Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Small ; 20(1): e2304898, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670213

RESUMEN

The commercialization of Li-S batteries as a promising energy system is terribly impeded by the issues of the shuttle effect and Li dendrite. Keggin Al13 -pillared montmorillonite (AlMMT), used as the modified film of the separator together with super-P and poly (vinylidene fluoride) (PVDF), has a good chemical affinity to lithium polysulfide (LiPS) to retard the polysulfide shuttling, excellent electrolyte wettability, and a stable structure, which can improve the rate capability and cycling stability of Li-S batteries. Density function theory (DFT) calculations reveal the strong adsorption ability of AlMMT for LiPS. Consequently, the modified film allows Li-S batteries to reach 902 mAh g-1 at 0.2C after 200 cycles and 625 mAh g-1 at 1C after 1000 cycles. More importantly, a high reversible areal capacity of 4.04 mAh cm-2 can be realized under a high sulfur loading of 6.10 mg cm-2 . Combining the merits of rich resources of montmorillonite, prominent performance, simple operation and cost-effectiveness together, this work exploits a new route for viable Li-S batteries for applications.

2.
Small ; 19(15): e2207253, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36610048

RESUMEN

Single atoms are superior electrocatalysts having high atomic utilization and amazing activity for water oxidation and splitting. Herein, this work reports a thermal reduction method to introduce high-valence iridium (Ir) single atoms into bimetal phosphide (FeNiP) nanoparticles toward high-efficiency oxygen evolution reaction (OER) and overall water splitting. The presence of high-valence single Ir atoms (Ir4+ ) and their synergistic interaction with Ni3+ species as well as the disproportionation of Ni3+ assisted by Fe collectively contribute to the exceptional OER performance. In specific, at appropriate Ir/Ni and Fe/Ni ratios, the as-prepared Ir-doped FeNiP (Ir25 -Fe16 Ni100 P64 ) nanoparticles at a mass loading of only 35 µg cm-2 show the overpotential as low as 232 mV at 10 mA cm-2 and activity as high as 1.86 A mg-1 at 1.5 V versus RHE for OER in 1.0 m KOH. Computational simulations confirm the vital role of high-valence Ir to weaken the adsorption of OER intermediates, favorable for accelerating OER kinetics. Impressively, a Pt/C||Ir25 -Fe16 Ni100 P64 two-electrode alkaline electrolyzer affords a current density of 10 mA cm-2 at a low cell voltage of 1.42 V, along with satisfied stability. An AA battery with a nominal voltage of 1.5 V can drive overall water splitting with obvious bubbles released.

3.
Small ; 19(39): e2302706, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37246262

RESUMEN

Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu2 S nanocages (CoS/Cu2 S@C-NC) is constructed. The interlocked hetero-architecture filled with conductive carbon accelerates the Na+ /e- transfer, thus leading to improved electrochemical kinetics. Also the protective carbon layer can provide better volume accommondation upon charging/discharging. As a result, the battery with CoS/Cu2 S@C-NC as anode displays a high capacity of 435.3 mAh g-1 after 1000 cycles at 2.0 A g-1 (≈3.4 C). Under a higher rate of 10.0 A g-1 (≈17 C), a capacity of as high as 347.2 mAh g-1 is still remained after long 2300 cycles. The capacity decay per cycle is only 0.017%. The battery also exhibits a better temperature tolerance at 50 and -5 °C. A low internal impedance analyzed by X-ray diffraction patterns and galvanostatic intermittent titration technique, narrow band gap, and high density of states obtained by first-principle calculations of the binary sulfides, ensure the rapid Na+ /e- transport. The long-cycling-life SIB using binary metal sulfide hybrid nanocages as anode shows promising applications in versatile electronic devices.

4.
Chemistry ; 29(10): e202202950, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36437233

RESUMEN

A foldable battery with high flexibility provides great potential in various wearable electronic devices for health and fitness tracking, chronic disease management, performance monitoring, navigation tracking, and portable gears for soldiers. We report a highly flexible, self-healing Zn-ion battery with a free-standing cathode that is composed of a 3D gear-like NH4 V4 O10 @C composite on carbon paper. The battery retained a capacity of up to 102.4 mAh g-1 even after being folded 60 times with a high angle of 180°. An aqueous hydrogel consisting polyvinyl alcohol, glycerin and Zn(CF3 SO3 )2 was used as electrolyte, which showed as high as 580 % tensile strain under a loading weight of 78 N. The battery exhibited a better capacity retention of over 100 mAh g-1 and Coulombic efficiency of over 99.8 % after cutting and twisting to 90°, thereby indicating a great self-healing performance. The gear-like geometry greatly improved the volume accommodation due to the increased interval space between the blades and the outward configuration. Meanwhile the Zn2+ ionic conductivity was improved by rapid re-binding of many existing hydroxy groups from the electrolyte and the enhanced contact surface area and diffusion route from the cathode material. The highly flexible, safe aqueous Zn-ion battery opens a practical way to power various carry-on electronics under mechanical agitation.

5.
Nano Lett ; 21(6): 2650-2657, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33710893

RESUMEN

Electrocatalytic CO2 reduction reaction is regarded as an intriguing route for producing renewable chemicals and fuels, but its development is limited by the lack of highly efficient and stable electrocatalysts. Herein, we propose the pipet-like bismuth (Bi) nanorods semifilled in nitrogen-doped carbon nanotubes (Bi-NRs@NCNTs) for highly selective electrocatalytic CO2 reduction. Benefited from the prominent capillary and confinement effects, the Bi-NRs@NCNTs act as nanoscale conveyors that can significantly facilitate the mass transport, adsorption,and concentration of reactants onto the active sites, realizing rapid reaction kinetics and low cathodic polarization. The spatial encapsulation and separation by the NCNT shells prevents the self-aggregation and surface oxidation of Bi-NRs, increasing the dispersity and stability of the electrocatalyst. As a result, the Bi-NRs@NCNTs exhibit high activity and durable catalytic stability for CO2-to-formate conversion over a wide potential range. The Faradaic efficiency for formate production reaches 90.9% at a moderate applied potential of -0.9 V vs reversible hydrogen electrode (RHE).

6.
Angew Chem Int Ed Engl ; 61(10): e202117205, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34989076

RESUMEN

Polyethylene terephthalate (PET) and CO2 , two chemical wastes that urgently need to be transformed in the environment, are converted simultaneously in a one-pot catalytic process through the synergistic coupling of three reactions: CO2 hydrogenation, PET methanolysis and dimethyl terephthalate (DMT) hydrogenation. More interestingly, the chemical equilibria of both reactions were shifted forward due to a revealed dual-promotion effect, leading to significantly enhanced PET depolymerization. The overall methanol yield from CO2 hydrogenation exceeded the original thermodynamic equilibrium limit since the methanol was in situ consumed in the PET methanolysis. The degradation of PET by a stoichiometric ratio of methanol was significantly enhanced because the primary product, DMT was hydrogenated to dimethyl cyclohexanedicarboxylate (DMCD) or p-xylene (PX). This synergistic catalytic process provides an effective way to simultaneously recycle two wastes, polyesters and CO2 , for producing high-value chemicals.

7.
J Cell Mol Med ; 25(19): 9183-9198, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34469038

RESUMEN

Nasopharyngeal carcinoma (NPC), a subclass of cancers of the neck and head, is a predominant cause of cancer-associated death worldwide. Hence, there is a critical need for research into NPC-related treatment strategies. Cisplatin is a promising therapy option for NPCs and other cancers that is frequently utilized. Some patients acquire resistance to cisplatin therapy, which complicates the successful use of cisplatin treatment in NPCs. Although exosomal transfer of oncogenic miRNAs has been shown to improve recipient cell proliferation, metastasis and chemoresistance, the molecular mechanism behind this effect on NPC has yet to be fully understood. Exosomal microRNAs (miRNAs) from cisplatin-resistant cells were identified as significant mediators of chemoresistance in NPC cells in this investigation. Initially, we found that exosomal miR-106a-5p levels in the serum of chemoresistant and last-cycle patients were greater than in that of non-resistant and first-cycle patients. Also, exosomal miR-106a-5p enhanced the proliferative ability of NPC cells. Mechanistically, exosomal miR-106a-5p targets ARNT2, which further activates AKT phosphorylation, and thus promotes NPC cell proliferation, decreases apoptosis and in turn regulates tumorigenesis. We found similar results using in vivo NPC models, where exosomal miR-106a-5p through regulation of ARNT2 (aryl hydrocarbon receptor nuclear translocator 2) promoted tumorigenesis. Taken together, these findings indicate that exosomal miR-106a-5p could be a promising diagnostic biomarker and drug target for patients with NPC.


Asunto(s)
Carcinogénesis/genética , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Exosomas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Xenoinjertos , Humanos , Ratones , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Interferencia de ARN
8.
J Am Chem Soc ; 143(40): 16358-16363, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34591468

RESUMEN

In comparison to the traditional petroleum-based plastics, polylactic acid, the most popular biodegradable plastic, can be decomposed into carbon dioxide and water in the environment. However, the natural degradation of polylactic acid requires a substantial period of time and, more importantly, it is a carbon-emitting process. Therefore, it is highly desirable to develop a novel transformation process that can upcycle the plastic trash into value-added products, especially with high chemical selectivity. Here we demonstrate a one-pot catalytic method to convert polylactic acid into alanine by a simple ammonia solution treatment using a Ru/TiO2 catalyst. The process has a 77% yield of alanine at 140 °C, and an overall selectivity of 94% can be reached by recycling experiments. Importantly, no added hydrogen is used in this process. It has been verified that lactamide and ammonium lactate are the initial intermediates and that the dehydrogenation of ammonium lactate initiates the amination, while Ru nanoparticles are essential for the dehydrogenation/rehydrogenation and amination steps. The process demonstrated here could expand the application of polylactic acid waste and inspire new upcycling strategies for different plastic wastes.

9.
Small ; 17(41): e2103051, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34510738

RESUMEN

Developing emerging materials for high energy-density lithium-sulfur (Li-S) batteries is of great significance to suppress the shuttle effect of polysulfides and to accommodate the volumetric change of sulfur. Here, a novel porous microcapsule system containing a carbon nanotubes/tin dioxide quantum dots/S (CNTs/QDs/S) composite core and a porous shell prepared through a liquid-driven coaxial microfluidic method as Li-S battery cathode is developed. The encapsulated CNTs in the microcapsules provide pathways for electron transport; SnO2 QDs on CNTs immobilize the polysulfides by strong adsorption, which is verified by using density functional theory calculations on binding energies. The porous shell of the microcapsule is beneficial for ion diffusion and electrolyte penetration. The void inside the microcapsule accommodates the volumetric change of sulfur. The Li-S battery based on the porous CNTs/QDs/S microcapsules displays a high capacity of 1025 mAh g-1 after 100 cycles at 0.1 C. When the sulfur loading is 2.03 mg cm-2 , the battery shows a stable cycling life of 700 cycles, a Coulombic efficiency exceeding 99.9%, a recoverable rate-performance during repeated tests, and a good temperature tolerance at both -5 and 45 °C, which indicates a potential for applications at different conditions.

10.
Nanotechnology ; 33(10)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34818635

RESUMEN

Metal-organic-frameworks-derived nanostructures have received broad attention for secondary batteries. However, many strategies focus on the preparation of dispersive materials, which need complicated steps and some additives for making electrodes of batteries. Here, we develop a novel free-standing Co9S8polyhedron array derived from ZIF-67, which grows on a three-dimensional carbon cloth for lithium-sulfur (Li-S) battery. The polar Co9S8provides strong chemical binding to immobilize polysulfides, which enables efficiently suppressing of the shuttle effect. The free-standing S@Co9S8polyhedron array-based cathode exhibits ultrahigh capacity of 1079 mAh g-1after cycling 100 times at 0.1 C, and long cycling life of 500 cycles at 1 C, recoverable rate-performance and good temperature tolerance. Furthermore, the adsorption energies towards polysulfides are investigated by using density functional theory calculations, which display a strong binding with polysulfides.

11.
Exp Cell Res ; 378(1): 1-10, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30779921

RESUMEN

Paclitaxel (Taxol) is an anticancer taxane drug commonly used in the treatment of nasopharyngeal carcinoma (NPC). However, resistance to paclitaxel is a major difficulty in developing an effective therapy against NPC. MicroRNAs (miRNAs) are known to regulate genes that are involved in drug resistance. We assessed the effects of miR-29c, an miRNA identified in a genome-wide study of Taxol resistance, on genes associated with resistance in NPC cells. We established Taxol resistance in two human NPC cell lines, SUNE-1 and C666-1 (SUNE-1-Taxol and C666-1-Taxol) and found that miR-29c was downregulated and integrin beta-1 (ITGB1) was upregulated in Taxol-resistant NPC cells compared with parental NPC cells. Further investigations using a TUNEL assay and BAX/BCL-2 ratio, found that overexpression of miR-29c and knockdown of ITGB1 can resensitize drug-resistant NPC cells to Taxol and promote apoptosis. In addition, a dual-luciferase reporter assay indicated that ITGB1 is the target of miR-29c. Furthermore, silencing miR-29c markedly increased Taxol-resistant NPC tumor growth in a nude mouse xenograft model while knockdown of ITGB1 reversed this result. Overall, these data demonstrate that miR-29c regulates resistance to Taxol in NPC by targeting ITGB1. Our research indicates that miR-29c may have potential use in Taxol-resistant NPC therapy.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Integrina beta1/genética , MicroARNs/genética , Neoplasias Nasofaríngeas/metabolismo , Paclitaxel/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos , Integrina beta1/metabolismo , MicroARNs/metabolismo , Neoplasias Nasofaríngeas/genética
12.
Chemphyschem ; 20(14): 1804-1811, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31120178

RESUMEN

Alloying Pt with other metals is an effective strategy to tune its performance towards selective hydrogenation reactions. Herein, we have demonstrated a process to screen Pt-based alloys for inhibition of butadiene over-hydrogenation with a model comprising isolated single atoms (ISA) embedded into Pt(111). DFT calculations reveal that the diffusion energy barrier of H co-adsorbed with 1-butene is a key parameter for the screening. The output from the ISA model was validated by testing several typical Pt-based alloys towards butadiene hydrogenation. Furthermore, an unexpected higher selectivity to cis-2-butene compared to the trans isomer and 1-butene over the PtZn alloy was explored employing the ISA model.

13.
Cell Physiol Biochem ; 47(2): 747-758, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29807360

RESUMEN

BACKGROUND/AIMS: Pancreatic cancer (PC) is an aggressive malignancy with a poor survival rate. Despite advances in the treatment of PC, the efficacy of therapy is limited by the development of chemoresistance. Here, we examined the role of microRNA-29c (miR-29c) and the involvement of autophagy and apoptosis in the chemoresistance of PC cells in vivo and in vitro. METHODS: We employed qRT-PCR, western blot and immunofluorescence to examine the expression level of miR-29c, USP22 and autophagy relative protein. In addition, we used MTT assay to detect cell proliferation and transwell assay to measure migration and invasiveness. The apoptosis was determined using annexin V-FITC/PI apoptosis detection kit by flow cytometry. Luciferase reporter assays confirmed the relationship between USP22 and miR-29c. RESULTS: miR-29c overexpression in the PC cell line PANC-1 enhanced the effect of gemcitabine on decreasing cell viability and inducing apoptosis and inhibited autophagy, as shown by western blotting, immunofluorescence staining, colony formation assays, and flow cytometry. Ubiquitin specific peptidase (USP)-22, a deubiquitinating enzyme known to induce autophagy and promote PC cell survival, was identified as a direct target of miR-29c. USP22 knockdown experiments indicated that USP22 suppresses gemcitabine-induced apoptosis by promoting autophagy, thereby increasing the chemoresistance of PC cells. Luciferase reporter assays confirmed that USP22 is a direct target of miR-29c. A xenograft mouse model demonstrated that miR-29c increases the chemosensitivity of PC in vivo by downregulating USP22, leading to the inhibition of autophagy and induction of apoptosis. CONCLUSIONS: Taken together, these findings reveal a potential mechanism underlying the chemoresistance of PC cells mediated by the regulation of USP22-mediated autophagy by miR-29c, suggesting potential targets and therapeutic strategies in PC.


Asunto(s)
Autofagia , MicroARNs/metabolismo , Tioléster Hidrolasas/metabolismo , Regiones no Traducidas 3' , Animales , Antagomirs/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Regulación hacia Abajo , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Ratones , Ratones Desnudos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Tioléster Hidrolasas/antagonistas & inhibidores , Tioléster Hidrolasas/genética , Trasplante Heterólogo , Ubiquitina Tiolesterasa , Gemcitabina
14.
ACS Appl Mater Interfaces ; 16(19): 24612-24623, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710028

RESUMEN

Interfacial active water molecule-induced parasitic reactions and stochastic Zn2+ transport-caused dendrite issue significantly impede the implementation of aqueous Zn-ion batteries. Herein, three positively charged amino acids, namely arginine, histidine, and lysine, were utilized as adsorption-type electrolyte additives to enhance the stability and reversibility of Zn anodes. Combined theoretical and experimental analyses verified that these amino acid cations can synergistically modulate the interfacial microenvironment and promote orientational Zn deposition. The adsorbed amino acid cations reconfigured the interfacial electric double layer structure, forming SO42-- and H2O-poor interfaces, thereby retarding hydrogen evolution and corrosion side reactions. Simultaneously, the preferential adsorption of the amino acid cations at specific facets induced crystallographic orientational Zn deposition along unterminated facets. Three deposition architectures, namely planar texture, subvertical alignment, and vertical erection, were obtained, all effectively inhibiting dendrite formation. Consequently, symmetric cells with the three amino acid cations exhibited high stripping/plating reversibility of over 2000 cycles at 5 mA cm-2. Moreover, MnO2-based full cells exhibited markedly improved stabilities compared with their additive-free counterparts.

15.
ACS Nano ; 18(27): 17774-17785, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38940334

RESUMEN

Lithium-sulfur (Li-S) batteries are promising for next-generation high-energy energy storage systems. However, the slow reaction kinetics render mobile polysulfides hardly controlled, yielding shuttling effects and eventually damaging Li metal anodes. To improve the cyclability of Li-S batteries, high-efficiency catalysts are desired to accelerate polysulfide conversion and suppress the shuttling effect. Herein, we studied a doping system with Ni2P and Ni2B as the end members and found a B-doped Ni2P catalyst that demonstrates high activity for Li-S batteries. As anionic dopants, B demonstrates an interesting reverse electron transfer to P and tunes the electronic structure of Ni2P dramatically. The resultant B-doped Ni2P exhibits short Ni-B bonds and strong Ni-S interaction, and the electron donation of B to P further enhances the adsorption of polysulfide on catalysts. The S-S bonds of polysulfides were activated appropriately, therefore decreasing a low energy barrier for conversion reactions.

16.
BMC Cancer ; 13: 63, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23388133

RESUMEN

BACKGROUND: Rho GTPases are involved in cellular functions relevant to cancer. The roles of RhoA and Rac1 have already been established. However, the role of Rac3 in cancer aggressiveness is less well understood. METHODS: This work was conducted to analyze the implication of Rac3 in the aggressiveness of two breast cancer cell lines, MDA-MB-231 and MCF-7: both express Rac3, but MDA-MB-231 expresses more activated RhoA. The effect of Rac3 in cancer cells was also compared with its effect on the non-tumorigenic mammary epithelial cells MCF-10A. We analyzed the consequences of Rac3 depletion by anti-Rac3 siRNA. RESULTS: Firstly, we analyzed the effects of Rac3 depletion on the breast cancer cells' aggressiveness. In the invasive MDA-MB-231 cells, Rac3 inhibition caused a marked reduction of both invasion (40%) and cell adhesion to collagen (84%), accompanied by an increase in TNF-induced apoptosis (72%). This indicates that Rac3 is involved in the cancer cells' aggressiveness. Secondly, we investigated the effects of Rac3 inhibition on the expression and activation of related signaling molecules, including NF-κB and ERK. Cytokine secretion profiles were also analyzed. In the non-invasive MCF-7 line; Rac3 did not influence any of the parameters of aggressiveness. CONCLUSIONS: This discrepancy between the effects of Rac3 knockdown in the two cell lines could be explained as follows: in the MDA-MB-231 line, the Rac3-dependent aggressiveness of the cancer cells is due to the Rac3/ERK-2/NF-κB signaling pathway, which is responsible for MMP-9, interleukin-6, -8 and GRO secretion, as well as the resistance to TNF-induced apoptosis, whereas in the MCF-7 line, this pathway is not functional because of the low expression of NF-κB subunits in these cells. Rac3 may be a potent target for inhibiting aggressive breast cancer.


Asunto(s)
Neoplasias de la Mama/enzimología , Proteínas de Unión al GTP rac/metabolismo , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Adhesión Celular , Movimiento Celular , Forma de la Célula , Supervivencia Celular , Colágeno/metabolismo , Citocinas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Células MCF-7 , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/metabolismo , Invasividad Neoplásica , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rhoA/metabolismo
17.
Proc Natl Acad Sci U S A ; 107(7): 2956-61, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133625

RESUMEN

HYPB is a human histone H3 lysine 36 (H3K36)-specific methyltransferase and acts as the ortholog of yeast Set2. This study explored the physiological function of mammalian HYPB using knockout mice. Homozygous disruption of Hypb impaired H3K36 trimethylation but not mono- or dimethylation, and resulted in embryonic lethality at E10.5-E11.5. Severe vascular defects were observed in the Hypb(-/-) embryo, yolk sac, and placenta. The abnormally dilated capillaries in mutant embryos and yolk sacs could not be remodeled into large blood vessels or intricate networks, and the aberrantly rounded mesodermal cells exhibited weakened interaction with endothelial cells. The embryonic vessels failed to invade the labyrinthine layer of placenta, which impaired the embryonic-maternal vascular connection. These defects could not be rescued by wild-type tetraploid blastocysts, excluding the possibility that they were caused by the extraembryonic tissues. Consistent with these phenotypes, gene expression profiling in wild-type and Hypb(-/-) yolk sacs revealed that the Hypb disruption altered the expression of some genes involved in vascular remodeling. At the cellular level, Hypb(-/-) embryonic stem cell-derived embryonic bodies, as well as in vitro-cultured human endothelial cells with siRNA-mediated suppression of HYPB, showed obvious defects in cell migration and invasion during vessel formation, suggesting an intrinsic role of Hypb in vascular development. Taken together, these results indicate that Hypb is required for embryonic vascular remodeling and provide a tool to study the function of H3K36 methylation in vasculogenesis/angiogenesis.


Asunto(s)
Embrión de Mamíferos/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Neovascularización Fisiológica/fisiología , Animales , Células Cultivadas , Embrión de Mamíferos/metabolismo , Perfilación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Metilación , Ratones , Ratones Noqueados , Neovascularización Fisiológica/genética , Interferencia de ARN
18.
ACS Appl Mater Interfaces ; 15(23): 28044-28054, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37265404

RESUMEN

Research on zinc-ion batteries (ZIBs) with manganese-based cathodes has been severely hindered by their poor cycle stability. This study explores the fundamental parameters that affect the cycle stability of battery systems from a structural stability perspective. MnO2 electrodes with different classical morphologies and sizes were synthesized via a temperature-controlled coprecipitation strategy. The effects of the morphology and size of the MnO2 on the overall electrical properties and kinetics of ZIBs were analyzed and compared. The one-dimensional nanofibrous α-MnO2 produced using this method exhibited the most stable nanostructure with a favorable aspect ratio, which resulted in faster chemical kinetics. A more uniform particle distribution and better aspect ratios not only enabled a faster ion migration rate but also affected the remolding of the anode morphology. After 2000 cycles at a high current density of 1 A g-1, the material maintained an excellent discharge-specific capacity, highlighting it as a promising electrode material for ZIBs. The construction of nanoenergy materials with controllable morphologies and sizes will significantly advance battery applications.

19.
Chem Commun (Camb) ; 59(18): 2640-2643, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36779410

RESUMEN

Wearable flexible electronics has become more and more significant and popular in daily life. Here, a flexible quasi-solid Zn-ion battery consisting of CoZn-metal organic frameworks (MOFs) grown on carbon cloth as an all-in-one cathode working with a hydrogel electrolyte is developed. CoZn MOFs display a blade-like morphology, which is significant for rapid transfer of ions and electrons. The battery bending at angles from 0° to 180° displays high capacities and good capacity retention, and the capacity remains stable as the flexible battery twists to 90°. In addition, the capacity exceeds 101.4 mA h g-1 as the battery is folded to 180° for 30 times, which indicates that the developed Zn-ion batteries would be applicable for a large variety of wearable devices such as foldable cellphones and pads.

20.
Chem Commun (Camb) ; 59(27): 4020-4023, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36917447

RESUMEN

By tuning the amount of the Se precursors during the synthesis, orthorhombic PdSe2, cubic Pd17Se15, and monoclinic Pd7Se2 nanoparticles are synthesized, which show phase-dependent electrocatalysis for the ethanol oxidation reaction. This work advances the controllable synthesis of transition metal selenides and inspires their applications in electrocatalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA