Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35189638

RESUMEN

Identifying genome-wide binding events between circular RNAs (circRNAs) and RNA-binding proteins (RBPs) can greatly facilitate our understanding of functional mechanisms within circRNAs. Thanks to the development of cross-linked immunoprecipitation sequencing technology, large amounts of genome-wide circRNA binding event data have accumulated, providing opportunities for designing high-performance computational models to discriminate RBP interaction sites and thus to interpret the biological significance of circRNAs. Unfortunately, there are still no computational models sufficiently flexible to accommodate circRNAs from different data scales and with various degrees of feature representation. Here, we present HCRNet, a novel end-to-end framework for identification of circRNA-RBP binding events. To capture the hierarchical relationships, the multi-source biological information is fused to represent circRNAs, including various natural language sequence features. Furthermore, a deep temporal convolutional network incorporating global expectation pooling was developed to exploit the latent nucleotide dependencies in an exhaustive manner. We benchmarked HCRNet on 37 circRNA datasets and 31 linear RNA datasets to demonstrate the effectiveness of our proposed method. To evaluate further the model's robustness, we performed HCRNet on a full-length dataset containing 740 circRNAs. Results indicate that HCRNet generally outperforms existing methods. In addition, motif analyses were conducted to exhibit the interpretability of HCRNet on circRNAs. All supporting source code and data can be downloaded from https://github.com/yangyn533/HCRNet and https://doi.org/10.6084/m9.figshare.16943722.v1. And the web server of HCRNet is publicly accessible at http://39.104.118.143:5001/.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , ARN Circular , Sitios de Unión , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33126261

RESUMEN

Circular RNAs (circRNAs) are widely expressed in eukaryotes. The genome-wide interactions between circRNAs and RNA-binding proteins (RBPs) can be probed from cross-linking immunoprecipitation with sequencing data. Therefore, computational methods have been developed for identifying RBP binding sites on circRNAs. Unfortunately, those computational methods often suffer from the low discriminative power of feature representations, numerical instability and poor scalability. To address those limitations, we propose a novel computational method called iCircRBP-DHN using deep hierarchical network for discriminating circRNA-RBP binding sites. The network architecture can be regarded as a deep multi-scale residual network followed by bidirectional gated recurrent units (BiGRUs) with the self-attention mechanism, which can simultaneously extract local and global contextual information. Meanwhile, we propose novel encoding schemes by integrating CircRNA2Vec and the K-tuple nucleotide frequency pattern to represent different degrees of nucleotide dependencies. To validate the effectiveness of our proposed iCircRBP-DHN, we compared its performance with other computational methods on 37 circRNAs datasets and 31 linear RNAs datasets, respectively. The experimental results reveal that iCircRBP-DHN can achieve superior performance over those state-of-the-art algorithms. Moreover, we perform motif analysis on circRNAs bound by those different RBPs, demonstrating that our proposed CircRNA2Vec encoding scheme can be promising. The iCircRBP-DHN method is made available at https://github.com/houzl3416/iCircRBP-DHN.


Asunto(s)
Algoritmos , Bases de Datos de Ácidos Nucleicos , ARN Circular , Proteínas de Unión al ARN , Análisis de Secuencia de ARN , ARN Circular/genética , ARN Circular/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34337657

RESUMEN

Mitochondria are membrane-bound organelles containing over 1000 different proteins involved in mitochondrial function, gene expression and metabolic processes. Accurate localization of those proteins in the mitochondrial compartments is critical to their operation. A few computational methods have been developed for predicting submitochondrial localization from the protein sequences. Unfortunately, most of these computational methods focus on employing biological features or evolutionary information to extract sequence features, which greatly limits the performance of subsequent identification. Moreover, the efficiency of most computational models is still under explored, especially the deep learning feature, which is promising but requires improvement. To address these limitations, we propose a novel computational method called iDeepSubMito to predict the location of mitochondrial proteins to the submitochondrial compartments. First, we adopted a coding scheme using the ProteinELMo to model the probability distribution over the protein sequences and then represent the protein sequences as continuous vectors. Then, we proposed and implemented convolutional neural network architecture based on the bidirectional LSTM with self-attention mechanism, to effectively explore the contextual information and protein sequence semantic features. To demonstrate the effectiveness of our proposed iDeepSubMito, we performed cross-validation on two datasets containing 424 proteins and 570 proteins respectively, and consisting of four different mitochondrial compartments (matrix, inner membrane, outer membrane and intermembrane regions). Experimental results revealed that our method outperformed other computational methods. In addition, we tested iDeepSubMito on the M187, M983 and MitoCarta3.0 to further verify the efficiency of our method. Finally, the motif analysis and the interpretability analysis were conducted to reveal novel insights into subcellular biological functions of mitochondrial proteins. iDeepSubMito source code is available on GitHub at https://github.com/houzl3416/iDeepSubMito.


Asunto(s)
Aprendizaje Profundo , Proteínas Mitocondriales/metabolismo , Partículas Submitocóndricas/metabolismo , Algoritmos , Conjuntos de Datos como Asunto , Redes Neurales de la Computación , Transporte de Proteínas
4.
PLoS Comput Biol ; 18(12): e1010779, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36520922

RESUMEN

Enhancers are short non-coding DNA sequences outside of the target promoter regions that can be bound by specific proteins to increase a gene's transcriptional activity, which has a crucial role in the spatiotemporal and quantitative regulation of gene expression. However, enhancers do not have a specific sequence motifs or structures, and their scattered distribution in the genome makes the identification of enhancers from human cell lines particularly challenging. Here we present a novel, stacked multivariate fusion framework called SMFM, which enables a comprehensive identification and analysis of enhancers from regulatory DNA sequences as well as their interpretation. Specifically, to characterize the hierarchical relationships of enhancer sequences, multi-source biological information and dynamic semantic information are fused to represent regulatory DNA enhancer sequences. Then, we implement a deep learning-based sequence network to learn the feature representation of the enhancer sequences comprehensively and to extract the implicit relationships in the dynamic semantic information. Ultimately, an ensemble machine learning classifier is trained based on the refined multi-source features and dynamic implicit relations obtained from the deep learning-based sequence network. Benchmarking experiments demonstrated that SMFM significantly outperforms other existing methods using several evaluation metrics. In addition, an independent test set was used to validate the generalization performance of SMFM by comparing it to other state-of-the-art enhancer identification methods. Moreover, we performed motif analysis based on the contribution scores of different bases of enhancer sequences to the final identification results. Besides, we conducted interpretability analysis of the identified enhancer sequences based on attention weights of EnhancerBERT, a fine-tuned BERT model that provides new insights into exploring the gene semantic information likely to underlie the discovered enhancers in an interpretable manner. Finally, in a human placenta study with 4,562 active distal gene regulatory enhancers, SMFM successfully exposed tissue-related placental development and the differential mechanism, demonstrating the generalizability and stability of our proposed framework.


Asunto(s)
Elementos de Facilitación Genéticos , Placenta , Femenino , Humanos , Embarazo , Elementos de Facilitación Genéticos/genética , ADN/genética , Regulación de la Expresión Génica , Línea Celular
5.
J Environ Manage ; 322: 116140, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36070652

RESUMEN

Extensive presence of aromatic organic compounds (AOCs) is a major course for the non-biodegradability of coking wastewater (COW). In-depth understanding of bio-degradation of AOCs is crucial for optimizing the design and operation of COW biological treatment systems in practical applications. Herein, the behavior and fate of AOCs were explored in a lab-scale step-feed three-stage integrated A/O biofilter (SFTIAOB) treating synthetic COW. Long-term operation demonstrated that COD, phenol, indole, quinoline and pyridine could be simultaneously removed. Phenol and indole were chiefly removed by anoxic zones, while quinoline and pyridine removal occurred in both anoxic and aerobic zones. Ultraviolet-visible spectrum observed that initial carboxylation and subsequent ring cracking and mineralization. Infrared spectroscopy also confirmed that key functional groups were cracked and produced during AOCs bio-degradation. Three-dimensional fluorescence spectrum indicated that significant transformation and elimination of tryptophan and humic acid with high molecular weight. Ring cleavage, distinct degradation and even complete mineralization of complex AOCs were further verified by gas chromatography-mass spectrometry. Moreover, functional degrading bacteria and aromatic ring-cleavage enzymes was successfully identified. Finally, AOCs biodegradation mechanisms by alternating anoxic and aerobic treatment was unraveled. This research provides thorough insights on AOCs biodegradation using a step-feed multi-stage alternating anoxic/oxic COW treatment process.


Asunto(s)
Coque , Quinolinas , Biodegradación Ambiental , Reactores Biológicos/microbiología , Coque/análisis , Sustancias Húmicas/análisis , Indoles/análisis , Compuestos Orgánicos/análisis , Fenol/análisis , Piridinas/análisis , Aguas del Alcantarillado/química , Triptófano , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
6.
Commun Biol ; 7(1): 679, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830995

RESUMEN

Proteins and nucleic-acids are essential components of living organisms that interact in critical cellular processes. Accurate prediction of nucleic acid-binding residues in proteins can contribute to a better understanding of protein function. However, the discrepancy between protein sequence information and obtained structural and functional data renders most current computational models ineffective. Therefore, it is vital to design computational models based on protein sequence information to identify nucleic acid binding sites in proteins. Here, we implement an ensemble deep learning model-based nucleic-acid-binding residues on proteins identification method, called SOFB, which characterizes protein sequences by learning the semantics of biological dynamics contexts, and then develop an ensemble deep learning-based sequence network to learn feature representation and classification by explicitly modeling dynamic semantic information. Among them, the language learning model, which is constructed from natural language to biological language, captures the underlying relationships of protein sequences, and the ensemble deep learning-based sequence network consisting of different convolutional layers together with Bi-LSTM refines various features for optimal performance. Meanwhile, to address the imbalanced issue, we adopt ensemble learning to train multiple models and then incorporate them. Our experimental results on several DNA/RNA nucleic-acid-binding residue datasets demonstrate that our proposed model outperforms other state-of-the-art methods. In addition, we conduct an interpretability analysis of the identified nucleic acid binding residue sequences based on the attention weights of the language learning model, revealing novel insights into the dynamic semantic information that supports the identified nucleic acid binding residues. SOFB is available at https://github.com/Encryptional/SOFB and https://figshare.com/articles/online_resource/SOFB_figshare_rar/25499452 .


Asunto(s)
Aprendizaje Profundo , Sitios de Unión , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química , Proteínas/química , Proteínas/metabolismo , Proteínas/genética , Unión Proteica , Biología Computacional/métodos
7.
Bioresour Technol ; 406: 130947, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897548

RESUMEN

Intermittent hydroxylamine (NH2OH) dosing strategy was applied to enhance the stability of partial nitrification and total nitrogen (N) removal efficiency (TNRE) in a continuous-flow process. The results showed 2 mg/L of NH2OH dosing (once every 6 h) could maintain stably partial nitrification with nitrite accumulation rate (NAR) of 91.6 % and TNRE of 92.6 %. The typical cycle suggested NH2OH dosing could promote simultaneous nitrification-denitrification (SND) and endogenous denitrification (END) while inhibit exogenous denitrification (EXD). Nitrification characteristics indicated the NH2OH dosing enhanced stability of partial nitrification by suppressing specific nitrite oxidation rate (SNOR), Nitrospira and nitrite oxidoreductase enzyme (Nxr). The microbial community suggested the aerobic denitrfiers, denitrifying glycogen accumulating organisms (DGAOs) and traditional denitrfiers were the potential contributor for advanced N removal. Moreover, NH2OH dosage was positively associated with NAR, SND and END. Overall, this study offers a feasible strategy to maintain sustainably partial nitrification that has great application potential.


Asunto(s)
Reactores Biológicos , Desnitrificación , Hidroxilamina , Nitrificación , Nitrógeno , Aguas Residuales , Hidroxilamina/farmacología , Aguas Residuales/química , Aerobiosis , Anaerobiosis , Purificación del Agua/métodos , Nitritos/metabolismo , Eliminación de Residuos Líquidos/métodos
8.
Bioresour Technol ; 411: 131320, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39173960

RESUMEN

This study investigated the rapid start-up of mainstream partial denitrification coupled with anammox (PD/A) and nitrogen removal performance by inoculating precultured PD/A biofilm. The results showed mainstream PD/A in the anaerobic-anoxic-aerobic (A2O) process was rapidly established within 30 days. Nitrogen removal efficiency (NRE) improved by 23.8 % contrasted to the traditional A2O process. The mass balance showed that anammox contribution to total nitrogen (TN) removal were maintained at 37.9 %∼55.7 %, and reducing hydraulic retention time (HRT) strengthened simultaneously denitrification and anammox activity. The microbial community showed that the dominant bacteria such as denitrifying bacteria (DNBs) and glycogen accumulating organisms (GAOs) both in biofilm and flocculent sludge (floc), integrating with anammox bacteria (AnAOB) in biofilm might lead to enhanced nitrogen removal. Overall, this study offered a fast start-up strategy of mainstream PD/A with enhanced nitrogen removal, which are valuable for upgradation and renovation of existed municipal wastewater treatment plants (WWTPs).


Asunto(s)
Biopelículas , Desnitrificación , Nitrógeno , Aguas del Alcantarillado , Nitrógeno/metabolismo , Aguas del Alcantarillado/microbiología , Bacterias/metabolismo , Reactores Biológicos , Purificación del Agua/métodos , Anaerobiosis/fisiología , Eliminación de Residuos Líquidos/métodos , Oxidación-Reducción
9.
Water Res ; 267: 122452, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39303577

RESUMEN

Achieving low-cost advanced nitrogen (N) removal from municipal wastewater treatment plants (WWTPs) remains a challenge. A plug-flow anaerobic/oxic/anoxic (AOA) system with a mixtures bypass (MBP) integrating partial nitrification (PN), endogenous carbon denitrification (EnD), partial denitrification (PD), and anaerobic ammonium oxidation (Anammox), was constructed to treat actual sewage with a low C/N ratio. The effluent concentrations and removal efficiency of total inorganic nitrogen (TIN) during stable operation were 2.9 ± 0.9 mg/L and 93.1 ± 2.0 %, respectively. EnD was enhanced by the MBP through the efficient utilization of polyhydroxyalkanoates generated in the anaerobic zone. PD was promoted by the addition of carries and sodium acetate to the anoxic tank and the subsequent implantation of the Anammox biofilm successfully coupled PD/A. Stable PN was obtained with a satisfactory nitrite accumulation ratio of 92.6 %, facilitated by carriers and the introduction of hydroxylamine in the oxic zone. Mass balance analysis revealed that EnD and Anammox contributed 40.8 % and 48.2 % of TIN removal, respectively. The enrichment and synergistic effects of ammonia-oxidizing bacteria, denitrifying bacteria, glycogen-accumulating organisms, and anaerobic ammonia-oxidizing bacteria formed a diverses bacterial basis for the establishment of PN, EnD, PD, and Anammox (PNEnD/A) in the AOA system. The successful integration of PNEnD/A into the AOA process provides an innovative approach for low-cost advanced N removal in WWTPs.

10.
Commun Biol ; 6(1): 73, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36653447

RESUMEN

Protein-protein interactions (PPIs) govern cellular pathways and processes, by significantly influencing the functional expression of proteins. Therefore, accurate identification of protein-protein interaction binding sites has become a key step in the functional analysis of proteins. However, since most computational methods are designed based on biological features, there are no available protein language models to directly encode amino acid sequences into distributed vector representations to model their characteristics for protein-protein binding events. Moreover, the number of experimentally detected protein interaction sites is much smaller than that of protein-protein interactions or protein sites in protein complexes, resulting in unbalanced data sets that leave room for improvement in their performance. To address these problems, we develop an ensemble deep learning model (EDLM)-based protein-protein interaction (PPI) site identification method (EDLMPPI). Evaluation results show that EDLMPPI outperforms state-of-the-art techniques including several PPI site prediction models on three widely-used benchmark datasets including Dset_448, Dset_72, and Dset_164, which demonstrated that EDLMPPI is superior to those PPI site prediction models by nearly 10% in terms of average precision. In addition, the biological and interpretable analyses provide new insights into protein binding site identification and characterization mechanisms from different perspectives. The EDLMPPI webserver is available at http://www.edlmppi.top:5002/ .


Asunto(s)
Aprendizaje Profundo , Proteoma , Unión Proteica , Algoritmos , Sitios de Unión
11.
Bioresour Technol ; 378: 128987, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37001701

RESUMEN

An anaerobic/oxic/anoxic continuous plug-flow biorereactor was established to derive stable advanced nitrogen removal of oligotrophic domestic wastewater by setting a sludge dual-reflux system and a mixed liquid cross-flow system, while extending the hydraulic retention time in anoxic section. The effluent total inorganic nitrogen was 7.9 ± 2.2 mg N/L, with removal efficiency of 84 ± 3.9%. Results of nitrogen balance calculations indicated that the contribution of simultaneous nitrification and denitrification to total inorganic nitrogen loss in oxic region was 15% during stable stage, and the total inorganic nitrogen removal by endogenous-denitrification and enhanced exogenous-denitrification in the anoxic region was 39.9%. Prolongation of hydraulic retention time in anoxic segment is the critical reason for enhancing endogenous-denitrification, and cross-flow system is an important measure to improve exogenous-denitrification. This study provides new insights into bridging the gap between energy-saving and high-level nitrogen removal from municipal wastewater with low carbon to nitrogen ratios.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Desnitrificación , Nitrógeno , Carbono , Anaerobiosis , Reactores Biológicos , Nitrificación
12.
Bioresour Technol ; 384: 129269, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37290706

RESUMEN

This study investigated the response of nitrite accumulation to elevated COD/NO3--N ratio (C/N) during partial denitrification (PD). Results indicated nitrite was gradually accumulated and remained stable (C/N = 1.5 âˆ¼ 3.0), while that rapidly declined after reaching the peak (C/N = 4.0 âˆ¼ 5.0). The polysaccharide (PS) and protein (PN) content of tightly-bound extracellular polymeric substances (TB-EPS) reached the maximum at C/N of 2.5 âˆ¼ 3.0, which might be stimulated by high level of nitrite. Illumina MiSeq sequencing showed Thauera and OLB8 were dominated denitrifying genera at C/N of 1.5 âˆ¼ 3.0, while Thauera was further enriched with fading OLB8 at C/N of 4.0 âˆ¼ 5.0. Meanwhile, the highly-enriched Thauera might enhance the activity of nitrite reductase (nirK) promoting further nitrite reduction. Redundancy analysis (RDA) showed positive correlations between nitrite production and PN content of TB-EPS, denitrifying bacteria (Thauera and OLB8) and nitrate reductases (narG/H/I) in low C/N. Finally, their synergistic effects for driving nitrite accumulation were comprehensively elucidated.


Asunto(s)
Microbiota , Nitritos , Nitritos/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Desnitrificación , Nitrógeno/metabolismo , Thauera/metabolismo
13.
Sci Total Environ ; 806(Pt 4): 151418, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34742978

RESUMEN

As a core component of the biomass, the important role of extracellular polymeric substances (EPS) on treatment performance has been recognized. However, the comprehensive understanding of its correlation with nitrogen removal remains limited in biofilm-based reactors. In this study, the relevance between EPS and advanced nitrogen removal in a novel step-feed three-stage integrated anoxic/oxic biofilter (SFTIAOB) was specifically investigated. The operation showed as high as 81% TN removal was achieved under optimal conditions. Among the whole reactor, 2nd anoxic (A2) zone was the largest contributor for nitrogen removal, followed by the 3rd anoxic (A3) and 2nd oxic (O2) zones. EPS composition analysis found that high content of polysaccharides in tightly bound-EPS (A2 and A3) and protein in loosely bound-EPS and tightly bound-EPS (O2). Fourier transform infrared spectroscopy, three-dimensional fluorescence spectrum further verified stratified EPS subfractions containing different secondary protein structures, while 3-turn helix and tryptophan-like protein was the main reason for nitrogen removal. High-throughput sequencing revealed the co-existence of nitrogen removal-associated genera accomplished nitrification/denitrification combined with aerobic denitrification and anammox. Moreover, the correlation of EPS and microbial composition with nitrogen removal was clarified by redundancy analysis (RDA). Finally, potential mechanism for nitrogen removal was illuminated. This research gives more insight into EPS characteristics in enhancing nitrogen removal during the operation and optimization of a step-feed multi-stage A/O biofilm process.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Nitrógeno , Biopelículas , Reactores Biológicos , Desnitrificación , Aguas del Alcantarillado
14.
Chemosphere ; 238: 124649, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31466005

RESUMEN

Electro-Fenton (EF) with peroxi-coagulation (PC) as an emerging electro-chemical advanced oxidation method has been extensively applied to treat refractory wastewater. However, the studies on the pretreatment of the raw coke plant wastewater by EF process were still lacking. In this study, a lab-scale EF system (Fe as anode and graphite as cathode) achieved the highest COD removal of 69.2% based on the preliminary experiments. The process parameters and corresponding COD removal performance were further optimized using response surface methodology (RSM) combined with Box-Behnken experimental design (BBD). The optimal conditions were obtained as: 3.2 mA cm-2 of current density, 2 h of the reaction time and 2.6 of the initial pH value, with the COD removal reaching 70.0%. Fourier infrared (FTIR), fluorescence excitation-emmission matrix (EEM) and gas chromatography-mass spectrometry (GC-MS) also revealed the degradation behaviors of dissolved organic matters (DOMs) by characterizing their structures and compositions before and after EF pretreatment, thus greatly improving the biodegradability of the wastewater. Moreover, the EF process for COD removal well followed third-order kinetics model. These findings give helpful guidance to design, optimize and control the EF process as a favourable pretreatment for actual refractory coking wastewater in practice.


Asunto(s)
Coque , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Purificación del Agua/métodos , Peróxido de Hidrógeno/química , Cinética , Oxidación-Reducción , Eliminación de Residuos Líquidos/normas , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA