Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Environ Sci Technol ; 58(4): 2038-2047, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38241248

RESUMEN

Single-particle inductively coupled plasma mass spectrometry (spICP-MS) has been used to characterize metallic nanoparticles (NPs) assuming that all NPs are spherical and composed of pure element. However, environmental NPs generally do not meet these criteria, suggesting that spICP-MS may underestimate their true sizes. This study employed a system hyphenating the atomizer (ATM), differential mobility analyzer (DMA), and spICP-MS to characterize metallic NPs in tap water. Its performance was validated by using reference Au nanoparticles (AuNPs) and Ag-shelled AuNPs. The hyphenated system can determine the actual size and metal composition of both NPs with additional heating after ATM, while stand-alone spICP-MS misidentified the Ag-shelled AuNPs as smaller individual AgNPs and AuNPs. Dissolved metal ions could introduce artifact NPs after heating but could be eliminated by centrifugation. The hyphenated system was applied to characterize Fe-containing and Pb-containing NPs resulting from the corrosion of plumbing materials in tap water. The mode sizes of Fe-containing and Pb-containing NPs were determined to be 110 and 100 nm and the particle number concentrations were determined to be 4.99 × 107 and 1.40 × 106 #/mL, respectively. Cautions should be paid to potential changes in particle size induced by heating for metallic NPs with a low melting point or a high organic content.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Oro/química , Plomo , Ingeniería Sanitaria , Corrosión , Nebulizadores y Vaporizadores , Tamaño de la Partícula , Agua
2.
J Environ Manage ; 328: 116982, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36502707

RESUMEN

Groundwater contamination remains a global threat due to its toxic effects to humans and the environment. The remediation of contaminated groundwater sites can be costly, thus, identifying the priority areas of concern is important to reduce money spent on resources. In this study, we aimed to identify and rank the priority groundwater sites in a contaminated petrochemical district by combining alternative, non-animal approaches - chemical analysis, cell-based high throughput screening (HTS), and Toxicological Priority Index (ToxPi) computational toxicology tool. Groundwater samples collected from ten different sites in a contaminated district showed pollutant levels below the detection limit, however, hepatotoxic bioactivity was demonstrated in human hepatoma HepaRG cells. Integrating the pollutants information (i.e., pollutant characteristics and concentration data) with the bioactivity data of the groundwater samples, an evidence-based ranking of the groundwater sites for future remediation was established using ToxPi analysis. The currently presented combinatorial approach of screening groundwater sites for remediation purposes can further be refined by including relevant parameters, which can boost the utility of this approach for groundwater screening and future remediation.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Taiwán , Agua Subterránea/análisis , Contaminantes Ambientales/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
3.
Int J Mol Sci ; 21(12)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604975

RESUMEN

Exposure assessment is a key component in the risk assessment of engineered nanomaterials (ENMs). While direct and quantitative measurements of ENMs in complex environmental matrices remain challenging, environmental fate models (EFMs) can be used alternatively for estimating ENMs' distributions in the environment. This review describes and assesses the development and capability of EFMs, focusing on surface waters. Our review finds that current engineered nanomaterial (ENM) exposure models can be largely classified into three types: material flow analysis models (MFAMs), multimedia compartmental models (MCMs), and spatial river/watershed models (SRWMs). MFAMs, which is already used to derive predicted environmental concentrations (PECs), can be used to estimate the releases of ENMs as inputs to EFMs. Both MCMs and SRWMs belong to EFMs. MCMs are spatially and/or temporally averaged models, which describe ENM fate processes as intermedia transfer of well-mixed environmental compartments. SRWMs are spatiotemporally resolved models, which consider the variability in watershed and/or stream hydrology, morphology, and sediment transport of river networks. As the foundation of EFMs, we also review the existing and emerging ENM fate processes and their inclusion in recent EFMs. We find that while ENM fate processes, such as heteroaggregation and dissolution, are commonly included in current EFMs, few models consider photoreaction and sulfidation, evaluation of the relative importance of fate processes, and the fate of weathered/transformed ENMs. We conclude the review by identifying the opportunities and challenges in using EFMs for ENMs.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Ambientales/química , Modelos Teóricos , Nanoestructuras/química , Contaminantes Químicos del Agua/química , Contaminantes Ambientales/metabolismo , Medición de Riesgo
4.
Environ Sci Technol ; 53(19): 11162-11169, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31479236

RESUMEN

In aerobic natural surface water, a silver ion (Ag+) exists in various Ag+-Cl- complexes because of a strong affinity for a chloride ion (Cl-); however, little information is available about the role of the Ag+-Cl- complex in the formation of silver nanoparticles (AgNPs). This study demonstrates that soluble AgClx(x-1)- species act as a precursor of AgNPs under simulated sunlight irradiation. The AgNP photoproduction increases with Cl- levels up to 0.0025 M ([Ag+] = 5 × 10-7 M) and decreases with continued Cl- level increase (0.09 to 0.5 M). At [Cl-] ≤ 0.0025 M (freshwater systems), photoproduction of AgNP correlates with the formation of AgCl(aq), suggesting that it is the most photoactive species in those systems. Matching the ionic strength of experiments containing various Cl- levels indicates that the trend in AgNP photoproduction correlates with Cl- concentrations rather than ionic strength-induced effects. The photoproduction of AgNPs is highly pH-dependent, especially at pH > 8.3. The UV and visible light portions of the solar light spectrum are equally important in photoreduction of Ag+. Overall, we show evidence that AgClx(x-1)- species irradiated under sunlight conditions contributes to the formation of nanosized silver (Ag) in the environment.


Asunto(s)
Nanopartículas del Metal , Contaminantes Químicos del Agua , Cloruros , Plata , Luz Solar
5.
Environ Sci Technol ; 50(7): 3494-502, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26928260

RESUMEN

Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applications. In this study, we examined the phototransformation of carboxylated SWCNTs and associated amorphous carbon impurities in the presence or absence of H2O2 under simulated sunlight conditions. We found that while carboxylated SWCNTs were rather unreactive with respect to direct solar photolysis, they photoreacted in the presence of H2O2, forming CO2 and strongly aggregated SWCNT products that precipitated. Photoreaction caused SWCNTs to lose oxygen-containing functionalities, and interestingly, the resulting photoproducts had spectral characteristics similar to those of parent carboxylated SWCNTs whose amorphous carbon was removed by base washing. These results indicated that photoreaction of the amorphous carbon was likely involved. The removal of amorphous carbon after indirect photoreaction was confirmed with thermogravimetric analysis (TGA). Further studies using carboxylated SWCNTs with and without base washing indicate that amorphous carbon reduced the extent of aggregation caused by photoreaction. The second-order rate constant for carboxylated SWCNTs reacting with (•)OH was estimated to be in the range of 1.7-3.8 × 10(9) MC(-1) s(-1). The modeled phototransformation half-lives fall in the range of 2.8-280 days in typical sunlit freshwaters. Our study indicates that photosensitized reactions involving (•)OH may be a transformation and removal pathway of functionalized SWCNTs in the aquatic environment, and that the residual amorphous carbon associated with SWCNTs plays a role in SWCNT stabilization.


Asunto(s)
Nanotubos de Carbono/química , Luz Solar , Ácidos Carboxílicos/química , Ambiente , Concentración de Iones de Hidrógeno , Radical Hidroxilo/química , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Espectroscopía Infrarroja Corta , Termogravimetría , Agua/química
6.
Environ Sci Technol ; 49(6): 3435-43, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25671674

RESUMEN

Graphene oxide (GO) is promising in scalable production and has useful properties that include semiconducting behavior, catalytic reactivity, and aqueous dispersibility. In this study, we investigated the photochemical fate of GO under environmentally relevant sunlight conditions. The results indicate that GO readily photoreacts under simulated sunlight with the potential involvement of electron-hole pair creation. GO was shown to photodisproportionate to CO2, reduced materials similar to reduced GO (rGO) that are fragmented compared to the starting material, and low molecular-weight (LMW) species. Kinetic studies show that the rate of the initially rapid photoreaction of GO is insensitive to the dissolved oxygen content. In contrast, at longer time points (>10 h), the presence of dissolved oxygen led to a greater production of CO2 than the same GO material under N2-saturated conditions. Regardless, the rGO species themselves persist after extended irradiation equivalent to 2 months in natural sunlight, even in the presence of dissolved oxygen. Overall, our findings indicate that GO phototransforms rapidly under sunlight exposure, resulting in chemically reduced and persistent photoproducts that are likely to exhibit transport and toxic properties unique from parent GO.


Asunto(s)
Grafito/química , Óxidos/química , Luz Solar , Dióxido de Carbono/química , Cinética , Fotoquímica , Agua/química
7.
Environ Sci Technol ; 48(7): 3875-82, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24628431

RESUMEN

Single-wall carbon nanotubes (SWCNTs) have a variety of potential and demonstrated applications, and their production rates are increasing rapidly. This increase in production has motivated research on their transport and potential transformation and their toxicity in the environment. In this work, we examined the direct and indirect photoreactivity of SWCNTs under sunlight conditions. We found that the direct photoreactivity of pristine SWCNTs is generally low; however, indirect photoreaction involving ·OH may be significant in natural aquatic environments. Environmental photochemical reactions generating ·OH lead to distinct changes in SWCNT fluorescence efficiency in the near-infrared (NIR) region, Raman spectra, and light attenuation spectra in the UV, visible, and NIR regions, indicating that covalent functionalization of SWCNTs occurs. The reactivity of SWCNTs to ·OH is dependent on the specific chiral structure of the SWCNTs and the surfactant associated with it. An operationally defined second-order rate constant (based on the decrease in NIR fluorescence signals) for all SWCNT chiral species reacting with ·OH was estimated to be (2.91 ± 1.30) × 10(10) M(-1 )s(-1). Our work suggests that photochemical reactions may be a significant transformation pathway of SWCNTs in aquatic systems.


Asunto(s)
Radical Hidroxilo/química , Luz , Nanotubos de Carbono/química , Nanotubos de Carbono/efectos de la radiación , Ambiente , Concentración de Iones de Hidrógeno , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja Corta , Propiedades de Superficie , Factores de Tiempo
8.
Environ Sci Technol ; 47(14): 7713-21, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23731169

RESUMEN

Photobiogeochemical reactions involving metal species can be a source of naturally occurring nanoscale materials in the aquatic environment. This study demonstrates that, under simulated sunlight exposure, ionic Ag is photoreduced in river water or synthetic natural water samples that contain natural organic matter (NOM), forming Ag nanoparticles (AgNPs) that transform in size and shape and precipitate out upon extended irradiation. We show that the dissolved oxygen concentration does not appear to affect AgNP formation rates, indicating that reactive transients such as superoxide, hydrated electron, and triplet NOM do not play a large role. By varying pH and NOM concentrations and adding competing cations on the AgNP formation, we present three lines of evidence to show that Ag ion photoreduction likely involves ionic Ag binding to NOM. Our work suggests that photochemical reactions involving ionic Ag and NOM can be a source of nanosized Ag in the environment.


Asunto(s)
Nanopartículas del Metal , Plata/química , Luz Solar , Cationes , Concentración de Iones de Hidrógeno , Oxidación-Reducción
9.
Carbon N Y ; 60: 67-75, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31007268

RESUMEN

Carbon nanotubes (CNTs) have one of the highest production volumes among carbonaceous engineered nanoparticles (ENPs) worldwide and are have potential uses in applications including biomedicine, nanocomposites, and energy conversion. However, CNTs possible widespread usage and associated likelihood for biological exposures have driven concerns regarding their nanotoxicity and ecological impact. In this work, we probe the responses of planar suspended lipid bilayer membranes, used as model cell membranes, to functionalized multi-walled carbon nanotubes (MWCNT), CdSe/ZnS quantum dots, and a control organic compound, melittin, using an electrophysiological measurement platform. The electrophysiological measurements show that MWCNTs in a concentration range of 1.6 to 12 ppm disrupt lipid membranes by inducing significant transmembrane current fluxes, which suggest that MWCNTs insert and traverse the lipid bilayer membrane, forming transmembrane carbon nanotubes channels that allow the transport of ions. This paper demonstrates a direct measurement of ion migration across lipid bilayers induced by CNTs. Electrophysiological measurements can provide unique insights into the lipid bilayer-ENPs interactions and have the potential to serve as a preliminary screening tool for nanotoxicity.

10.
Sci Total Environ ; 888: 164091, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37207771

RESUMEN

Environmentally relevant fate parameters are essential in accurate prediction of nanomaterial's exposure. This study investigates the dissolution kinetics and equilibrium of ZnO nanoparticles (ZnONPs) using environmentally relevant low concentrations (50-200 µg/L) of ZnONPs in river water and lake water samples, and a seawater-influenced river water. We found that ZnONPs at an initial concentration of 50 µg/L completely dissolved independent of water matrices, while at 100 and 200 µg/L the dissolution level of ZnONPs was strongly dependent on the water chemistry. Carbonate alkalinity was found to control the dissolution levels, and can react with dissolved Zn ion to form secondary solid product hydrozincite. An analysis of our kinetic data and comprehensive literature results reveals that the dissolution kinetic coefficients largely increased with decreased initial ZnONP concentrations especially in environmental water matrices. The result highlights the importance to measure and derive representative dissolution parameters of nanomaterials using environmentally relevant concentrations.

11.
Langmuir ; 28(47): 16318-26, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-22921268

RESUMEN

Lipid bilayers are biomembranes common to cellular life and constitute a continuous barrier between cells and their environment. Understanding the interaction of engineered nanomaterials (ENMs) with lipid bilayers is an important step toward predicting subsequent biological effects. In this study, we assess the effect of varying the surface functionality and concentration of 10-nm-diameter gold (Au) and titanium dioxide (TiO(2)) ENMs on the disruption of negatively charged lipid bilayer vesicles (liposomes) using a dye-leakage assay. Our findings show that Au ENMs having both positive and negative surface charge induce leakage that reaches a steady state after several hours. Positively charged particles with identical surface functionality and different core compositions show similar leakage effects and result in faster and greater leakage than negatively charged particles, which suggests that surface functionality, not particle core composition, is a critical factor in determining the interaction between ENMs and lipid bilayers. The results suggest that particles permanently adsorb to bilayers and that only one positively charged particle is required to disrupt a liposome and trigger the leakage of its entire contents in contrast to mellitin molecules, the most widely studied membrane lytic peptide, which requires hundred of molecules to generate leakage.


Asunto(s)
Membrana Celular/efectos de los fármacos , Nanopartículas/química , Nanopartículas/toxicidad , Liposomas Unilamelares/química , Membrana Celular/química , Membrana Celular/metabolismo , Ingeniería , Oro/química , Oro/toxicidad , Cinética , Meliteno/química , Meliteno/metabolismo , Tamaño de la Partícula , Fosfatidilcolinas/química , Propiedades de Superficie , Titanio/química , Titanio/toxicidad , Liposomas Unilamelares/metabolismo
12.
Environ Sci Technol ; 46(3): 1869-76, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22242832

RESUMEN

Lipid bilayers are biomembranes common to cellular life and constitute a continuous barrier between cells and their environment. Understanding the interaction of nanoparticles with lipid bilayers is an important step toward predicting subsequent biological effects. In this study, we assessed the affinity of functionalized gold nanoparticles (Au NPs) with sizes from 5 to 100 nm to lipid bilayers by determining the Au NP distribution between aqueous electrolytes and lipid bilayers. The Au NP distribution to lipid bilayers reached an apparent steady state in 24 h with smaller Au NPs distributing onto lipid bilayers more rapidly than larger ones. Au NPs distributed to lipid bilayers to a larger extent at lower pH. Tannic acid-functionalized Au NPs exhibited greater distribution to lipid bilayers than polyvinylpyrrolidone-functionalized Au NPs of the same size. Across the various Au NP sizes, we measure the lipid bilayer-water distribution coefficient (K(lipw) = C(lip)/C(w)) as 450 L/kg lipid, which is independent of dosimetric units. This work suggests that the nanoparticle-cell membrane interaction is dependent on solution chemistry and nanoparticle surface functionality. The K(lipw) value may be used to predict the affinity of spherical Au NPs across a certain size range toward lipid membranes.


Asunto(s)
Membrana Celular/química , Oro/química , Membrana Dobles de Lípidos/química , Nanopartículas del Metal/química , Adsorción , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Povidona , Análisis Espectral , Taninos , Agua/química
13.
J Hazard Mater ; 426: 127801, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34863574

RESUMEN

The bioaccumulation and depuration of TiO2 nanoparticles (TiO2NPs) by zebrafish via the dietary exposure following the OECD Test Guideline 305 (OECD TG305) was evaluated using particle size- and number concentration-resolved analysis based on single-particle ICP-MS (spICP-MS). We found that using enzymatic digestion without H2O2 or excessive heating can recover 84.0 ± 4.0% and 94.5 ± 3.5% of TiO2NP mass and number concentrations from fish tissue, respectively, without altering the size distribution of parent TiO2NPs. OECD TG305 can allow for the evaluation of bioaccumulation and depuration of TiO2NPs by fish based on the particle mass and number dose metrics. The toxicokinetic modeling can reasonably describe the mass- and number-based measurement data with the derived absorption efficiency α at ~0.2, depuration rate at ~0.5 d-1, and kinetic biomagnification factor (BMFk) at ~0.007 comparable with available data. The mass concentration- and number concentration-based bioaccumulation metrics including body burdens are correlated for TiO2NPs that remained nano-sized in vivo and exhibited marginal physicochemical alterations upon uptake by fish. The result indicates that the traditional mass concentration metric may be used to represent the fish bioaccumulation potential for chemically inert NPs like TiO2.


Asunto(s)
Nanopartículas , Pez Cebra , Animales , Bioacumulación , Peróxido de Hidrógeno , Titanio
14.
Sci Total Environ ; 838(Pt 3): 156444, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35660613

RESUMEN

Characterizing engineered nanoparticles (ENPs) in complex environmental matrices remains a challenging task. This work presents a two-dimensional size analysis method by combining differential mobility analyzer (DMA) and single-particle inductively coupled plasma-mass spectrometry (spICP-MS) with a new atomizer (ATM)-enabled sample introduction that is relatively easy to operate. The tailing of electrical mobility size distributions was solved by heating the aerosol flow, where water-shelled gold nanoparticles (AuNPs) were dehydrated, effectively eliminating the tailing. The improved method has a good sizing performance and can resolve the size fractions of mixed 30 nm and 50 nm AuNPs. It can reliably analyze 7.8 × 105 to 1.9 × 107 # of 50 nm AuNPs (or 4.1 × 105 to 107 # NPs/mL, equivalent to 0.6 to 14.3 µg Au/L) with a linear response and a limit of detection of 7.8 × 105 # AuNPs (equivalent to 4.1 × 105 # AuNPs/mL) that is relevant to NP concentrations in surface water and wastewater samples. The potential of this method to analyze environmental samples was demonstrated by characterizing AuNPs and silver nanoparticles (AgNPs) spiked in wastewater, where both NPs were revealed to form heteroaggregates with colloids existing in wastewater. The method can even directly analyze nanosized Ag particles inherent in the wastewater before adding external AgNPs. The result indicates that ATM-DMA-spICP-MS is a relatively simple two-dimensional size analysis method that has a great potential to characterize heteroaggregated NPs in aqueous environmental samples.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/análisis , Espectrometría de Masas/métodos , Nanopartículas del Metal/química , Nebulizadores y Vaporizadores , Tamaño de la Partícula , Plata/química , Aguas Residuales/análisis , Agua/análisis
15.
Artículo en Inglés | MEDLINE | ID: mdl-35162241

RESUMEN

Single-walled carbon nanotubes (SWCNTs) are widely utilized for industrial, biomedical, and environmental purposes. The toxicity of Carboxylated SWCNTs (SWCNTs-COOH) in in vivo models, particularly Caenorhabditis elegans (C. elegans), and in vitro human cells is still unclear. In this study, C. elegans was used to study the effects of SWCNTs-COOH on lethality, lifespan, growth, reproduction, locomotion, reactive oxygen species (ROS) generation, and the antioxidant system. Our data show that exposure to ≥1 µg·L-1 SWCNTs-COOH could induce toxicity in nematodes that affects lifespan, growth, reproduction, and locomotion behavior. Moreover, the exposure of nematodes to SWCNTs-COOH induced ROS generation and the alteration of antioxidant gene expression. SWCNTs-COOH induced nanotoxic effects at low dose of 0.100 or 1.00 µg·L-1, particularly for the expression of antioxidants (SOD-3, CTL-2 and CYP-35A2). Similar nanotoxic effects were found in human cells. A low dose of SWCNTs-COOH induced ROS generation and increased the expression of catalase, MnSOD, CuZnSOD, and SOD-2 mRNA but decreased the expression of GPX-2 and GPX-3 mRNA in human monocytes. These findings reveal that background-level SWCNTs-COOH exerts obvious adverse effects, and C. elegans is a sensitive in vivo model that can be used for the biological evaluation of the toxicity of nanomaterials.


Asunto(s)
Caenorhabditis elegans , Nanotubos de Carbono , Animales , Antioxidantes , Ácidos Carboxílicos , Humanos , Nanotubos de Carbono/toxicidad , Especies Reactivas de Oxígeno/metabolismo
16.
Langmuir ; 27(19): 11899-905, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21854052

RESUMEN

Biological membranes are one of the important interfaces between cells and pollutants. Many polar and hydrophobic chemicals can accumulate within these membranes. For this reason, artificial biological membranes are appealing surrogates to complex organisms for assessing the bioaccumulation potential of engineered nanomaterials (ENMs). To our knowledge, this work presents the first quantitative study on the distribution of fullerene ENMs between lipid bilayers, used as model biological membranes, and water. We evaluated the lipid bilayer-water association coefficients (K(lipw)) of aqueous fullerene aggregates (nC(60)) and fullerol (C(60)(ONa)(x)(OH)(y), x + y = 24). Kinetic studies indicated that fullerol reached apparent equilibrium more rapidly than nC(60) (2 h versus >9 h). Nonlinear isotherms can describe the distribution behavior of nC(60) and fullerol. The lipid bilayer-water distributions of both nC(60) and fullerol were pH-dependent with the accumulation in lipid bilayers increasing systematically as the pH decreased from 8.6 (natural water pH) to 3 (the low end of physiologically relevant pH). This pH dependency varies with the zeta potentials of the ENMs and leads to patterns similar to those previously observed for the lipid bilayer-water distribution behavior of ionizable organic pollutants. The K(lipw) value for nC(60) was larger than that of fullerol at a given pH, indicating a greater propensity for nC(60) to interact with lipid bilayers. For example, at pH 7.4 and an aqueous concentration of 10 mg/L, K(lipw) was 3.5 times greater for nC(60) (log K(lipw) = 2.99) relative to fullerol (log K(lipw) = 2.45). Comparisons with existing aquatic organism bioaccumulation studies suggested that the lipid bilayer-water distribution is a potential method for assessing the bioaccumulation potentials of ENMs.


Asunto(s)
Fulerenos/química , Membrana Dobles de Lípidos/química , Membranas Artificiales , Modelos Biológicos , Nanoestructuras/química , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Propiedades de Superficie , Agua/química
17.
Chemosphere ; 272: 129825, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35534960

RESUMEN

Silver nanoparticles (AgNPs) have shown to be toxic to freshwater cyanobacterial species, and sodium hypochlorite (NaOCl) is a common oxidant for the treatment of cyanobacterial cells. AgNPs have a high possibility of co-existing with the cyanobacterial cells in the aqueous environments leading to its exposure to NaOCl during water treatment; however, their combined effects on the cyanobacterial cells are largely undocumented. This work compares the individual and combined effect of AgNP and NaOCl on the integrity and toxin (microcystins) release of Microcystis aeruginosa at varying levels. The results show that the AgNP (0.2-0.6 mg/L) alone has negligible effects on the cell lysis, while NaOCl alone shows concentration-dependent (0.2 < 0.4 < 0.6 mg/L) rupturing of cells. In contrast, the AgNP + NaOCl (0.2-0.6 mg/L) samples show increasing loss in cell integrity at higher AgNP (0.4 and 0.6 mg/L) levels than the NaOCl only samples. NaOCl exposure results in increasing dissolution of AgNPs with time, releasing silver ions (Ag+), affecting its size and morphology. The cell-associated total Ag declines over time with an increase in NaOCl levels, maybe due to increasing cell-lysis or NaOCl induced oxidative dissolution of AgNPs. The cell-associated total Ag and released Ag+ possibly weaken the cellular membrane, thus assisting NaOCl in faster cell-lysis. The combined exposure of AgNP and NaOCl also results in a higher release of toxin from the cells. This work collectively reveals that the AgNPs combined with NaOCl can enhance the cell lysis and release of toxins.


Asunto(s)
Cianobacterias , Nanopartículas del Metal , Microcystis , Cloruros , Cloro/farmacología , Nanopartículas del Metal/toxicidad , Microcystis/metabolismo , Plata/metabolismo , Plata/toxicidad
18.
Chemosphere ; 278: 130334, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34126674

RESUMEN

Composite photocatalysts comprising graphitic carbon nitride (g-C3N4) and graphene materials were synthesized and evaluated in the photocatalysis of bisphenol A (BPA) with a focus on elucidating the reaction mechanism. Embedding reduced graphene oxide (rGO) to g-C3N4 significantly accelerated the photocatalysis rate of BPA by three folds under visible light irradiation at neutral pH. We showed that rGO synthesized in intimate contact with g-C3N4 increased the surface areas and electrical conductivity of the g-C3N4 composites and promoted the electron-hole pair separation. The BPA photodegradation mechanism involved selective oxidants as superoxide (O2•-) and singlet oxygen (1O2) that were formed through one-electron reduction of O2 and the unique oxidation of O2•- by photogenerated hole (h+), respectively. The synthesized photocatalyst exhibited superior visible light photoreactivity to that of N-doped P25 TiO2, good photo-stability and reuse potential, and was operative in complex wastewater. rGO embedded g-C3N4 achieved good photomineralization of BPA at 80% in 4 h compared to 40% of bare g-C3N4. This study sheds light on the photocatalysis mechanism of BPA with a metal-free, promising rGO/g-C3N4 photocatalyst.


Asunto(s)
Grafito , Compuestos de Bencidrilo , Catálisis , Compuestos de Nitrógeno , Fenoles , Oxígeno Singlete , Superóxidos
19.
Sci Total Environ ; 792: 148329, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34465047

RESUMEN

The emission factor (EF), the weight of potentially toxic elements (PTEs) per unit energy or weight of sinter produced were evaluated for coal-fired boilers and sintering furnaces integrated in a steel plant. From three coal-fired boilers, 15 samples were taken while 22 samples were taken from four sintering furnaces. Investigations were performed on the EF of lead, cadmium, mercury, arsenic and chromium (VI). The coefficient of variance for the first 3 samples from each PTE was used to decide whether 2 more samples were necessary for the investigation. Three samples were sufficient for Cr (VI), however, 5 samples were required for Pb, Cd, Hg, and As, since the variances in concentrations of the first three samples exceeded 20%. The ranges for the ratio of the laboratory-based EF to the default EF applied by the Environment Protection Administration (EPA Taiwan) for Pb, Cd, Hg, and As for the coal-fired boiler were 0.08-0.013, 0.014-0.017, 0.019-0.033, 0.047-0.066 and for the sintering furnaces were 0.059-0.232, 0.05-0.151, 0.05-0.364, and 0.067-0.824. The ratio for Cr (VI)- was constant at 0.005 for all the coal fired boilers while it ranged from 0.057-0.709 for the sintering furnaces. Whilst source identification, enrichment factors, and spatial distributions for PTEs are often studied, laboratory-based investigations on the EFs for PTEs from industrial plants are rarely performed. This study filled the information gap and compared the obtained EFs with the EPA default values. To avoid overcharging industrial plants equipped with the best available technology for emission control, the EPA should apply field investigations and laboratory-based EFs instead of the default EPA EFs to calculate air pollution fees. Insights from this investigation can be applied to promote the adoption of appropriate air pollution control devices to cut down the emission of PTEs.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Mercurio , Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , Centrales Eléctricas , Acero
20.
Environ Sci Technol ; 44(21): 8121-7, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20939530

RESUMEN

To construct accurate risk assessment models for engineered nanomaterials, there is urgent need for information on the reactivity (or conversely, persistence) and transformation pathways of these materials in the natural environment. As an important step toward addressing this issue, we have characterized the products formed when aqueous C(60) clusters (nC(60)) are exposed to natural sunlight and also have assessed the wavelengths primarily responsible for phototransformation. Long-wavelength light (λ ≥ 400 nm) isolated from sunlight, was shown to be important in both the phototransformation of nC(60) and in the production of (1)O(2). The significance of visible light in mediating the phototransformation of nC(60) was supported by additional experiments with monochromatic light in which the apparent quantum yield at 436 nm (Φ(436 nm) = (2.08 ± 0.08) × 10(-5)) was comparable to that at 366 nm (Φ(366 nm) = (2.02 ± 0.07) × 10(-5)). LDI-TOF mass spectrometry indicated that most of the photoproducts formed after 947 h of irradiation in natural sunlight retain a 60 atom carbon structure. A combination of (13)C NMR analysis of (13)C-enriched nC(60), X-ray photoelectron spectroscopy and FTIR indicated that photoproducts have olefinic carbon atoms as well as a variety of oxygen-containing functional groups, including vinyl ether and carbonyl or carboxyl groups, whose presence destroys the native π-electron system of C(60). Thus, the photoreactivity of nC(60) in sunlight leads to the formation of water-soluble C(60) derivatives.


Asunto(s)
Contaminantes Ambientales/química , Fulerenos/química , Procesos Fotoquímicos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Oxígeno/química , Medición de Riesgo , Luz Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA