ST16 proved to be safe and effective when immunized to piglets in vivo. The characteristics of dried vaccines were analyzed by X-ray powder diffraction, residual water measurements, differential scanning calorimetry and it was found that vaccine antigen were preserved in an amorphous matrix with high glass transition temperature above 60 °C and low residual water content below 2%, which made the vaccine more stable during storage.
Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Vacunas Virales , Animales , Asia , Peste Porcina Clásica/prevención & control , Estabilidad de Medicamentos , Europa (Continente) , Liofilización , Porcinos , Temperatura , Vacunas AtenuadasRESUMEN
The capsid (Cap) protein, an important immunoprotective protein of porcine circovirus type 2 (PCV2), was expressed on the cell surface of the Gram-positive food-grade bacterium, Lactococcus lactis. Cap protein was fused to the peptidoglycan binding domain (known as the protein anchor domain, PA) of the lactococcal AcmA cell-wall hydrolase. The Cap protein fusion was non-covalently rebound to the surface of non-genetically modified, non-living high-binder L. lactis cells (designated Gram-positive enhancer matrix (GEM) particles). Expression of the recombinant GEM-displaying capsid protein (GEM-PA-Cap) was verified by Western blotting and immunofluorescence and transmission electron microscopy assays. To evaluate the immunogenicity of the recombinant Cap protein (rCap), 20 PCV2-seronegative piglets were immunized with the GEM-PA-Cap subunit vaccine, GEM alone, or phosphate-buffered saline (PBS, challenge control and empty control). Each group consisted of five piglets. The results showed that the level of PCV2-specific antibodies in piglets immunized with the GEM-PA-Cap subunit vaccine was significantly higher than that of the piglets immunized with GEM alone or the control group at all the time points post-vaccination (P<0.01). After challenge with the PCV2 wild-type strain, piglets that received the GEM-PA-Cap subunit vaccine showed significantly higher average daily weight gain (DWG) and shorter fever duration than the other two groups (P<0.001). Furthermore, a significant reduction in the gross lung lesion scores and lymph node lesion scores was noted in the GEM-PA-Cap-immunized group compared with the scores of the GEM or PBS-treated group (P<0.01). The results suggest that recombinant rCap displayed by L. lactis GEM particles provided the piglets with significant immunoprotection from PCV2-associated disease. Thus, the novel GEM-PA-Cap subunit vaccine has potential to be considered an effective and safe candidate vaccine against PCV2 infection in piglets.
Asunto(s)
Proteínas de la Cápside/inmunología , Infecciones por Circoviridae/veterinaria , Lactococcus lactis , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Infecciones por Circoviridae/prevención & control , Circovirus , Inmunidad Humoral , Pulmón/patología , Proteínas Recombinantes/inmunología , Porcinos , Vacunas de Subunidad/inmunologíaRESUMEN
To improve the preservation period without cold-chain of the live attenuated vaccine of porcine reproductive and respiratory syndrome (PRRS), a set of thermostable formulations composed of trehalose, tryptone and other protectants were dried by vacuum foam drying (VFD) along with PRRSV solutions. In the 37°C and 45°C resistance ageing test, the dried foam vaccine showed significant thermostability, and the virus titer lost 0.8 Log10 at 37°C for 4months, 1.0 Log10 at 45°C for 25days. Furthermore, the foam vaccine could be stored at 25°C for at least one year. Besides, the vaccine preserved in 37°C, 25°C and 4°C for 3months were inoculated on 20-days old piglet, and the serum titer was monitoring by ELISA kit. Inoculated two weeks later, the ELISA titer were all qualified and had the similar level compared to the commercial vaccines of the lyophilization dosage.
Asunto(s)
Calor , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Desecación , Estabilidad de Medicamentos , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Vacunas Atenuadas/inmunologíaRESUMEN
To construct a recombinant T7 phage expressing matrix protein 2 ectodomain (M2e) peptides of avian influenza A virus and test immunological and protective efficacy in the immunized SPF chickens. M2e gene sequence was obtained from Genbank and two copies of M2e gene were artificially synthesised, the M2e gene was then cloned into the T7 select 415-1b phage in the multiple cloning sites to construct the recombinant phage T7-M2e. The positive recombinant phage was identified by PCR and sequencing, and the expression of surface fusion protein was confirmed by SDS-PAGE and Western-blot. SPF chickens were subcutaneously injected with 1 X 10(10) pfu phage T7-M2e, sera samples were collected pre- and post-vaccination, and were tested for anti-M2e antibody by ELISA. The binding capacity of serum to virus was also examined by indirect immunofluorescence assay in virus- infected CEF. The immunized chickens were challenged with 200 EID50 of H9 type avian influenza virus and viral isolation rate was calculated to evaluate the immune protective efficacy. A recombinant T7 phage was obtained displaying M2e peptides of avian influenza A virus, and the fusion protein had favorable immunoreactivity. All chickens developed a certain amount of anti-M2e antibody which could specially bind to the viral particles. In addition, the protection efficacy of phage T7-M2e vaccine against H9 type avian influenza viruses was 4/5 (80%). These results indicate that the recombinant T7 phage displaying M2e peptides of avian influenza A virus has a great potential to be developed into a novel vaccine for the prevention of avian influenza infection.