Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(10): 106403, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32216384

RESUMEN

We report a detailed study of tunneling spectra measured on 2H-Ta_{x}Nb_{1-x}Se_{2} (x=0∼0.1) single crystals using a low-temperature scanning tunneling microscope. The prominent gaplike feature, which has not been understood for a long time, was found to be accompanied by some "in-gap" fine structures. By investigating the second-derivative spectra and their temperature and magnetic field dependencies, we were able to prove that inelastic electron tunneling is the origin of these features and obtain the Eliashberg function of 2H-Ta_{x}Nb_{1-x}Se_{2} at an atomic scale, providing a potential way to study the local Eliashberg function and the phonon spectra of the related transition-metal dichalcogenides.

2.
Sci Bull (Beijing) ; 68(3): 259-265, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36681589

RESUMEN

The recent discovery of superconductivity (SC) and charge density wave (CDW) in kagome metals AV3Sb5 (A = K, Rb, Cs) provides an ideal playground for the study of emergent electronic orders. Application of moderate pressure leads to a two-dome-shaped SC phase regime in CsV3Sb5 accompanied by the destabilizing of CDW phase. Nonetheless, the nature of this pressure-tuned SC state and its interplay with the CDW are yet to be explored. Here, we perform soft point-contact spectroscopy (SPCS) measurements in CsV3Sb5 to investigate the evolution of superconducting order parameter with pressure. Surprisingly, we find that the superconducting gap is significantly enhanced between the two SC domes, at which the zero-resistance temperature is suppressed and the transition is remarkably broadened. Moreover, the temperature-dependence of the SC gap in this pressure range severely deviates from the conventional Bardeen-Cooper-Schrieffer (BCS) behavior, evidencing for strong Cooper pair phase fluctuations. These findings reveal the complex intertwining of the CDW with SC in the compressed CsV3Sb5, suggesting striking parallel to the cuprate superconductor La2-xBaxCuO4. Our results point to the essential role of charge degree of freedom in the development of intertwining electronic orders, and thus provide new constraints for theories.

3.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081290

RESUMEN

Vortex dynamics has attracted tremendous attention for both fundamental physics and applications of type-II superconductors. However, methods to detect local vortex motion or vortex jump with high sensitivity are still scarce. Here, we fabricated soft point contacts on the clean layered superconductor 2H-NbSe2, which are demonstrated to contain multiple parallel micro-constrictions by scanning electronic microscopy. Andreev reflection spectroscopy was then studied in detail for the contacts. Differential conductance taken at fixed bias voltages was discovered to vary spontaneously over time in various magnetic fields perpendicular to the sample surface. The conductance variations become invisible when the field is zero or large enough, or parallel to the sample surface, which can be identified as the immediate consequence of vortex motion across a finite number of micro-constrictions. These results demonstrate point contact Andreev reflection spectroscopy to be a new potential way with a high time resolution to study the vortex dynamics in type-II superconductors.

4.
Phys Rev Lett ; 108(22): 227002, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23003642

RESUMEN

We used high-resolution scanning tunneling spectroscopy to study the hole-doped iron pnictide superconductor Ba(0.6)K(0.4)Fe(2)As(2) (T(c)=38 K). Features of a bosonic excitation (mode) are observed in the measured quasiparticle density of states. The bosonic features are intimately associated with the superconducting order parameter and have a mode energy of ~14 meV, similar to the spin resonance measured by inelastic neutron scattering. These results indicate a strong electron-spin excitation coupling in iron pnictide superconductors, similar to that in high-T(c) copper oxide superconductors.

5.
J Phys Condens Matter ; 34(33)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35679850

RESUMEN

Electrochemical ionic liquid gating is an effective way to intercalate ions into layered materials and modulate the properties. Here we report an enhanced superconductivity in a topological superconductor candidate PdTe2through electrochemical gating procedure. The superconducting transition temperature was increased to approximately 3.2 K by ionic gating induced protonation at room temperature. Moreover, a further enhanced superconductivity of both superconducting transition temperature and superconducting volume fraction was observed after the gated samples were placed in a glove box for 2 months. This may be caused by the diffusion of protons in the gated single crystals, which is rarely reported in electrochemical ionic liquid gating experiments. Our results further the superconducting study of PdTe2and may reveal a common phenomenon in the electrochemical gating procedure.

6.
Adv Mater ; 34(39): e2203283, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35972840

RESUMEN

Room-temperature-operating highly sensitive mid-wavelength infrared (MWIR) photodetectors are utilized in a large number of important applications, including night vision, communications, and optical radar. Many previous studies have demonstrated uncooled MWIR photodetectors using 2D narrow-bandgap semiconductors. To date, most of these works have utilized atomically thin flakes, simple van der Waals (vdW) heterostructures, or atomically thin p-n junctions as absorbers, which have difficulty in meeting the requirements for state-of-the-art MWIR photodetectors with a blackbody response. Here, a fully depleted self-aligned MoS2 -BP-MoS2 vdW heterostructure sandwiched between two electrodes is reported. This new type of photodetector exhibits competitive performance, including a high blackbody peak photoresponsivity up to 0.77 A W-1 and low noise-equivalent power of 2.0 × 10-14  W Hz-1/2 , in the MWIR region. A peak specific detectivity of 8.61 × 1010  cm Hz1/2  W-1 under blackbody radiation is achieved at room temperature in the MWIR region. Importantly, the effective detection range of the device is twice that of state-of-the-art MWIR photodetectors. Furthermore, the device presents an ultrafast response of ≈4 µs both in the visible and short-wavelength infrared bands. These results provide an ideal platform for realizing broadband and highly sensitive room-temperature MWIR photodetectors.

7.
Adv Mater ; 32(16): e1907970, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32108388

RESUMEN

Interfaces between materials with different electronic ground states have become powerful platforms for creating and controlling novel quantum states of matter, in which inversion symmetry breaking and other effects at the interface may introduce additional electronic states. Among the emergent phenomena, superconductivity is of particular interest. Here, by depositing metal films on a newly identified topological semimetal tungsten carbide (WC) single crystal, interfacial superconductivity is obtained, evidenced from soft point-contact spectroscopy. This very robust phenomenon is demonstrated for a wide range of metal/WC interfaces, involving both nonmagnetic and ferromagnetic films, and the superconducting transition temperatures are surprisingly insensitive to the magnetism of thin films. This method offers an opportunity to explore the long-sought topological superconductivity and has potential applications in topological-state-based spin devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA