Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biol Reprod ; 110(3): 450-464, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38035769

RESUMEN

Adenosylhomocysteinase (AHCY), a key enzyme in the methionine cycle, is essential for the development of embryos and the maintenance of mouse embryonic stem cells (mESCs). However, the precise underlying mechanism of Ahcy in regulating pluripotency remains unclear. As the only enzyme that can hydrolyze S-adenosylhomocysteine in mammals, AHCY plays a critical role in the metabolic homeostasis, epigenetic remodeling, and transcriptional regulation. Here, we identified Ahcy as a direct target of OCT4 and unveiled that AHCY regulates the self-renewal and differentiation potency of mESCs through multiple mechanisms. Our study demonstrated that AHCY is required for the metabolic homeostasis of mESCs. We revealed the dual role of Ahcy in both transcriptional activation and inhibition, which is accomplished via the maintenance of H3K4me3 and H3K27me3, respectively. We found that Ahcy is required for H3K4me3-dependent transcriptional activation in mESCs. We also demonstrated that AHCY interacts with polycomb repressive complex 2 (PRC2), thereby maintaining the pluripotency of mESCs by sustaining the H3K27me3-regulated transcriptional repression of related genes. These results reveal a previously unrecognized OCT4-AHCY-PRC2 axis in the regulation of mESCs' pluripotency and provide insights into the interplay between transcriptional factors, cellular metabolism, chromatin dynamics and pluripotency regulation.


Asunto(s)
Histonas , Células Madre Embrionarias de Ratones , Animales , Ratones , Adenosilhomocisteinasa/genética , Adenosilhomocisteinasa/metabolismo , Diferenciación Celular , Histonas/metabolismo , Mamíferos/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 2/genética
2.
Theor Appl Genet ; 128(11): 2301-16, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26220223

RESUMEN

KEY MESSAGE: Wheat lines with shortened Th. ponticum chromatin carrying Fhb7 and molecular markers linked to Fhb7 will accelerate the transfer of Fhb7 to breeding lines and provide an important resource for future map-based cloning of this gene. Fusarium head blight is a major wheat disease globally. A major FHB resistance gene, designated as Fhb7, derived from Thinopyrum ponticum, was earlier transferred to common wheat, but was not used in wheat breeding due to linkage drag. The aims of this study were to (1) saturate this FHB resistance gene region; (2) develop and characterize secondary translocation lines with shortened Thinopyrum segments carrying Fhb7 using ph1b; (3) pyramid Fhb7 and Fhb1 by marker-assisted selection. Fhb7 was mapped in a 1.7 cM interval that was flanked by molecular markers XsdauK66 and Xcfa2240 with SSR, diversity arrays technology, EST-derived and conserved markers. KS24-2 carrying Fhb7 was analyzed with molecular markers and genomic in situ hybridization, confirming it was a 7DS.7el2L Robertsonian translocation. To reduce the Thinopyrum chromatin segments carrying Fhb7, a BC1F2 population (Chinese Spring ph1bph1b*2/KS24-2) was developed and genotyped with the markers linked to Fhb7. Two new translocation lines (SDAU1881 and SDAU1886) carrying Fhb7 on shortened alien segments (approximately 16.1 and 17.3% of the translocation chromosome, respectively) were developed. Furthermore, four wheat lines (SDAU1902, SDAU1903, SDAU1904, and SDAU1906) with the pyramided markers flanking Fhb1 and Fhb7 were developed and the FHB responses indicated lines with mean NDS ranging from 1.3 to 1.6 had successfully combined Fhb7 and Fhb1. Three new molecular markers associated with Fhb7 were identified and validated in 35 common wheat varieties. The translocation lines with shortened alien segments carrying Fhb7 (and Fhb1) and the markers closely linked to Fhb7 will be useful for improving wheat scab resistance.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Poaceae/genética , Triticum/genética , Cromosomas de las Plantas , ADN de Plantas/genética , Fusarium/patogenicidad , Genes de Plantas , Ligamiento Genético , Marcadores Genéticos , Genotipo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/genética , Translocación Genética , Triticum/microbiología
3.
Plant Cell Rep ; 33(10): 1629-40, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24948530

RESUMEN

KEY MESSAGE: High and low resveratrol (Res) contents in two cultivars are correlated with the expression abundance of Myb14 , which could directly activate transcriptional expression of stilbene synthase gene ( STS ). Resveratrol (3,5,4'-trihydroxystilbene) is one of the natural polyphenols produced by secondary metabolism in some plants. Stilbene synthase (STS) is the key enzyme for the final step of precursor formation of resveratrol (Res) in grapevines. In this study, we found that Res contents in ripe berry skin were completely different in two grape cultivars, namely, 'Z168' (Vitis monticola × Vitis riparia) with high-Res and 'Jingzaojing' (Vitis vinifera) with low-Res. Moreover, the level of expression of STS gene was higher in the ripe berry skin of 'Z168' than in that of 'Jingzaojing'. To further investigate the underlying mechanisms, we conducted a co-expression analysis through transcriptomic data. We confirmed that Myb14, an R2R3 Myb transcription factor, is the direct regulator of STS by binding to Box-L5 motif. Moreover, the expression pattern of Myb14 is associated with the variation of Res content. To test this prediction, we conducted a number of experiments in vivo and in vitro. The expression patterns of Myb14 and STS in grapevine leaves were identical under a series of stimulus. Myb14 showed higher expression in the ripe berry skin of 'Z168' than in that of 'Jingzaojing'. Yeast one-hybrid assay indicated that grapevine Myb14 could interact with the promoter of STS in vitro, and the transient overexpression of Myb14 promoted the expression of STS. Furthermore, co-expressing 35S::Myb14 in transgenic Arabidopsis could activate GUS expression promoted by STS promoter. Thus, Myb14 is the direct activator of STS, and its expression pattern is associated with Res content variation in grapes.


Asunto(s)
Aciltransferasas/metabolismo , Frutas/enzimología , Frutas/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Estilbenos/metabolismo , Vitis/metabolismo , Aciltransferasas/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Proteínas de Plantas/genética , Resveratrol , Vitis/enzimología , Vitis/genética
4.
Sci Rep ; 13(1): 10768, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402847

RESUMEN

Tree-seed algorithm is a stochastic search algorithm with superior performance suitable for solving continuous optimization problems. However, it is also prone to fall into local optimum and slow in convergence. Therefore, this paper proposes an improved tree-seed algorithm based on pattern search, dimension permutation, and elimination update mechanism (PDSTSA). Firstly, a global optimization strategy based on pattern search is used to promote detection ability. Secondly, in order to maintain the diversity of the population, a random mutation strategy of individual dimension replacement is introduced. Finally, the elimination and update mechanism based on inferior trees is introduced in the middle and later stages of the iteration. Subsequently, PDSTSA is compared with seven representative algorithms on the IEEE CEC2015 test function for simulation experiments and convergence curve analysis. The experimental results indicate that PDSTSA has better optimization accuracy and convergence speed than other comparison algorithms. Then, the Wilcoxon rank sum test demonstrates that there is a significant difference between the optimization results of PDSTSA and each comparison algorithm. In addition, the results of eight algorithms for solving engineering constrained optimization problems further prove the feasibility, practicability, and superiority of PDSTSA.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36554730

RESUMEN

Soil pH is an essential indicator for assessing soil quality and soil health. In this study, based on the Chinese farmland soil survey dataset and meteorological dataset, the spatial distribution characteristics of soil pH in coastal eastern China were analyzed using kriging interpolation. The relationships between hydrothermal conditions and soil pH were explored using regression analysis with mean annual precipitation (MAP), mean annual temperature (MAT), the ratio of precipitation to temperature (P/T), and the product of precipitation and temperature (P*T) as the main explanatory variables. Based on this, a model that can rapidly estimate soil pH was established. The results showed that: (a) The spatial heterogeneity of soil pH in coastal eastern China was obvious, with the values gradually decreasing from north to south, ranging from 4.5 to 8.5; (b) soil pH was significantly correlated with all explanatory variables at the 0.01 level. In general, MAP was the main factor affecting soil pH (r = -0.7244), followed by P/T (r = -0.6007). In the regions with MAP < 800 mm, soil pH was negatively correlated with MAP (r = -0.4631) and P/T (r = -0.7041), respectively, and positively correlated with MAT (r = 0.6093) and P*T (r = 0.3951), respectively. In the regions with MAP > 800 mm, soil pH was negatively correlated with MAP (r = -0.6651), MAT (r = -0.5047), P/T (r = -0.3268), and P*T (r = -0.5808), respectively. (c) The estimation model of soil pH was: y = 23.4572 - 6.3930 × lgMAP + 0.1312 × MAT. It has been verified to have a high accuracy (r = 0.7743, p < 0.01). The mean error, the mean absolute error, and the root mean square error were 0.0450, 0.5300, and 0.7193, respectively. It provides a new path for rapid estimation of the regional soil pH, which is important for improving the management of agricultural production and slowing down soil degradation.


Asunto(s)
Agricultura , Suelo , China , Temperatura , Análisis Espacial , Concentración de Iones de Hidrógeno
6.
Cell Stem Cell ; 25(6): 737-753.e4, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31708402

RESUMEN

Oct4 is widely considered the most important among the four Yamanaka reprogramming factors. Here, we show that the combination of Sox2, Klf4, and cMyc (SKM) suffices for reprogramming mouse somatic cells to induced pluripotent stem cells (iPSCs). Simultaneous induction of Sox2 and cMyc in fibroblasts triggers immediate retroviral silencing, which explains the discrepancy with previous studies that attempted but failed to generate iPSCs without Oct4 using retroviral vectors. SKM induction could partially activate the pluripotency network, even in Oct4-knockout fibroblasts. Importantly, reprogramming in the absence of exogenous Oct4 results in greatly improved developmental potential of iPSCs, determined by their ability to give rise to all-iPSC mice in the tetraploid complementation assay. Our data suggest that overexpression of Oct4 during reprogramming leads to off-target gene activation during reprogramming and epigenetic aberrations in resulting iPSCs and thereby bear major implications for further development and application of iPSC technology.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Células HEK293 , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Noqueados , Factor 3 de Transcripción de Unión a Octámeros/genética , Reacción en Cadena de la Polimerasa , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Análisis de Secuencia de ARN , Tetraploidía , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Huan Jing Ke Xue ; 36(8): 3011-7, 2015 Aug.
Artículo en Zh | MEDLINE | ID: mdl-26592034

RESUMEN

The effects of rice cultivation to the black soil microbial communities, which the experimentation area of Shuangyang District Agricultural Technology Extension Station in Changchun city, Jilin Province of northeastern China, were studied by using the method of phospholipid fatty acids and Biolog ECO-microplate culture. Results showed that the content of organic matter in space was the highest, fewer in the field, and the minimum in the rhizosphere, that change trend of total nitrogen and organic matter was similar in soil. The quantity of organic matter in summer sample was the highest. The microbial fun6tional diversity was significantly higher in summer than that in spring and autumn and showed no significant difference between spring and autumn. For summer and the lowest in winter, Shannon-Wiener index and Pielou index of the space were higher than the field and the rhizosphere. The time of microbial growth into the stable period and peak value of the average well color development were different in all samples, that the time was 216 h, 192 h, 216 h, 120 h, which varied from 0.52-0.84, 0.82-1.28, 0.40-0.84, 0.05-0.48, respectively. The result showed that the time of microbial growth into the stable period was similar in spring and autumn, the highest was in summer and the lowest was in winter. Above all, these results would provide more important characteristics of microbial features in the degradation and restoration process of the quality of the black soil habitat scientifically.


Asunto(s)
Biomasa , Carbono/análisis , Oryza/crecimiento & desarrollo , Microbiología del Suelo , Suelo/química , Agricultura , China , Ácidos Grasos/análisis , Nitrógeno/análisis , Fosfolípidos/análisis , Rizosfera , Estaciones del Año
8.
J Environ Sci (China) ; 16(3): 458-61, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15272723

RESUMEN

The effect of inoculation with arbuscular mycorrhizal (AM) fungi (Acaulospora lavis) on the degradation of di(2-ethylhexyl) phthalate (DEHP) in soil was studies. Cowpea plants (Pigna sinensis) were used as host plants and grown in a specially designed rhizobox. The experimental results indicated that, both in sterile and non-sterile soil, mycorrhizal colonization rates were much higher in the mycorrhizal plants than in the non-mycorrhizal plants. Addition of 4 mg/kg DEHP slightly affected mycorrhizal colonization, but the addition of 100 mg/kg DEHP significantly decreased mycorrhizal colonization. DEHP degradation in the mycorrhizosphere (Ms) and hyphosphere (Hs), especially in the Hs, increased after inoculation with Acaulospora lavis. It is concluded that mycorrhizal hyphae play an important role in the plant uptake, degradation and translocation of DEHP. The mechanism might be attributed to increased numbers of bacteria and actinomycetes and activity of dehydrogenase, urease and acid phosphatase in the Ms and Hs by mycorrhizal fungi.


Asunto(s)
Dietilhexil Ftalato/metabolismo , Micorrizas/fisiología , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Fabaceae/crecimiento & desarrollo , Fabaceae/microbiología
9.
Huan Jing Ke Xue ; 35(7): 2834-42, 2014 Jul.
Artículo en Zh | MEDLINE | ID: mdl-25244876

RESUMEN

Partial nitrification and anaerobic ammonium oxidation is a very significant biological nitrogen removal technology for saving energy and carbon sources. The development of this technology and the community ecology of ammonia-oxidizing bacterium (AOB) and anaerobic ammonium- oxidizing bacteria (ANAOB) using molecular biological methods have attracted growing attention. The paper reviewed the technological mechanism and the effects of key factors such as temperature, pH, dissolve oxygen and free ammonia on the distribution of AOB and ANAOB. It was also introduced that the populations of AOB and ANAOB species and their abundance in various environments. At the end, some suggestions were provided for the development of this technology in the future.


Asunto(s)
Bacterias Anaerobias , Reactores Biológicos/microbiología , Nitrificación , Nitrógeno/química , Compuestos de Amonio/química , Biodegradación Ambiental , Oxidación-Reducción , Oxígeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA