Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 195(1): 135-154, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38290050

RESUMEN

Small-molecule phytohormones exert control over plant growth, development, and stress responses by coordinating the patterns of gene expression within and between cells. Increasing evidence indicates that currently recognized plant hormones are part of a larger group of regulatory metabolites that have acquired signaling properties during the evolution of land plants. This rich assortment of chemical signals reflects the tremendous diversity of plant secondary metabolism, which offers evolutionary solutions to the daunting challenges of sessility and other unique aspects of plant biology. A major gap in our current understanding of plant regulatory metabolites is the lack of insight into the direct targets of these compounds. Here, we illustrate the blurred distinction between classical phytohormones and other bioactive metabolites by highlighting the major scientific advances that transformed the view of jasmonate from an interesting floral scent to a potent transcriptional regulator. Lessons from jasmonate research generally apply to other phytohormones and thus may help provide a broad understanding of regulatory metabolite-protein interactions. In providing a framework that links small-molecule diversity to transcriptional plasticity, we hope to stimulate future research to explore the evolution, functions, and mechanisms of perception of a broad range of plant regulatory metabolites.


Asunto(s)
Ciclopentanos , Oxilipinas , Reguladores del Crecimiento de las Plantas , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Plantas/metabolismo , Plantas/genética
2.
New Phytol ; 239(6): 2277-2291, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37403524

RESUMEN

Jasmonate (JA) re-programs metabolism to confer resistance to diverse environmental threats. Jasmonate stimulates the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of MYC transcription factors. In Arabidopsis thaliana, MYC and JAZ are encoded by 4 and 13 genes, respectively. The extent to which expansion of the MYC and JAZ families has contributed to functional diversification of JA responses is not well understood. Here, we investigated the role of MYC and JAZ paralogs in controlling the production of defense compounds derived from aromatic amino acids (AAAs). Analysis of loss-of-function and dominant myc mutations identified MYC3 and MYC4 as the major regulators of JA-induced tryptophan metabolism. We developed a JAZ family-based, forward genetics approach to screen randomized jaz polymutants for allelic combinations that enhance tryptophan biosynthetic capacity. We found that mutants defective in all members (JAZ1/2/5/6) of JAZ group I over-accumulate AAA-derived defense compounds, constitutively express marker genes for the JA-ethylene branch of immunity and are more resistant to necrotrophic pathogens but not insect herbivores. In defining JAZ and MYC paralogs that regulate the production of amino-acid-derived defense compounds, our results provide insight into the specificity of JA signaling in immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Represoras/metabolismo , Triptófano/metabolismo , Transducción de Señal , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Plant Physiol ; 188(3): 1450-1468, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34668550

RESUMEN

Glandular trichomes (GTs) are epidermal structures that provide the first line of chemical defense against arthropod herbivores and other biotic threats. The most conspicuous structure on leaves of cultivated tomato (Solanum lycopersicum) is the type-VI GT (tVI-GT), which accumulates both flavonoids and volatile terpenoids. Although these classes of specialized metabolites are derived from distinct metabolic pathways, previous studies with a chalcone isomerase 1 (CHI1)-deficient mutant called anthocyanin free (af) showed that flavonoids are required for terpenoid accumulation in tVI-GTs. Here, we combined global transcriptomic and proteomic analyses of isolated trichomes as a starting point to show that the lack of CHI1 is associated with reduced levels of terpenoid biosynthetic transcripts and enzymes. The flavonoid deficiency in af trichomes also resulted in the upregulation of abiotic stress-responsive genes associated with DNA damage and repair. Several lines of biochemical and genetic evidence indicate that the terpenoid defect in af mutants is specific for the tVI-GT and is associated with the absence of bulk flavonoids rather than loss of CHI1 per se. A newly developed genome-scale model of metabolism in tomato tVI-GTs helped identify metabolic imbalances caused by the loss of flavonoid production. We provide evidence that flavonoid deficiency in this cell type leads to increased production of reactive oxygen species (ROS), which may impair terpenoid biosynthesis. Collectively, our findings support a role for flavonoids as ROS-scavenging antioxidants in GTs.


Asunto(s)
Flavonoides/metabolismo , Homeostasis/efectos de los fármacos , Homeostasis/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Terpenos/metabolismo , Tricomas/genética , Tricomas/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Flavonoides/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Oxidación-Reducción/efectos de los fármacos
4.
Plant Cell ; 32(12): 3846-3865, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33023956

RESUMEN

Abscisic acid (ABA) is known to suppress seed germination and post-germinative growth of Arabidopsis (Arabidopsis thaliana), and jasmonate (JA) enhances ABA function. However, the molecular mechanism underlying the crosstalk between the ABA and JA signaling pathways remains largely elusive. Here, we show that exogenous coronatine, a JA analog structurally similar to the active conjugate jasmonate-isoleucine, significantly enhances the delayed seed germination response to ABA. Disruption of the JA receptor CORONATINE INSENSITIVE1 or accumulation of the JA signaling repressor JASMONATE ZIM-DOMAIN (JAZ) reduced ABA signaling, while jaz mutants enhanced ABA responses. Mechanistic investigations revealed that several JAZ repressors of JA signaling physically interact with ABSCISIC ACID INSENSITIVE3 (ABI3), a critical transcription factor that positively modulates ABA signaling, and that JAZ proteins repress the transcription of ABI3 and ABI5. Further genetic analyses showed that JA activates ABA signaling and requires functional ABI3 and ABI5. Overexpression of ABI3 and ABI5 simultaneously suppressed the ABA-insensitive phenotypes of the coi1-2 mutant and JAZ-accumulating (JAZ-ΔJas) plants. Together, our results reveal a previously uncharacterized signaling module in which JAZ repressors of the JA pathway regulate the ABA-responsive ABI3 and ABI5 transcription factors to integrate JA and ABA signals during seed germination and post-germinative growth.


Asunto(s)
Aminoácidos/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Indenos/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Ácido Abscísico/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ciclopentanos/metabolismo , Germinación/efectos de los fármacos , Mutación , Oxilipinas/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Semillas/efectos de los fármacos , Semillas/genética , Semillas/metabolismo , Semillas/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(4): 2211-2217, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31964814

RESUMEN

As global climate change brings elevated average temperatures and more frequent and extreme weather events, pressure from biotic stresses will become increasingly compounded by harsh abiotic stress conditions. The plant hormone jasmonate (JA) promotes resilience to many environmental stresses, including attack by arthropod herbivores whose feeding activity is often stimulated by rising temperatures. How wound-induced JA signaling affects plant adaptive responses to elevated temperature (ET), however, remains largely unknown. In this study, we used the commercially important crop plant Solanum lycopersicum (cultivated tomato) to investigate the interaction between simulated heat waves and wound-inducible JA responses. We provide evidence that the heat shock protein HSP90 enhances wound responses at ET by increasing the accumulation of the JA receptor, COI1. Wound-induced JA responses directly interfered with short-term adaptation to ET by blocking leaf hyponasty and evaporative cooling. Specifically, leaf damage inflicted by insect herbivory or mechanical wounding at ET resulted in COI1-dependent stomatal closure, leading to increased leaf temperature, lower photosynthetic carbon assimilation rate, and growth inhibition. Pharmacological inhibition of HSP90 reversed these effects to recapitulate the phenotype of a JA-insensitive mutant lacking the COI1 receptor. As climate change is predicted to compound biotic stress with larger and more voracious arthropod pest populations, our results suggest that antagonistic responses resulting from a combination of insect herbivory and moderate heat stress may exacerbate crop losses.


Asunto(s)
Insectos/fisiología , Hojas de la Planta/parasitología , Solanum lycopersicum/química , Animales , Cambio Climático , Ciclopentanos/metabolismo , Conducta Alimentaria , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Herbivoria/fisiología , Calor , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitología , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
New Phytol ; 236(1): 132-145, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35642375

RESUMEN

Robust plant immunity negatively affects other fitness traits, including growth and seed production. Jasmonate (JA) confers broad-spectrum protection against plant consumers by stimulating the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins, which in turn relieves repression on transcription factors (TFs) coincident with reduced growth and fecundity. The molecular mechanisms underlying JA-mediated decreases in fitness remain largely unknown. To assess the contribution of MYC TFs to growth and reproductive fitness at high levels of defence, we mutated three MYC genes in a JAZ-deficient mutant (jazD) of Arabidopsis thaliana that exhibits strong defence and low seed yield. Genetic epistasis analysis showed that de-repression of MYC TFs in jazD not only conferred strong resistance to insect herbivory but also reduced shoot and root growth, fruit size and seed yield. We also provided evidence that the JAZ-MYC module coordinates the supply of tryptophan with the production of indole glucosinolates and the proliferation of endoplasmic reticulum bodies that metabolise glucosinolates through the action of ß-glucosidases. Our results establish MYCs as major regulators of growth- and reproductive-defence trade-offs and further indicate that these factors coordinate tryptophan availability with the production of amino acid-derived defence compounds.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosinolatos/metabolismo , Oxilipinas/metabolismo , Proteínas Represoras/metabolismo , Semillas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triptófano/metabolismo
7.
Plant Physiol ; 183(2): 733-749, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32245790

RESUMEN

The plant hormone jasmonate (JA) promotes resistance to biotic stress by stimulating the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins, which relieves repression on MYC transcription factors that execute defense programs. JA-triggered depletion of JAZ proteins in Arabidopsis (Arabidopsis thaliana) is also associated with reduced growth and seed production, but the mechanisms underlying these pleiotropic growth effects remain unclear. Here, we investigated this question using an Arabidopsis JAZ-deficient mutant (jazD; jaz1-jaz7, jaz9, jaz10, and jaz 13) that exhibits high levels of defense and strong growth inhibition. Genetic suppressor screens for mutations that uncouple growth-defense tradeoffs in the jazD mutant identified nine independent causal mutations in the red-light receptor phytochrome B (phyB). Unlike the ability of the phyB mutations to completely uncouple the mild growth-defense phenotypes in a jaz mutant (jazQ) defective in JAZ1, JAZ3, JAZ4, JAZ9, and JAZ10, phyB null alleles only weakly alleviated the growth and reproductive defects in the jazD mutant. phyB-independent growth restriction of the jazD mutant was tightly correlated with upregulation of the Trp biosynthetic pathway but not with changes in central carbon metabolism. Interestingly, jazD and jazD phyB plants were insensitive to a chemical inhibitor of Trp biosynthesis, which is a phenotype previously observed in plants expressing hyperactive MYC transcription factors that cannot bind JAZ repressors. These data provide evidence that the mechanisms underlying JA-mediated growth-defense balance depend on the level of defense, and they further establish an association between growth inhibition at high levels of defense and dysregulation of Trp biosynthesis.


Asunto(s)
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fitocromo B/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Fitocromo B/genética , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Plant Cell ; 30(5): 1006-1022, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29666162

RESUMEN

Chloroplast membranes with their unique lipid composition are crucial for photosynthesis. Maintenance of the chloroplast membranes requires finely tuned lipid anabolic and catabolic reactions. Despite the presence of a large number of predicted lipid-degrading enzymes in the chloroplasts, their biological functions remain largely unknown. Recently, we described PLASTID LIPASE1 (PLIP1), a plastid phospholipase A1 that contributes to seed oil biosynthesis. The Arabidopsis thaliana genome encodes two putative PLIP1 paralogs, which we designated PLIP2 and PLIP3. PLIP2 and PLIP3 are also present in the chloroplasts, but likely with different subplastid locations. In vitro analysis indicated that both are glycerolipid A1 lipases. In vivo, PLIP2 prefers monogalactosyldiacylglycerol as substrate and PLIP3 phosphatidylglycerol. Overexpression of PLIP2 or PLIP3 severely reduced plant growth and led to accumulation of the bioactive form of jasmonate and related oxylipins. Genetically blocking jasmonate perception restored the growth of the PLIP2/3-overexpressing plants. The expression of PLIP2 and PLIP3, but not PLIP1, was induced by abscisic acid (ABA), and plip1 plip2 plip3 triple mutants exhibited compromised oxylipin biosynthesis in response to ABA. The plip triple mutants also showed hypersensitivity to ABA. We propose that PLIP2 and PLIP3 provide a mechanistic link between ABA-mediated abiotic stress responses and oxylipin signaling.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética
9.
Plant Cell ; 30(7): 1445-1460, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29743197

RESUMEN

The evolution of transcriptional regulatory mechanisms is central to how stress response and tolerance differ between species. However, it remains largely unknown how divergence in cis-regulatory sites and, subsequently, transcription factor (TF) binding specificity contribute to stress-responsive expression divergence, particularly between wild and domesticated species. By profiling wound-responsive gene transcriptomes in wild Solanum pennellii and domesticated S. lycopersicum, we found extensive wound response divergence and identified 493 S. lycopersicum and 278 S. pennellii putative cis-regulatory elements (pCREs) that were predictive of wound-responsive gene expression. Only 24-52% of these wound response pCREs (depending on wound response patterns) were consistently enriched in the putative promoter regions of wound-responsive genes across species. In addition, between these two species, their differences in pCRE site sequences were significantly and positively correlated with differences in wound-responsive gene expression. Furthermore, ∼11-39% of pCREs were specific to only one of the species and likely bound by TFs from different families. These findings indicate substantial regulatory divergence in these two plant species that diverged ∼3-7 million years ago. Our study provides insights into the mechanistic basis of how the transcriptional response to wounding is regulated and, importantly, the contribution of cis-regulatory components to variation in wound-responsive gene expression between a wild and a domesticated plant species.


Asunto(s)
Solanum lycopersicum/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(45): E10768-E10777, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348775

RESUMEN

Plant immune responses mediated by the hormone jasmonoyl-l-isoleucine (JA-Ile) are metabolically costly and often linked to reduced growth. Although it is known that JA-Ile activates defense responses by triggering the degradation of JASMONATE ZIM DOMAIN (JAZ) transcriptional repressor proteins, expansion of the JAZ gene family in vascular plants has hampered efforts to understand how this hormone impacts growth and other physiological tasks over the course of ontogeny. Here, we combined mutations within the 13-member Arabidopsis JAZ gene family to investigate the effects of chronic JAZ deficiency on growth, defense, and reproductive output. A higher-order mutant (jaz decuple, jazD) defective in 10 JAZ genes (JAZ1-7, -9, -10, and -13) exhibited robust resistance to insect herbivores and fungal pathogens, which was accompanied by slow vegetative growth and poor reproductive performance. Metabolic phenotypes of jazD discerned from global transcript and protein profiling were indicative of elevated carbon partitioning to amino acid-, protein-, and endoplasmic reticulum body-based defenses controlled by the JA-Ile and ethylene branches of immunity. Resource allocation to a strong defense sink in jazD leaves was associated with increased respiration and hallmarks of carbon starvation but no overt changes in photosynthetic rate. Depletion of the remaining JAZ repressors in jazD further exaggerated growth stunting, nearly abolished seed production and, under extreme conditions, caused spreading necrotic lesions and tissue death. Our results demonstrate that JAZ proteins promote growth and reproductive success at least in part by preventing catastrophic metabolic effects of an unrestrained immune response.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/inmunología , Aptitud Genética/inmunología , Isoleucina/análogos & derivados , Enfermedades de las Plantas/genética , Proteínas Represoras/genética , Animales , Arabidopsis/inmunología , Arabidopsis/microbiología , Arabidopsis/parasitología , Carbono/metabolismo , Resistencia a la Enfermedad/genética , Hongos/crecimiento & desarrollo , Hongos/patogenicidad , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Insectos/patogenicidad , Insectos/fisiología , Isoleucina/metabolismo , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/inmunología , Familia de Multigenes , Mutación , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Inmunidad de la Planta/genética , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Proteínas Represoras/deficiencia , Reproducción/genética , Reproducción/inmunología , Transducción de Señal
12.
Proc Natl Acad Sci U S A ; 114(7): 1720-1725, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137867

RESUMEN

Jasmonate ZIM-domain (JAZ) transcriptional repressors play a key role in regulating jasmonate (JA) signaling in plants. Below a threshold concentration of jasmonoyl isoleucine (JA-Ile), the active form of JA, the C-terminal Jas motif of JAZ proteins binds MYC transcription factors to repress JA signaling. With increasing JA-Ile concentration, the Jas motif binds to JA-Ile and the COI1 subunit of the SCFCOI1 E3 ligase, which mediates ubiquitination and proteasomal degradation of JAZ repressors, resulting in derepression of MYC transcription factors. JA signaling subsequently becomes desensitized, in part by feedback induction of JAZ splice variants that lack the C-terminal Jas motif but include an N-terminal cryptic MYC-interaction domain (CMID). The CMID sequence is dissimilar to the Jas motif and is incapable of recruiting SCFCOI1, allowing CMID-containing JAZ splice variants to accumulate in the presence of JA and to re-repress MYC transcription factors as an integral part of reestablishing signal homeostasis. The mechanism by which the CMID represses MYC transcription factors remains elusive. Here we describe the crystal structure of the MYC3-CMIDJAZ10 complex. In contrast to the Jas motif, which forms a single continuous helix when bound to MYC3, the CMID adopts a loop-helix-loop-helix architecture with modular interactions with both the Jas-binding groove and the backside of the Jas-interaction domain of MYC3. This clamp-like interaction allows the CMID to bind MYC3 tightly and block access of MED25 (a subunit of the Mediator coactivator complex) to the MYC3 transcriptional activation domain, shedding light on the enigmatic mechanism by which JAZ splice variants desensitize JA signaling.


Asunto(s)
Empalme Alternativo , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas Represoras/genética , Transducción de Señal/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X , Regulación de la Expresión Génica de las Plantas , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Homología de Secuencia de Aminoácido , Transactivadores/química , Transactivadores/genética , Transactivadores/metabolismo , Técnicas del Sistema de Dos Híbridos
13.
Genome Res ; 25(8): 1182-95, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26063739

RESUMEN

Nucleosome positioning influences the access of transcription factors (TFs) to their binding sites and gene expression. Studies in plant, animal, and fungal models demonstrate similar nucleosome positioning patterns along genes and correlations between occupancy and expression. However, the relationships among nucleosome positioning, cis-regulatory element accessibility, and gene expression in plants remain undefined. Here we showed that plant nucleosome depletion occurs on specific 6-mer motifs and this sequence-specific nucleosome depletion is predictive of expression levels. Nucleosome-depleted regions in Arabidopsis thaliana tend to have higher G/C content, unlike yeast, and are centered on specific G/C-rich 6-mers, suggesting that intrinsic sequence properties, such as G/C content, cannot fully explain plant nucleosome positioning. These 6-mer motif sites showed higher DNase I hypersensitivity and are flanked by strongly phased nucleosomes, consistent with known TF binding sites. Intriguingly, this 6-mer-specific nucleosome depletion pattern occurs not only in promoter but also in genic regions and is significantly correlated with higher gene expression level, a phenomenon also found in rice but not in yeast. Among the 6-mer motifs enriched in genes responsive to treatment with the defense hormone jasmonate, there are no significant changes in nucleosome occupancy, suggesting that these sites are potentially preconditioned to enable rapid response without changing chromatin state significantly. Our study provides a global assessment of the joint contribution of nucleosome occupancy and motif sequences that are likely cis-elements to the control of gene expression in plants. Our findings pave the way for further understanding the impact of chromatin state on plant transcriptional regulatory circuits.


Asunto(s)
Arabidopsis/genética , ADN de Plantas/metabolismo , Nucleosomas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Composición de Base , Sitios de Unión/efectos de los fármacos , Ciclopentanos/farmacología , ADN de Plantas/química , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nucleosomas/química , Nucleosomas/efectos de los fármacos , Oxilipinas/farmacología , Elementos Reguladores de la Transcripción/efectos de los fármacos
14.
Proc Natl Acad Sci U S A ; 112(46): 14354-9, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26578782

RESUMEN

In the past decade, characterization of the host targets of pathogen virulence factors took a center stage in the study of pathogenesis and disease susceptibility in plants and humans. However, the impressive knowledge of host targets has not been broadly exploited to inhibit pathogen infection. Here, we show that host target modification could be a promising new approach to "protect" the disease-vulnerable components of plants. In particular, recent studies have identified the plant hormone jasmonate (JA) receptor as one of the common targets of virulence factors from highly evolved biotrophic/hemibiotrophic pathogens. Strains of the bacterial pathogen Pseudomonas syringae, for example, produce proteinaceous effectors, as well as a JA-mimicking toxin, coronatine (COR), to activate JA signaling as a mechanism to promote disease susceptibility. Guided by the crystal structure of the JA receptor and evolutionary clues, we succeeded in modifying the JA receptor to allow for sufficient endogenous JA signaling but greatly reduced sensitivity to COR. Transgenic Arabidopsis expressing this modified receptor not only are fertile and maintain a high level of insect defense, but also gain the ability to resist COR-producing pathogens Pseudomonas syringae pv. tomato and P. syringae pv. maculicola. Our results provide a proof-of-concept demonstration that host target modification can be a promising new approach to prevent the virulence action of highly evolved pathogens.


Asunto(s)
Aminoácidos/metabolismo , Arabidopsis , Toxinas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Indenos/metabolismo , Pseudomonas syringae , Aminoácidos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Toxinas Bacterianas/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/fisiología
15.
New Phytol ; 215(4): 1533-1547, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28649719

RESUMEN

The plant hormone jasmonate (JA) promotes the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins to relieve repression on diverse transcription factors (TFs) that execute JA responses. However, little is known about how combinatorial complexity among JAZ-TF interactions maintains control over myriad aspects of growth, development, reproduction, and immunity. We used loss-of-function mutations to define epistatic interactions within the core JA signaling pathway and to investigate the contribution of MYC TFs to JA responses in Arabidopsis thaliana. Constitutive JA signaling in a jaz quintuple mutant (jazQ) was largely eliminated by mutations that block JA synthesis or perception. Comparison of jazQ and a jazQ myc2 myc3 myc4 octuple mutant validated known functions of MYC2/3/4 in root growth, chlorophyll degradation, and susceptibility to the pathogen Pseudomonas syringae. We found that MYC TFs also control both the enhanced resistance of jazQ leaves to insect herbivory and restricted leaf growth of jazQ. Epistatic transcriptional profiles mirrored these phenotypes and further showed that triterpenoid biosynthetic and glucosinolate catabolic genes are up-regulated in jazQ independently of MYC TFs. Our study highlights the utility of genetic epistasis to unravel the complexities of JAZ-TF interactions and demonstrates that MYC TFs exert master control over a JAZ-repressible transcriptional hierarchy that governs growth-defense balance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Transcripción Genética , Antocianinas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Clorofila/metabolismo , Ciclopentanos/farmacología , Resistencia a la Enfermedad , Epistasis Genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Oxilipinas/farmacología , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo
18.
Plant J ; 82(4): 669-79, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25846245

RESUMEN

JAsmonate ZIM-domain (JAZ) proteins repress the activity of transcription factors that execute responses to the plant hormone jasmonoyl-L-isoleucine (JA-Ile). The ZIM protein domain recruits the co-repressors NINJA and TOPLESS to JAZ-bound transcription factors, and contains a highly conserved TIF[F/Y]XG motif that defines the larger family of TIFY proteins to which JAZs belong. Here, we report that diverse plant species contain genes encoding putative non-TIFY JAZ proteins, including a previously unrecognized JAZ repressor in Arabidopsis (JAZ13, encoded by At3g22275). JAZ13 is most closely related to JAZ8 and includes divergent EAR, TIFY/ZIM, and Jas motifs. Unlike JAZ8, however, JAZ13 contains a Ser-rich C-terminal tail that is a site for phosphorylation. Overexpression of JAZ13 resulted in reduced sensitivity to JA, attenuation of wound-induced expression of JA-response genes, and decreased resistance to insect herbivory. JAZ13 interacts with the bHLH transcription factor MYC2 and the co-repressor TOPLESS but, consistent with the absence of a TIFY motif, neither NINJA nor other JAZs. Analysis of single and higher-order T-DNA insertion jaz null mutants provided further evidence that JAZ13 is a repressor JA signaling. Our results demonstrate that proteins outside the TIFY family are functional JAZ repressors and further suggest that this expansion of the JAZ family allows fine-tuning of JA-mediated transcriptional responses.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/genética , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
19.
J Exp Bot ; 67(18): 5313-5324, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27481446

RESUMEN

Trichomes are epidermal structures that provide a first line of defense against arthropod herbivores. The recessive hairless (hl) mutation in tomato (Solanum lycopersicum L.) causes severe distortion of trichomes on all aerial tissues, impairs the accumulation of sesquiterpene and polyphenolic compounds in glandular trichomes, and compromises resistance to the specialist herbivore Manduca sexta Here, we demonstrate that the tomato Hl gene encodes a subunit (SRA1) of the highly conserved WAVE regulatory complex that controls nucleation of actin filaments in a wide range of eukaryotic cells. The tomato SRA1 gene spans a 42-kb region containing both Solyc11g013280 and Solyc11g013290 The hl mutation corresponds to a complex 3-kb deletion that removes the last exon of the gene. Expression of a wild-type SRA1 cDNA in the hl mutant background restored normal trichome development, accumulation of glandular trichome-derived metabolites, and resistance to insect herbivory. These findings establish a role for SRA1 in the development of tomato trichomes and also implicate the actin-cytoskeleton network in cytosolic control of specialized metabolism for plant defense. We also show that the brittleness of hl mutant stems is associated with altered mechanical and cell morphological properties of stem tissue, and demonstrate that this defect is directly linked to the mutation in SRA1.


Asunto(s)
Actinas/fisiología , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Tallos de la Planta/fisiología , Solanum lycopersicum/genética , Tricomas/fisiología , Animales , Clonación Molecular , Resistencia a la Enfermedad/fisiología , Eliminación de Gen , Genes de Plantas/fisiología , Herbivoria , Solanum lycopersicum/fisiología , Manduca , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Plant Cell ; 25(5): 1641-56, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23673982

RESUMEN

Jasmonates (JAs) are plant hormones that regulate the balance between plant growth and responses to biotic and abiotic stresses. Although recent studies have uncovered the mechanisms for JA-induced responses in Arabidopsis thaliana, the mechanisms by which plants attenuate the JA-induced responses remain elusive. Here, we report that a basic helix-loop-helix-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1 (JAM1), acts as a transcriptional repressor and negatively regulates JA signaling. Gain-of-function transgenic plants expressing the chimeric repressor for JAM1 exhibited substantial reduction of JA responses, including JA-induced inhibition of root growth, accumulation of anthocyanin, and male fertility. These plants were also compromised in resistance to attack by the insect herbivore Spodoptera exigua. Conversely, jam1 loss-of-function mutants showed enhanced JA responsiveness, including increased resistance to insect attack. JAM1 and MYC2 competitively bind to the target sequence of MYC2, which likely provides the mechanism for negative regulation of JA signaling and suppression of MYC2 functions by JAM1. These results indicate that JAM1 negatively regulates JA signaling, thereby playing a pivotal role in fine-tuning of JA-mediated stress responses and plant growth.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ciclopentanos/farmacología , Oxilipinas/farmacología , Secuencia de Aminoácidos , Animales , Antocianinas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/parasitología , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclopentanos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Interacciones Huésped-Parásitos/efectos de los fármacos , Microscopía Fluorescente , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Transducción de Señal/genética , Spodoptera/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA