Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell Proteomics ; 22(11): 100660, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820923

RESUMEN

Epithelial ovarian cancer (EOC) is a high-risk cancer presenting with heterogeneous tumors. The high incidence of EOC metastasis from primary tumors to nearby tissues and organs is a major driver of EOC lethality. We used cellular models of spheroid formation and readherence to investigate cellular signaling dynamics in each step toward EOC metastasis. In our system, adherent cells model primary tumors, spheroid formation represents the initiation of metastatic spread, and readherent spheroid cells represent secondary tumors. Proteomic and phosphoproteomic analyses show that spheroid cells are hypoxic and show markers for cell cycle arrest. Aurora kinase B abundance and downstream substrate phosphorylation are significantly reduced in spheroids and readherent cells, explaining their cell cycle arrest phenotype. The proteome of readherent cells is most similar to spheroids, yet greater changes in the phosphoproteome show that spheroid cells stimulate Rho-associated kinase 1 (ROCK1)-mediated signaling, which controls cytoskeletal organization. In spheroids, we found significant phosphorylation of ROCK1 substrates that were reduced in both adherent and readherent cells. Application of the ROCK1-specific inhibitor Y-27632 to spheroids increased the rate of readherence and altered spheroid density. The data suggest ROCK1 inhibition increases EOC metastatic potential. We identified novel pathways controlled by Aurora kinase B and ROCK1 as major drivers of metastatic behavior in EOC cells. Our data show that phosphoproteomic reprogramming precedes proteomic changes that characterize spheroid readherence in EOC metastasis.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario , Neoplasias Ováricas/metabolismo , Aurora Quinasa B , Proteómica , Esferoides Celulares/metabolismo , Línea Celular Tumoral , Metástasis de la Neoplasia , Quinasas Asociadas a rho
2.
Clin Proteomics ; 21(1): 13, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389037

RESUMEN

SARS-CoV-2 infection triggers extensive host immune reactions, leading to severe diseases in certain individuals. However, the molecular basis underlying the excessive yet non-productive immune responses in severe COVID-19 remains incompletely understood. In this study, we conducted a comprehensive analysis of the peripheral blood mononuclear cell (PBMC) proteome and phosphoproteome in sepsis patients positive or negative for SARS-CoV-2 infection, as well as healthy subjects, using quantitative mass spectrometry. Our findings demonstrate dynamic changes in the COVID-19 PBMC proteome and phosphoproteome during disease progression, with distinctive protein or phosphoprotein signatures capable of distinguishing longitudinal disease states. Furthermore, SARS-CoV-2 infection induces a global reprogramming of the kinome and phosphoproteome, resulting in defective adaptive immune response mediated by the B and T lymphocytes, compromised innate immune responses involving the SIGLEC and SLAM family of immunoreceptors, and excessive cytokine-JAK-STAT signaling. In addition to uncovering host proteome and phosphoproteome aberrations caused by SARS-CoV-2, our work recapitulates several reported therapeutic targets for COVID-19 and identified numerous new candidates, including the kinases PKG1, CK2, ROCK1/2, GRK2, SYK, JAK2/3, TYK2, DNA-PK, PKCδ, and the cytokine IL-12.

3.
Proteomics ; : e2000036, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32666692

RESUMEN

Osteoblasts are a key component of the endosteal hematopoietic stem cell (HSC) niche and are recognized with strong hematopoietic supporting activity. Similarly, mesenchymal stromal cells (MSC)-derived osteoblast (M-OST) conditioned media (OCM) enhances the growth of hematopoietic progenitors in culture and modulate their engraftment activity. We aimed to characterize the hematopoietic supporting activity of OCM by comparing the secretome of M-OST to that of their precursor. Over 300 proteins were quantified by mass spectroscopy in media conditioned with MSC or M-OST, with 47 being differentially expressed. Included were growth factors, extracellular matrix (ECM) proteins and proteins from the complement pathways. The functional contribution of selected proteins on the growth and differentiation of cord blood (CB) progenitors was tested. Secreted Protein Acidic and Rich in Cysteine (SPARC) and Galectin 3 (Gal3) had little impact on the growth of CB cells in serum-free medium (SFM). In contrast, inhibition of the complement 3 A receptor (C3a-R) present on CB progenitors significantly reduced the growth of CD34+ cells in OCM cultures but not in SFM. These results provide new insights into changes in factors released by MSC undergoing osteoblast differentiation, and on paracrine factors that are partially responsible for the hematopoietic supporting activity of osteoblasts. This article is protected by copyright. All rights reserved.

4.
Stem Cells ; 37(3): 345-356, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30520180

RESUMEN

Ex vivo expansion of hematopoietic stem cell (HSCs) and progenitors may one day overcome the slow platelet engraftment kinetics associated with umbilical cord blood transplantation. Serum-free medium conditioned with osteoblasts (i.e., osteoblast-conditioned medium [OCM]) derived from mesenchymal stromal cells (MSC) was previously shown to increase cell growth and raise the levels of human platelets in mice transplanted with OCM-expanded progenitors. Herein, we characterized the cellular and molecular mechanisms responsible for these osteoblast-derived properties. Limiting dilution transplantation assays revealed that osteoblasts secrete soluble factors that synergize with exogenously added cytokines to promote the production of progenitors with short-term platelet engraftment activities, and to a lesser extent with long-term platelet engraftment activities. OCM also modulated the expression repertoire of cell-surface receptors implicated in the trafficking of HSC and progenitors to the bone marrow. Furthermore, OCM contains growth factors with prosurvival and proliferation activities that synergized with stem cell factor. Insulin-like growth factor (IGF)-2 was found to be present at higher levels in OCM than in control medium conditioned with MSC. Inhibition of the IGF-1 receptor, which conveys IGF-2' intracellular signaling, largely abolished the growth-promoting activity of OCM on immature CD34+ subsets and progenitors in OCM cultures. Finally, IGF-1R effects appear to be mediated in part by the coactivator ß-catenin. In summary, these results provide new insights into the paracrine regulatory activities of osteoblasts on HSC, and how these can be used to modulate the engraftment properties of human HSC and progenitors expanded in culture. Stem Cells 2019;37:345-356.


Asunto(s)
Plaquetas/metabolismo , Supervivencia de Injerto , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Osteoblastos/metabolismo , Comunicación Paracrina , Animales , Plaquetas/citología , Proliferación Celular , Supervivencia Celular , Medios de Cultivo Condicionados/farmacología , Células Madre Hematopoyéticas/citología , Xenoinjertos , Humanos , Factor II del Crecimiento Similar a la Insulina , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Osteoblastos/citología
6.
Cells ; 13(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39056775

RESUMEN

The programmed cell death protein 1 (PD-1) plays a critical role in cancer immune evasion. Blocking the PD-1-PD-L1 interaction by monoclonal antibodies has shown remarkable clinical efficacy in treating certain types of cancer. However, antibodies are costly to produce, and antibody-based therapies can cause immune-related adverse events. To address the limitations associated with current PD-1/PD-L1 blockade immunotherapy, we aimed to develop peptide-based inhibitors of the PD-1/PD-L1 interaction as an alternative means to PD-1/PD-L1 blockade antibodies for anti-cancer immunotherapy. Through the functional screening of peptide arrays encompassing the ectodomains of PD-1 and PD-L1, followed by the optimization of the hit peptides for solubility and stability, we have identified a 16-mer peptide, named mL7N, with a remarkable efficacy in blocking the PD-1/PD-L1 interaction both in vitro and in vivo. The mL7N peptide effectively rejuvenated PD-1-suppressed T cells in multiple cellular systems designed to recapitulate the PD-1/PD-L1 interaction in the context of T-cell receptor signaling. Furthermore, PA-mL7N, a chimera of the mL7N peptide coupled to albumin-binding palmitic acid (PA), significantly promoted breast cancer cell killing by peripheral blood mononuclear cells ex vivo and significantly curbed tumor growth in a syngeneic mouse model of breast cancer. Our work raises the prospect that mL7N may serve as a prototype for the development of a new line of peptide-based immunomodulators targeting the PD-1/PD-L1 immune checkpoint with potential applications in cancer treatment.


Asunto(s)
Antígeno B7-H1 , Péptidos , Receptor de Muerte Celular Programada 1 , Linfocitos T , Animales , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Ratones , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Péptidos/farmacología , Péptidos/química , Femenino , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/efectos de los fármacos , Línea Celular Tumoral , Unión Proteica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
7.
Stem Cells Int ; 2018: 1310904, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30675166

RESUMEN

BACKGROUND: Human mesenchymal stromal/stem cells (hMSCs) hold great therapeutic potential due to their immunomodulatory and tissue regenerative properties. Enhancement of biological features of hMSCs by transfection has become a focus of investigation for cell- and gene-based therapies. However, many of the current transient transfection methods result in either low transfection efficiency or high cytotoxicity. METHODS: In order to find a transfection method that would address the current issues of low transfection efficiency and high cytotoxicity, 6 commercially available cationic lipid and polymer reagents were tested on human bone marrow-derived MSCs (hBM-MSCs) using GFP as a reporter gene. One transfection method using TransIT-2020 was selected and tested with an emphasis on cell quality (viability, identity, and yield), as well as efficacy with a human placental growth factor (PlGF) plasmid. RESULTS: TransIT-2020 yielded the highest fluorescence signal per cell out of the methods that did not decrease cell recovery. Transfecting GFP to 5 hBM-MSC donors using TransIT-2020 yielded 24-36% GFP-expressing cells with a viability of 85-96%. hBM-MSC identity was unaffected as CD90, CD105, and CD73 markers were retained (>95%+) after transfection. When this method was applied to PlGF expression, there was up to a 220-fold increase in secretion. Both growth and secretion of PlGF in overexpressing hBM-MSC were sustained over 7 days, confirming the sustainability and applicability of the TransIT-2020 transfection system. DISCUSSION: We report a simple and efficient method for transient transfection that has not been reported for hBM-MSCs, encompassing high levels of plasmid expression without significant changes to fundamental hBM-MSC characteristics.

8.
Stem Cells Dev ; 26(24): 1735-1748, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29050516

RESUMEN

Coculture of hematopoietic stem cells (HSC) with primary stromal cells from HSC niches supports the maintenance and expansion of HSC and progenitors ex vivo. However, a major drawback is the availability of primary human samples for research and clinical applications. We investigated the use of in vitro derived osteoblasts as a new source of feeder cells and characterized the molecular pathways that mediate their growth-promoting activities. First, we compared the growth and differentiation modulating activities of mesenchymal stromal cells (MSC)-derived osteoblasts (M-OST) with those of their undifferentiated precursor on umbilical cord blood (UCB) progenitors. Feeder-free cultures were also included as baseline control. Cell growth and expansion of hematopoietic progenitors were significantly enhanced by both feeder cell types. However, progenitor cell growth was considerably greater with M-OST. Coculture also promoted the maintenance of immature CD34+ progenitor subsets and modulated in a positive fashion the expression of several homing-related cell surface receptors, in a feeder-specific fashion. Serial transplantation experiments revealed that M-OST coculture supported the maintenance of long-term lympho-myeloid reconstituting HSC that provided engraftment levels that were generally superior to those from MSC cocultures. Mechanistically, we found that coculture with M-OST was associated with enhanced beta-catenin (ß-Cat) activity in UCB cells and that abrogation of ß-Cat/T-cell factor activity blunted the growth-promoting activity of the M-OST coculture. Conversely, Notch inhibition reduced UCB cell expansion, but to a much lesser extent. In conclusion, this study demonstrates that M-OST are excellent feeder cells for HSC and progenitors, and it identifies key molecular pathways that are responsible for the growth-enhancing activities of osteoblasts on UCB progenitors.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , beta Catenina/metabolismo , Animales , Antígenos CD34/metabolismo , Médula Ósea/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo/métodos , Células Nutrientes/citología , Células Nutrientes/metabolismo , Sangre Fetal/citología , Sangre Fetal/metabolismo , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos NOD , Osteoblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA