Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Biol Chem ; 299(4): 103042, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36803964

RESUMEN

Hepatic stellate cells (HSCs) are liver-resident cells best known for their role in vitamin A storage under physiological conditions. Upon liver injury, HSCs activate into myofibroblast-like cells, a key process in the onset of liver fibrosis. Lipids play an important role during HSC activation. Here, we provide a comprehensive characterization of the lipidomes of primary rat HSCs during 17 days of activation in vitro. For lipidomic data interpretation, we expanded our previously described Lipid Ontology (LION) and associated web application (LION/Web) with the LION-PCA heatmap module, which generates heatmaps of the most typical LION-signatures in lipidomic datasets. Furthermore, we used LION to perform pathway analysis to determine the significant metabolic conversions in lipid pathways. Together, we identify two distinct stages of HSC activation. In the first stage, we observe a decrease of saturated phosphatidylcholine, sphingomyelin, and phosphatidic acid and an increase in phosphatidylserine and polyunsaturated bis(monoacylglycero)phosphate (BMP), a lipid class typically localized at endosomes and lysosomes. In the second activation stage, BMPs, hexosylceramides, and ether-linked phosphatidylcholines are elevated, resembling a lysosomal lipid storage disease profile. The presence of isomeric structures of BMP in HSCs was confirmed ex vivo in MS-imaging datasets of steatosed liver sections. Finally, treatment with pharmaceuticals targeting the lysosomal integrity led to cell death in primary HSCs but not in HeLa cells. In summary, our combined data suggest that lysosomes play a critical role during a two-stage activation process of HSCs.


Asunto(s)
Células Estrelladas Hepáticas , Lipidómica , Humanos , Ratas , Animales , Células Estrelladas Hepáticas/metabolismo , Células HeLa , Cirrosis Hepática/metabolismo , Lisosomas/metabolismo , Lípidos/fisiología
2.
Liver Int ; 42(11): 2442-2452, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35924448

RESUMEN

The tumour suppressor PTEN is a negative regulator of the PI3K/AKT signalling pathway. Liver-specific deletion of Pten in mice results in the hyper-activation PI3K/AKT signalling accompanied by enhanced genome duplication (polyploidization), marked lipid accumulation (steatosis) and formation of hepatocellular carcinomas. However, it is unknown whether polyploidization in this model has an impact on the development of steatosis and the progression towards liver cancer. Here, we used a liver-specific conditional knockout approach to delete Pten in combination with deletion of E2f7/8, known key inducers of polyploidization. As expected, Pten deletion caused severe steatosis and liver tumours accompanied by enhanced polyploidization. Additional deletion of E2f7/8 inhibited polyploidization, alleviated Pten-induced steatosis without affecting lipid species composition and accelerated liver tumour progression. Global transcriptomic analysis showed that inhibition of polyploidization in Pten-deficient livers resulted in reduced expression of genes involved in energy metabolism, including PPAR-gamma signalling. However, we find no evidence that deregulated genes in Pten-deficient livers are direct transcriptional targets of E2F7/8, supporting that reduction in steatosis and progression towards liver cancer are likely consequences of inhibiting polyploidization. Lastly, flow cytometry and image analysis on isolated primary wildtype mouse hepatocytes provided further support that polyploid cells can accumulate more lipid droplets than diploid hepatocytes. Collectively, we show that polyploidization promotes steatosis and function as an important barrier against liver tumour progression in Pten-deficient livers.


Asunto(s)
Hígado Graso , Neoplasias Hepáticas , Animales , Hígado Graso/patología , Hepatocitos/metabolismo , Lípidos , Hígado/patología , Neoplasias Hepáticas/patología , Ratones , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt
3.
J Biol Chem ; 292(30): 12436-12448, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28615446

RESUMEN

Activation of hepatic stellate cells (HSCs) is a critical step in the development of liver fibrosis. During activation, HSCs lose their lipid droplets (LDs) containing triacylglycerols (TAGs), cholesteryl esters, and retinyl esters (REs). We previously provided evidence for the presence of two distinct LD pools, a preexisting and a dynamic LD pool. Here we investigate the mechanisms of neutral lipid metabolism in the preexisting LD pool. To investigate the involvement of lysosomal degradation of neutral lipids, we studied the effect of lalistat, a specific lysosomal acid lipase (LAL/Lipa) inhibitor on LD degradation in HSCs during activation in vitro The LAL inhibitor increased the levels of TAG, cholesteryl ester, and RE in both rat and mouse HSCs. Lalistat was less potent in inhibiting the degradation of newly synthesized TAG species as compared with a more general lipase inhibitor orlistat. Lalistat also induced the presence of RE-containing LDs in an acidic compartment. However, targeted deletion of the Lipa gene in mice decreased the liver levels of RE, most likely as the result of a gradual disappearance of HSCs in livers of Lipa-/- mice. Lalistat partially inhibited the induction of activation marker α-smooth muscle actin (α-SMA) in rat and mouse HSCs. Our data suggest that LAL/Lipa is involved in the degradation of a specific preexisting pool of LDs and that inhibition of this pathway attenuates HSC activation.


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Gotas Lipídicas/metabolismo , Lisosomas/metabolismo , Esterol Esterasa/metabolismo , Animales , Inhibidores Enzimáticos/farmacología , Femenino , Células Estrelladas Hepáticas/efectos de los fármacos , Gotas Lipídicas/efectos de los fármacos , Lisosomas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Wistar , Esterol Esterasa/antagonistas & inhibidores , Esterol Esterasa/deficiencia , Relación Estructura-Actividad
4.
Gastroenterology ; 152(6): 1462-1476.e10, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28130067

RESUMEN

BACKGROUND & AIMS: The nuclear receptor subfamily 1 group H member 4 (NR1H4 or farnesoid X receptor [FXR]) regulates bile acid synthesis, transport, and catabolism. FXR also regulates postprandial lipid and glucose metabolism. We performed quantitative proteomic analyses of liver tissues from mice to evaluate these functions and investigate whether FXR regulates amino acid metabolism. METHODS: To study the role of FXR in mouse liver, we used mice with a disruption of Nr1h4 (FXR-knockout mice) and compared them with floxed control mice. Mice were gavaged with the FXR agonist obeticholic acid or vehicle for 11 days. Proteome analyses, as well as targeted metabolomics and chromatin immunoprecipitation, were performed on the livers of these mice. Primary rat hepatocytes were used to validate the role of FXR in amino acid catabolism by gene expression and metabolomics studies. Finally, control mice and mice with liver-specific disruption of Nr1h4 (liver FXR-knockout mice) were re-fed with a high-protein diet after 6 hours fasting and gavaged a 15NH4Cl tracer. Gene expression and the metabolome were studied in the livers and plasma from these mice. RESULTS: In livers of control mice and primary rat hepatocytes, activation of FXR with obeticholic acid increased expression of proteins that regulate amino acid degradation, ureagenesis, and glutamine synthesis. We found FXR to bind to regulatory sites of genes encoding these proteins in control livers. Liver tissues from FXR-knockout mice had reduced expression of urea cycle proteins, and accumulated precursors of ureagenesis, compared with control mice. In liver FXR-knockout mice on a high-protein diet, the plasma concentration of newly formed urea was significantly decreased compared with controls. In addition, liver FXR-knockout mice had reduced hepatic expression of enzymes that regulate ammonium detoxification compared with controls. In contrast, obeticholic acid increased expression of genes encoding enzymes involved in ureagenesis compared with vehicle in C57Bl/6 mice. CONCLUSIONS: In livers of mice, FXR regulates amino acid catabolism and detoxification of ammonium via ureagenesis and glutamine synthesis. Failure of the urea cycle and hyperammonemia are common in patients with acute and chronic liver diseases; compounds that activate FXR might promote ammonium clearance in these patients.


Asunto(s)
Amoníaco/metabolismo , Glutamina/biosíntesis , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Urea/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacología , Proteínas en la Dieta/administración & dosificación , Expresión Génica , Hepatocitos , Hígado/enzimología , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteoma , Ratas , Ratas Wistar , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(2): 176-187, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27815220

RESUMEN

Hepatic stellate cells (HSCs) play an important role in liver physiology and under healthy conditions they have a quiescent and lipid-storing phenotype. Upon liver injury, HSCs are activated and rapidly lose their retinyl ester-containing lipid droplets. To investigate the role of lecithin:retinol acyltransferase (LRAT) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) in retinyl ester synthesis and lipid droplet dynamics, we modified LC-MS/MS procedures by including multiple reaction monitoring allowing unambiguous identification and quantification of all major retinyl ester species. Quiescent primary HSCs contain predominantly retinyl palmitate. Exogenous fatty acids are a major determinant in the retinyl ester species synthesized by activated HSCs and LX-2 cells, indicating that HSCs shift their retinyl ester synthesizing capacity from LRAT to DGAT1 during activation. Quiescent LRAT-/- HSCs retain the capacity to synthesize retinyl esters and to store neutral lipids in lipid droplets ex vivo. The median lipid droplet size in LRAT-/- HSCs (1080nm) is significantly smaller than in wild type HSCs (1618nm). This is a consequence of an altered lipid droplet size distribution with 50.5±9.0% small (≤700nm) lipid droplets in LRAT-/- HSCs and 25.6±1.4% large (1400-2100nm) lipid droplets in wild type HSC cells. Upon prolonged (24h) incubation, the amounts of small (≤700nm) lipid droplets strongly increased both in wild type and in LRAT-/- HSCs, indicating a dynamic behavior in both cell types. The absence of retinyl esters and reduced number of lipid droplets in LRAT-deficient HSCs in vivo will be discussed.


Asunto(s)
Aciltransferasas/metabolismo , Ésteres/metabolismo , Células Estrelladas Hepáticas/metabolismo , Gotas Lipídicas/metabolismo , Lípidos/fisiología , Animales , Línea Celular , Diacilglicerol O-Acetiltransferasa/metabolismo , Humanos , Hepatopatías/metabolismo , Ratones , Espectrometría de Masas en Tándem/métodos
6.
J Lipid Res ; 57(7): 1162-74, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27179362

RESUMEN

Hepatic stellate cell (HSC) activation is a critical step in the development of chronic liver disease. During activation, HSCs lose their lipid droplets (LDs) containing triacylglycerol (TAG), cholesteryl esters (CEs), and retinyl esters (REs). Here we aimed to investigate which enzymes are involved in LD turnover in HSCs during activation in vitro. Targeted deletion of the Atgl gene in mice HSCs had little effect on the decrease of the overall TAG, CE, and RE levels during activation. However, ATGL-deficient HSCs specifically accumulated TAG species enriched in PUFAs and degraded new TAG species more slowly. TAG synthesis and levels of PUFA-TAGs were lowered by the diacylglycerol acyltransferase (DGAT)1 inhibitor, T863. The lipase inhibitor, Atglistatin, increased the levels of TAG in both WT and ATGL-deficient mouse HSCs. Both Atglistatin and T863 inhibited the induction of activation marker, α-smooth muscle actin, in rat HSCs, but not in mouse HSCs. Compared with mouse HSCs, rat HSCs have a higher turnover of new TAGs, and Atglistatin and the DGAT1 inhibitor, T863, were more effective. Our data suggest that ATGL preferentially degrades newly synthesized TAGs, synthesized by DGAT1, and is less involved in the breakdown of preexisting TAGs and REs in HSCs. Furthermore a large change in TAG levels has modest effect on rat HSC activation.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/genética , Células Estrelladas Hepáticas/metabolismo , Lipasa/genética , Triglicéridos/biosíntesis , Animales , Ésteres del Colesterol/genética , Ésteres del Colesterol/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Ácidos Grasos Insaturados/biosíntesis , Células Estrelladas Hepáticas/patología , Gotas Lipídicas/metabolismo , Lipogénesis/genética , Lipólisis/genética , Ratones , Ratones Noqueados , Compuestos de Fenilurea/administración & dosificación , Ratas , Triglicéridos/genética
7.
Biochim Biophys Acta ; 1851(2): 220-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25500141

RESUMEN

Hepatic stellate cell (HSC) activation is a critical step in the development of chronic liver disease. We previously observed that the levels of triacylglycerol (TAG) species containing long polyunsaturated fatty acids (PUFAs) are increased in in vitro activated HSCs. Here we investigated the cause and consequences of the rise in PUFA-TAGs by profiling enzymes involved in PUFA incorporation. We report that acyl CoA synthetase (ACSL) type 4, which has a preference for PUFAs, is the only upregulated ACSL family member in activated HSCs. Inhibition of the activity of ACSL4 by siRNA-mediated knockdown or addition of rosiglitazone specifically inhibited the incorporation of deuterated arachidonic acid (AA-d8) into TAG in HSCs. In agreement with this, ACSL4 was found to be partially localized around lipid droplets (LDs) in HSCs. Inhibition of ACSL4 also prevented the large increase in PUFA-TAGs in HSCs upon activation and to a lesser extent the increase of arachidonate-containing phosphatidylcholine species. Inhibition of ACSL4 by rosiglitazone was associated with an inhibition of HSC activation and prostaglandin secretion. Our combined data show that upregulation of ACSL4 is responsible for the increase in PUFA-TAG species during activation of HSCs, which may serve to protect cells against a shortage of PUFAs required for eicosanoid secretion.


Asunto(s)
Coenzima A Ligasas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Células Estrelladas Hepáticas/enzimología , Triglicéridos/metabolismo , Animales , Ácido Araquidónico/metabolismo , Línea Celular , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/genética , Inhibidores Enzimáticos/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Humanos , Masculino , Fosfatidilcolinas/metabolismo , Interferencia de ARN , Ratas Wistar , Rosiglitazona , Tiazolidinedionas/farmacología , Factores de Tiempo , Transfección , Regulación hacia Arriba
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159540, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39068984

RESUMEN

Lechthin:retinol acyltrasnferase (LRAT) is the main enzyme producing retinyl esters (REs) in quiescent hepatic stellate cells (HSCs). When cultured on stiff plastic culture plates, quiescent HSCs activate and lose their RE stores in a process similar to that in the liver following tissue damage, leading to fibrosis. Here we validated HSC cultures in soft gels to study RE metabolism in stable quiescent HSCs and investigated RE synthesis and breakdown in activating HSCs. HSCs cultured in a soft gel maintained characteristics of quiescent HSCs, including the size, amount and composition of their characteristic large lipid droplets. Quiescent gel-cultured HSCs maintained high expression levels of Lrat and a RE storing phenotype with low levels of RE breakdown. Newly formed REs are highly enriched in retinyl palmitate (RP), similar to freshly isolated quiescent HSCs, which is associated with high LRAT activity. Comparison of these quiescent gel-cultured HSCs with activated plastic-cultured HSCs showed that although during early activation the total RE levels and RP-enrichment are reduced, levels of RE formation are maintained and mediated by LRAT. Loss of REs was caused by enhanced RE breakdown in activating HSCs. Upon prolonged culturing, activated HSCs have lost their LRAT activity and produce small amounts of REs by DGAT1. This study reveals unexpected dynamics in RE metabolism during early HSC activation, which might be important in liver disease as early stages are reversible. Soft gel cultures provide a promising model to study RE metabolism in quiescent HSCs, allowing detailed molecular investigations on the mechanisms for storage and release.

9.
J Cell Biol ; 220(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34323918

RESUMEN

Lipid droplets store neutral lipids, primarily triacylglycerol and steryl esters. Seipin plays a role in lipid droplet biogenesis and is thought to determine the site of lipid droplet biogenesis and the size of newly formed lipid droplets. Here we show a seipin-independent pathway of lipid droplet biogenesis. In silico and in vitro experiments reveal that retinyl esters have the intrinsic propensity to sequester and nucleate in lipid bilayers. Production of retinyl esters in mammalian and yeast cells that do not normally produce retinyl esters causes the formation of lipid droplets, even in a yeast strain that produces only retinyl esters and no other neutral lipids. Seipin does not determine the size or biogenesis site of lipid droplets composed of only retinyl esters or steryl esters. These findings indicate that the role of seipin in lipid droplet biogenesis depends on the type of neutral lipid stored in forming droplets.


Asunto(s)
Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Gotas Lipídicas/metabolismo , Ésteres de Retinilo/metabolismo , Triglicéridos/metabolismo , Animales , Células Cultivadas , Cricetulus , Subunidades gamma de la Proteína de Unión al GTP/deficiencia , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
10.
Chem Phys Lipids ; 232: 104951, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32795466

RESUMEN

Toll-like receptor 2 (TLR2) is an important pattern recognition receptor on the surface of host immune cells that binds a variety of ligands that are released by microorganisms as well as by damaged or dying host cells. According to the current concept, TLR2/1 and TLR2/6 heterodimers are activated by tri- or di-acylated ligands, respectively. However, also mono-acyl phospholipid containing lipid fractions derived from parasites, were reported to be able to activate TLR2. In order to provide conclusive evidence for the TLR2 activating capacity of mono-acyl phospholipids derived from pathogens, we developed a biosynthetic method to enzymatically convert commercially available phospholipids into several mono-acyl-phospholipid variants that were examined for their TLR2 activating capacity. These investigations demonstrated that 1-(11Z-eicosenoyl)-glycero-3-phosphoserine 20:1 (20:1 lyso-PS) is a true agonist of the TLR2/6 heterodimer and that its polar headgroup as well as the length of the acyl chain are crucial for TLR2 activation. In silico modelling further confirmed 20:1 mono-acyl PS as a ligand for TLR2/6 heterodimer, as this predicted that multiple hydrogen bonds are formed between the polar headgroup of 20:1 mono-acyl PS and amino acid residues of both TLR2 and TLR6. Future studies can now be performed to further assess the functions of 20:1 lyso-PS as an immunological mediator, because this enzymatic method enables its preparation in larger quantities than is possible by isolation from the parasite that naturally produces this compound, Schistosoma mansoni, the source of the original discovery (Van der Kleij et al., 2002).


Asunto(s)
Fosfolípidos/metabolismo , Multimerización de Proteína , Receptor Toll-Like 2/química , Receptor Toll-Like 6/química , Enlace de Hidrógeno , Ligandos , Fosfolípidos/química , Estructura Cuaternaria de Proteína , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 6/metabolismo
11.
J Vet Intern Med ; 34(1): 132-138, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31830357

RESUMEN

BACKGROUND: Hepatic lipidosis is increasing in incidence in the Western world, with cats being particularly sensitive. When cats stop eating and start utilizing their fat reserves, free fatty acids (FFAs) increase in blood, causing an accumulation of triacylglycerol (TAG) in the liver. OBJECTIVE: Identifying potential new drugs that can be used to treat hepatic lipidosis in cats using a feline hepatic organoid system. ANIMALS: Liver organoids obtained from 6 cats. METHODS: Eight different drugs were tested, and the 2 most promising were further studied using a quantitative TAG assay, lipid droplet staining, and qPCR. RESULTS: Both T863 (a diacylglycerol O-acyltransferase 1 [DGAT1] inhibitor) and 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR; an adenosine monophosphate kinase activator) decreased TAG accumulation by 55% (P < .0001) and 46% (P = .0003), respectively. Gene expression of perilipin 2 (PLIN2) increased upon the addition of FFAs to the medium and decreased upon treatment with AICAR but not significantly after treatment with T863. CONCLUSIONS AND CLINICAL IMPORTANCE: Two potential drugs useful in the treatment of hepatic lipidosis in cats were identified. The drug T863 inhibits DGAT1, indicating that DGAT1 is the primary enzyme responsible for TAG synthesis from external fatty acids in cat organoids. The drug AICAR may act as a lipid-lowering compound via decreasing PLIN2 mRNA. Liver organoids can be used as an in vitro tool for drug testing in a species-specific system and provide the basis for further clinical testing of drugs to treat steatosis.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Enfermedades de los Gatos/tratamiento farmacológico , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Hígado Graso/veterinaria , Lipidosis/veterinaria , Organoides/metabolismo , Ribonucleótidos/farmacología , Aminoimidazol Carboxamida/farmacología , Animales , Enfermedades de los Gatos/metabolismo , Gatos , Ácidos Grasos no Esterificados/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Lipidosis/tratamiento farmacológico , Lipidosis/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología
12.
J Lipid Res ; 50(11): 2182-92, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19458387

RESUMEN

The mutant Chinese hamster ovary cell line MT58 contains a thermosensitive mutation in CTP:phosphocholine cytidylyltransferase, the regulatory enzyme in the CDP-choline pathway. As a result, MT58 cells have a 50% decrease in their phosphatidylcholine (PC) level within 24 h when cultured at the nonpermissive temperature (40 degrees C). This is due to a relative rapid breakdown of PC that is not compensated for by the inhibition of de novo PC synthesis. Despite this drastic decrease in cellular PC content, cells are viable and can proliferate by addition of lysophosphatidylcholine. By [(3)H]oleate labeling, we found that the FA moiety of the degraded PC is recovered in triacylglycerol. In accordance with this finding, an accumulation of lipid droplets is seen in MT58 cells. Analysis of PC-depleted MT58 cells by electron and fluorescence microscopy revealed a partial dilation of the rough endoplasmic reticulum, resulting in spherical structures on both sites of the nucleus, whereas the morphology of the plasma membrane, mitochondria, and Golgi complex was unaffected. In contrast to these morphological observations, protein transport from the ER remains intact. Surprisingly, protein transport at the level of the Golgi complex is impaired. Our data suggest that the transport processes at the Golgi complex are regulated by distal changes in lipid metabolism.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Fosfatidilcolinas/metabolismo , Animales , Células CHO , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citidililtransferasa de Colina-Fosfato/genética , Citidililtransferasa de Colina-Fosfato/metabolismo , Cricetinae , Cricetulus , Retículo Endoplásmico/ultraestructura , Recuperación de Fluorescencia tras Fotoblanqueo , Aparato de Golgi/ultraestructura , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lisofosfatidilcolinas/farmacología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microscopía Confocal , Microscopía Inmunoelectrónica , Mutación , Ácido Oléico/metabolismo , Transporte de Proteínas , Temperatura , Triglicéridos/metabolismo , Tritio , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
13.
Int J Parasitol ; 49(8): 647-656, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31170410

RESUMEN

Adult schistosomes, parasitic flatworms that cause the tropical disease schistosomiasis, have always been considered to be homolactic fermenters and, in their energy metabolism, strictly dependent on carbohydrates. However, more recent studies suggested that fatty acid ß-oxidation is essential for egg production by adult female Schistosoma mansoni. To address this conundrum, we performed a comprehensive study on the lipid metabolism of S. mansoni. Incubations with [14C]-labelled fatty acids demonstrated that adults, eggs and miracidia of S. mansoni did not oxidise fatty acids, as no 14CO2 production could be detected. We then re-examined the S. mansoni genome using the genes known to be involved in fatty acid oxidation in six eukaryotic model reference species. This showed that the earlier automatically annotated genes for fatty acid oxidation were in fact incorrectly annotated. In a further analysis we could not detect any genes encoding ß-oxidation enzymes, which demonstrates that S. mansoni cannot use this pathway in any of its lifecycle stages. The same was true for Schistosoma japonicum and all other schistosome species that have been sequenced. Absence of ß-oxidation, however, does not imply that fatty acids from the host are not metabolised by schistosomes. Adult schistosomes can use and modify fatty acids from their host for biosynthetic purposes and incorporate those in phospholipids and neutral lipids. Female worms deposit large amounts of these lipids in the eggs they produce, which explains why interference with the lipid metabolism in females will disturb egg formation, even though fatty acid ß-oxidation does not occur in schistosomes. Our analyses of S. mansoni further revealed that during the development and maturation of the miracidium inside the egg, changes in lipid composition occur which indicate that fatty acids deposited in the egg by the female worm are used for phospholipid biosynthesis required for membrane formation in the developing miracidium.


Asunto(s)
Ácidos Grasos/metabolismo , Schistosoma mansoni/metabolismo , Animales , Dióxido de Carbono/metabolismo , Cricetinae , Código de Barras del ADN Taxonómico , Metabolismo Energético , Femenino , Proteínas del Helminto/genética , Proteínas del Helminto/fisiología , Metabolismo de los Lípidos , Lipidómica , Mesocricetus , Óvulo/fisiología , Oxidación-Reducción , Schistosoma mansoni/enzimología , Schistosoma mansoni/fisiología
15.
Biochim Biophys Acta ; 1585(2-3): 87-96, 2002 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-12531541

RESUMEN

Phosphatidylcholine (PC) constitutes a major portion of cellular phospholipids and displays unique molecular species in different cell types and tissues. Inhibition of the CDP-choline pathway in most mammalian cells or overexpression of the hepatic phosphatidylethanolamine methylation pathway in hepatocytes leads to perturbation of PC homeostasis, growth arrest or even cell death. Although many agents that perturb PC homeostasis and induce cell death have been identified, the signaling pathways that mediate this cell death have not been well defined. This review summarizes recent progress in understanding the relationship between PC homeostasis and cell death.


Asunto(s)
Apoptosis/fisiología , Moléculas de Adhesión Celular , Fosfatidilcolinas/fisiología , Proteínas Supresoras de Tumor , Animales , Línea Celular , Colina/metabolismo , Colina Quinasa/antagonistas & inhibidores , Citidililtransferasa de Colina-Fosfato/antagonistas & inhibidores , Diacilglicerol Colinafosfotransferasa/antagonistas & inhibidores , Activación Enzimática , Homeostasis , Humanos , Glicoproteínas de Membrana/metabolismo , Metilación , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Transducción de Señal , Esfingomielinas/metabolismo
16.
Biochim Biophys Acta ; 1636(2-3): 99-107, 2004 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-15164757

RESUMEN

The anticancer drug hexadecylphosphocholine (HePC), an alkyl-lysophospholipid analog (ALP), has been shown to induce apoptosis and inhibit the synthesis of phosphatidylcholine (PC) in a number of cell lines. We investigated whether inhibition of PC synthesis plays a major causative role in the induction of apoptosis by HePC. We therefore directly compared the apoptosis caused by HePC in CHO cells to the apoptotic process in CHO-MT58 cells, which contain a genetic defect in PC synthesis. HePC-provoked apoptosis was found to differ substantially from the apoptosis observed in MT58 cells, since it was (i) not accompanied by a large decrease in the amount of PC and diacylglycerol (DAG), (ii) not preceded by induction of the pro-apoptotic protein GADD153/CHOP, and (iii) not dependent on the synthesis of new proteins. Furthermore, lysoPC as well as lysophosphatidylethanolamine (lysoPE) could antagonize the apoptosis induced by HePC, whereas only lysoPC was able to rescue MT58 cells. HePC also induced a rapid externalisation of phosphatidylserine (PS). These observations suggest that inhibition of PC synthesis is not the primary pathway in HePC-induced apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Fosfatidilcolinas/biosíntesis , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Animales , Células CHO , Cricetinae , Fosfatidilcolinas/antagonistas & inhibidores
17.
Biochem J ; 379(Pt 3): 711-9, 2004 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-14759225

RESUMEN

For an insight regarding the control of PtdEtn (phosphatidylethanolamine) synthesis via the CDPethanolamine pathway, rat liver cDNA encoding ECT (CTP:phosphoethanolamine cytidylyltransferase) was transiently or stably transfected in Chinese-hamster ovary cells and a rat liver-derived cell line (McA-RH7777), resulting in a maximum of 26- and 4-fold increase in specific activity of ECT respectively. However, no effect of ECT overexpression on the rate of [3H]ethanolamine incorporation into PtdEtn was detected in both cell lines. This was explored further in cells overexpressing four times ECT activity (McA-ECT1). The rate of PtdEtn breakdown and PtdEtn mass were not changed in McA-ECT1 cells in comparison with control-transfected cells. Instead, an accumulation of CDPethanolamine (label and mass) was observed, suggesting that in McA-ECT1 cells the ethanolaminephosphotransferase-catalysed reaction became rate-limiting. However, overexpression of the human choline/ethanolaminephosphotransferase in McA-ECT1 and control-transfected cells had no effect on PtdEtn synthesis. To investigate whether the availability of DAG (diacylglycerol) limited PtdEtn synthesis in these cells, intracellular DAG levels were increased using PMA or phospholipase C. Exposure of cells to PMA or phospholipase C stimulated PtdEtn synthesis and this effect was much more pronounced in McA-ECT1 than in control-transfected cells. In line with this, the DAG produced after PMA exposure was consumed more rapidly in McA-ECT1 cells and the CDPethanolamine level decreased accordingly. In conclusion, our results suggest that the supply of CDPethanolamine, via the expression level of ECT, is an important factor governing the rate of PtdEtn biosynthesis in mammalian cells, under the condition that the amount of DAG is not limiting.


Asunto(s)
Citidina Difosfato/análogos & derivados , Citidina Difosfato/metabolismo , Diglicéridos/metabolismo , Etanolaminas/metabolismo , Nucleotidiltransferasas/metabolismo , Fosfatidiletanolaminas/biosíntesis , Animales , Células CHO , Línea Celular Tumoral , Colina/metabolismo , Cricetinae , Citidina Trifosfato/metabolismo , Etanolamina/metabolismo , Humanos , Hígado/enzimología , Nucleotidiltransferasas/genética , Fosfatidilcolinas/biosíntesis , Fosfatidilcolinas/metabolismo , ARN Nucleotidiltransferasas , Ratas , Acetato de Tetradecanoilforbol/farmacología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Fosfolipasas de Tipo C/metabolismo
18.
Vet J ; 204(2): 144-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25841896

RESUMEN

This study investigated the metabolic effects of glucocorticoids when administered to propylene glycol-treated cows with clinical ketosis. Clinical ketosis was defined by depressed feed intake and milk production, and a maximal score for acetoacetate in urine. All cows received 250 mL oral propylene glycol twice daily for 3 days and were randomly assigned to a single intramuscular injection with sterile isotonic saline solution (n = 14) or dexamethasone-21-isonicotinate (n = 17). Metabolic blood variables were monitored for 6 days and adipose tissue variables for 3 days. ß-Hydroxybutyrate (BHBA) concentrations in blood decreased in all cows during treatment, but were lower in glucocorticoid-treated cows. Cows treated with glucocorticoids had higher plasma glucose and insulin concentrations, whereas concentrations of non-esterified fatty acids, 3-methylhistidine and growth hormone were unaffected. mRNA expression of hormone-sensitive lipase, BHBA receptor and peroxisome proliferator-activated receptor type γ in adipose tissue was not affected. This shows that lipolytic effects do not appear to be important in ketotic cows when glucocorticoids are combined with PG. Plasma 3-methyl histidine concentrations were similar in both groups, suggesting that glucocorticoids did not increase muscle breakdown and that the greater rise in plasma glucose in glucocorticoid-treated cows may not be due to increased supply of glucogenic amino acids from muscle.


Asunto(s)
Enfermedades de los Bovinos/tratamiento farmacológico , Isonicotinato de Dexametasona/uso terapéutico , Glucocorticoides/uso terapéutico , Cetosis/veterinaria , Propilenglicol/uso terapéutico , Animales , Bovinos , Isonicotinato de Dexametasona/administración & dosificación , Quimioterapia Combinada , Femenino , Glucocorticoides/administración & dosificación , Insulina/sangre , Cetosis/tratamiento farmacológico , Metilhistidinas/sangre , Propilenglicol/administración & dosificación
19.
Eur J Pharmacol ; 502(3): 185-93, 2004 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-15476744

RESUMEN

Hexadecylphosphocholine (HePC, Miltefosine) is an antitumour phospholipid and known inducer of apoptosis in human breast cancer cells. The mechanism underlying the induction of cell death by HePC, however, is not clear yet. In this study, we have investigated the cytotoxic effects of HePC on canine mammary tumour cells (CMTs) in vitro. Upon addition of HePC, CMTs rapidly exhibited several features that resembled apoptotic cell death. Cells showed externalization of phosphatidylserine, a hallmark of apoptosis, within 5 min after addition of HePC at concentrations as low as 10 microM. Furthermore, rapid swelling of mitochondria was observed. Rounding and detachment of cells followed within 30 min. However, fragmentation of nuclear DNA could not be observed. Overall, HePC was shown to induce a type of cell death in CMTs that in some aspects resembles apoptosis, though the process proceeds much more rapidly than reported for other tumour cell lines.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Crecimiento/farmacología , Neoplasias Mamarias Animales/tratamiento farmacológico , Neoplasias Mamarias Animales/patología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Animales , Antineoplásicos/uso terapéutico , Células CHO , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Línea Celular Tumoral , Cricetinae , Perros , Relación Dosis-Respuesta a Droga , Inhibidores de Crecimiento/uso terapéutico , Fosforilcolina/uso terapéutico , Factores de Tiempo
20.
Arthritis Res Ther ; 15(1): R23, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23360510

RESUMEN

INTRODUCTION: Early degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic and chondrodystrophic dogs, a species with naturally occurring IVD degeneration. METHODS: Dual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich), 2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-type mice of the same age. RESULTS: Early IVD degeneration involved significant changes in numerous pathways, including Wnt/ß-catenin signaling. With regard to Wnt/ß-catenin signaling, axin2 gene expression was significantly higher in chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice contained chondroid-like matrix with mainly apoptotic, small, rounded cells. CONCLUSIONS: Early IVD degeneration involves down-regulation of canonical Wnt signaling and Caveolin-1 expression, which appears to be essential to the physiology and preservation of NCs. Therefore, Caveolin-1 may be regarded an exciting target for developing strategies for IVD regeneration.


Asunto(s)
Caveolina 1/biosíntesis , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Perros , Regulación hacia Abajo , Perfilación de la Expresión Génica , Regeneración Tisular Dirigida/métodos , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA