Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 185(8): 1389-1401.e18, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35344711

RESUMEN

The effectiveness of SARS-CoV-2 vaccines and therapeutic antibodies have been limited by the continuous emergence of viral variants and by the restricted diffusion of antibodies from circulation into the sites of respiratory virus infection. Here, we report the identification of two highly conserved regions on the Omicron variant receptor-binding domain recognized by broadly neutralizing antibodies. Furthermore, we generated a bispecific single-domain antibody that was able to simultaneously and synergistically bind these two regions on a single Omicron variant receptor-binding domain as revealed by cryo-EM structures. We demonstrated that this bispecific antibody can be effectively delivered to lung via inhalation administration and exhibits exquisite neutralization breadth and therapeutic efficacy in mouse models of SARS-CoV-2 infections. Importantly, this study also deciphered an uncommon and highly conserved cryptic epitope within the spike trimeric interface that may have implications for the design of broadly protective SARS-CoV-2 vaccines and therapeutics.


Asunto(s)
Vacunas contra la COVID-19 , Anticuerpos de Dominio Único , Administración por Inhalación , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Vacunas contra la COVID-19/administración & dosificación , Modelos Animales de Enfermedad , Humanos , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química
2.
J Virol ; 97(5): e0155722, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37133449

RESUMEN

Arthritogenic alphaviruses, including chikungunya virus (CHIKV), preferentially target joint tissues and cause chronic rheumatic disease that adversely impacts the quality of life of patients. Viruses enter target cells via interaction with cell surface receptor(s), which determine the viral tissue tropism and pathogenesis. Although MXRA8 is a recently identified receptor for several clinically relevant arthritogenic alphaviruses, its detailed role in the cell entry process has not been fully explored. We found that in addition to its localization on the plasma membrane, MXRA8 is present in acidic organelles, endosomes, and lysosomes. Moreover, MXRA8 is internalized into cells without a requirement for its transmembrane and cytoplasmic domains. Confocal microscopy and live cell imaging revealed that MXRA8 interacts with CHIKV at the cell surface and then enters cells along with CHIKV particles. At the moment of membrane fusion in the endosomes, many viral particles are still colocalized with MXRA8. These findings provide insight as to how MXRA8 functions in alphavirus internalization and suggest possible targets for antiviral development. IMPORTANCE The globally distributed arthritogenic alphaviruses have infected millions of humans and induce rheumatic disease, such as severe polyarthralgia/polyarthritis, for weeks to years. Alphaviruses infect target cells through receptor(s) followed by clathrin-mediated endocytosis. MXRA8 was recently identified as an entry receptor that shapes the tropism and pathogenesis for multiple arthritogenic alphaviruses, including chikungunya virus (CHIKV). Nonetheless, the exact functions of MXRA8 during the process of viral cell entry remain undetermined. Here, we have provided compelling evidence for MXRA8 as a bona fide entry receptor that mediates the uptake of alphavirus virions. Small molecules that disrupt MXRA8-dependent binding of alphaviruses or internalization steps could serve as a platform for unique classes of antiviral drugs.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Enfermedades Reumáticas , Humanos , Virus Chikungunya/fisiología , Internalización del Virus , Fusión de Membrana , Calidad de Vida
3.
J Virol ; 97(10): e0072423, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37706688

RESUMEN

IMPORTANCE: The development of broad-spectrum SARS-CoV-2 vaccines will reduce the global economic and public health stress from the COVID-19 pandemic. The use of conserved T-cell epitopes in combination with spike antigen that induce humoral and cellular immune responses simultaneously may be a promising strategy to further enhance the broad spectrum of COVID-19 vaccine candidates. Moreover, this research suggests that the combined vaccination strategies have the ability to induce both effective systemic and mucosal immunity, which may represent promising strategies for maximizing the protective efficacy of respiratory virus vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunas Combinadas , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Inmunidad Celular , Inmunización , Pandemias/prevención & control , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunación
4.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33658332

RESUMEN

The pandemic of COVID-19, caused by SARS-CoV-2, is a major global health threat. Epidemiological studies suggest that bats (Rhinolophus affinis) are the natural zoonotic reservoir for SARS-CoV-2. However, the host range of SARS-CoV-2 and intermediate hosts that facilitate its transmission to humans remain unknown. The interaction of coronavirus with its host receptor is a key genetic determinant of host range and cross-species transmission. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as the receptor to enter host cells in a species-dependent manner. In this study, we characterized the ability of ACE2 from diverse species to support viral entry. By analyzing the conservation of five residues in two virus-binding hotspots of ACE2 (hotspot 31Lys and hotspot 353Lys), we predicted 80 ACE2 proteins from mammals that could potentially mediate SARS-CoV-2 entry. We chose 48 ACE2 orthologs among them for functional analysis, and showed that 44 of these orthologs-including domestic animals, pets, livestock, and animals commonly found in zoos and aquaria-could bind the SARS-CoV-2 spike protein and support viral entry. In contrast, New World monkey ACE2 orthologs could not bind the SARS-CoV-2 spike protein and support viral entry. We further identified the genetic determinant of New World monkey ACE2 that restricts viral entry using genetic and functional analyses. These findings highlight a potentially broad host tropism of SARS-CoV-2 and suggest that SARS-CoV-2 might be distributed much more widely than previously recognized, underscoring the necessity to monitor susceptible hosts to prevent future outbreaks.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/veterinaria , Receptores Virales/genética , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Especificidad del Huésped , Humanos , Pandemias/prevención & control , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Filogenia , Unión Proteica , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tropismo Viral , Zoonosis Virales/genética , Zoonosis Virales/prevención & control , Zoonosis Virales/virología , Acoplamiento Viral , Internalización del Virus
5.
Foodborne Pathog Dis ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708669

RESUMEN

Both Klebsiella pneumoniae and Chryseobacterium cause an increasing number of diseases in fish, resulting in great economic losses in aquaculture. In addition, the disease infected with Klebsiella pneumoniae or Chryseobacterium exhibited the similar clinical symptoms in aquatic animals. However, there is no effective means for the simultaneous detection of co-infection and discrimination them for these two pathogens. Here, we developed a duplex polymerase chain reaction (PCR) method based on the outer membrane protein A (ompA) gene of Klebsiella pneumoniae and Chryseobacterium. The specificity and validity of the designed primers were confirmed experimentally using simplex PCR. The expected amplicons for Klebsiella pneumoniae and Chryseobacterium had a size of 663 and 1404 bp, respectively. The optimal condition for duplex PCR were determined to encompass a primer concentration of 0.5 µM and annealing temperature of 57°C. This method was analytical specific with no amplification being observed from the genomic DNA of Escherichia coli, Vibrio harveyi, Pseudomonas plecoglossicida, Aeromonas hydrophila and Acinetobacter johnsonii. The limit of detection was estimated to be 20 fg of genomic DNA for Chryseobacterium and 200 fg for Klebsiella pneumoniae, or 100 colony-forming units (CFU) of bacterial cells in both cases. The duplex PCR was capable of simultaneously amplifying target fragments from genomic DNA extracted from the bacteria and fish liver. For practical validation of the method, 20 diseased fish were collected from farms, among which 4 samples were PCR-positive for Klebsiella pneumoniae and Chryseobacterium. The duplex PCR method developed here is time-saving, specific, convenient, and may prove to be an invaluable tool for molecular detection and epidemiological investigation of Klebsiella pneumoniae and Chryseobacterium in the field of aquaculture.

6.
PLoS Pathog ; 17(3): e1009392, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33760889

RESUMEN

Coronavirus interaction with its viral receptor is a primary genetic determinant of host range and tissue tropism. SARS-CoV-2 utilizes ACE2 as the receptor to enter host cell in a species-specific manner. We and others have previously shown that ACE2 orthologs from New World monkey, koala and mouse cannot interact with SARS-CoV-2 to mediate viral entry, and this defect can be restored by humanization of the restrictive residues in New World monkey ACE2. To better understand the genetic determinants behind the ability of ACE2 orthologs to support viral entry, we compared koala and mouse ACE2 sequences with that of human and identified the key residues in koala and mouse ACE2 that restrict viral receptor activity. Humanization of these critical residues rendered both koala and mouse ACE2 capable of binding the spike protein and facilitating viral entry. Our study shed more lights into the genetic determinants of ACE2 as the functional receptor of SARS-CoV-2, which facilitates our understanding of viral entry.


Asunto(s)
COVID-19/enzimología , COVID-19/genética , Peptidil-Dipeptidasa A/genética , Receptores Virales/genética , SARS-CoV-2/fisiología , Animales , Secuencia de Bases , COVID-19/virología , Especificidad del Huésped , Humanos , Ratones/genética , Ratones/virología , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Phascolarctidae/genética , Phascolarctidae/virología , Receptores Virales/metabolismo , SARS-CoV-2/genética , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
7.
J Med Virol ; 94(8): 3982-3987, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35474579

RESUMEN

There is a potential risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread through human contact with seafood and the inanimate materials contaminated by the virus. In this study, we examined the stability of the virus in artificial seawater (ASW) and on the surface of selected materials. SARS-CoV-2 (3.75 log10 TCID50 ) in ASW at 22℃ maintained infectious about 3 days and at 4℃ the virus survived more than 7 days. It should be noticed that viable virus at high titer (5.50 log10 TCID50 ) may survive more than 20 days in ASW at 4℃ and for 7 days at 22℃. SARS-CoV-2 on stainless steel and plastic bag maintained infectious for 3 days, and on nonwoven fabric for 1 day at 22℃. In addition, the virus remained infectious for 9 days on stainless steel and non-woven fabric, and on plastic bag for 12 days at 4℃. It is important to highlight the role of inanimate material surfaces as a source of infection and the necessity for surface decontamination and disinfection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Plásticos , Agua de Mar , Acero Inoxidable
8.
Vet Res ; 53(1): 5, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35063026

RESUMEN

In recent years, Klebsiella pneumoniae (KP) has caused disease outbreaks in different animals, resulting in serious economic losses and biosafety concerns. Considering the broad antibiotic resistance of KP, vaccines are the most effective tools against infection. However, there is still no KP vaccine available in the veterinary field. Our results indicate that the highly conserved outer membrane phosphoporin (PhoE) of KP is immunogenic in mice and elicits high titers of antibodies that were shown to be specific for PhoE by immunoblotting. Immunization with PhoE also induced robust cell-mediated immunity and elicited the secretion of high levels of IFN-γ and IL-4, suggesting the induction of mixed Th1 and Th2 responses. Sera from PhoE-immunized mice induced significantly higher complement-mediated lysis of KP cells than did sera from the PBS control mice. Finally, mice immunized with PhoE were significantly protected against KP challenge, with better survival and a reduced visceral bacterial load. Our data underscore the great potential of PhoE as a novel candidate antigen for a vaccine against KP infection.


Asunto(s)
Anticuerpos Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Vacunas Bacterianas , Klebsiella pneumoniae , Porinas , Animales , Anticuerpos Antibacterianos/sangre , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Inmunización/veterinaria , Ratones , Ratones Endogámicos BALB C , Porinas/inmunología , Vacunación/veterinaria
9.
J Nanobiotechnology ; 19(1): 240, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34380522

RESUMEN

BACKGROUND: There has been a great interest in developing strategies for enhancing antigen delivery to the mucosal immune system as well as identifying mucosal active immunostimulating agents. To elevate the potential of O-2'-Hydroxypropyl trimethyl ammonium chloride chitosan (O-2'-HACC) as an adjuvant and mucosal immune delivery carrier for DNA vaccine, we prepared the O-2'-HACC loaded with Newcastle disease virus (NDV) F gene plasmid DNA and C3d6 molecular adjuvant (O-2'-HACC/pFDNA microparticles). RESULTS: The O-2'-HACC/pFDNA exhibited a regular spherical morphology with a particle size of 202.3 ± 0.52 nm, a zeta potential of 50.8 ± 8.21 mV, encapsulation efficiency of 90.74 ± 1.10%, and a loading capacity of 49.84 ± 1.20%. The plasmid DNA could be sustainably released from the O-2'-HACC/pFDNA after an initial burst release. Intranasal vaccination of chickens immunized with O-2'-HACC/pFDNA not only induced higher anti-NDV IgG and sIgA antibody titers but also significantly promoted lymphocyte proliferation and produced higher levels of IL-2, IL-4, IFN-γ, CD4+, and CD8 + T lymphocytes compared with the NDV commercial live attenuated vaccine. Intranasal delivery of the O-2'-HACC/pFDNA enhanced humoral, cellular, and mucosal immune responses and protected chickens from the infection of highly virulent NDV compared with the intramuscular delivery. CONCLUSIONS: Collectively, our findings indicated that the O-2'-HACC could be used as a vaccine adjuvant and delivery system for mucosal immunity and have an immense application promise.


Asunto(s)
Administración Intranasal/métodos , Cloruro de Amonio/química , Quitosano/química , Inmunización/métodos , Enfermedad de Newcastle/inmunología , Vacunación , Adyuvantes de Vacunas/química , Animales , Pollos , Inmunidad Mucosa/inmunología , Enfermedad de Newcastle/prevención & control , Virus de la Enfermedad de Newcastle/inmunología , Tamaño de la Partícula , Vacunas de ADN/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/química
10.
Chem Eng J ; 414: 128788, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33558800

RESUMEN

Previous observations have been reported that viruses were inactivated using strong irradiation. Here, new evidence was disclosed by studying the effects of nanosized TiO2 on viral pathogens under a low irradiation condition (0.4 mW/cm2 at UVA band) that mimics the field setting. We showed that photo-activated TiO2 efficiently inhibits hepatitis C virus infection, and weak indoor light with intensity of 0.6 mW/cm2 at broad-spectrum wavelength and around 0.15 mW/cm2 of UVA band also lead to partial inhibition. Mechanistic studies demonstrated that hydroxyl radicals produced by photo-activated TiO2 do not destroy virion structure and contents, but attack viral RNA genome, thus inactivating the virus. Furthermore, we showed that photo-activated TiO2 inactivates a broad range of human viral pathogens, including SARS-CoV-2, a novel coronavirus responsible for the ongoing COVID-19 pandemic. In conclusion, we showed that photo-catalyzed nanosized TiO2 inactivates pathogenic viruses, paving a way to its field application in control of viral infectious diseases.

11.
Molecules ; 26(9)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923304

RESUMEN

Chitosan is a non-toxic biological material, but chitosan is insoluble in water, which hinders the development and utilization of chitosan. Chitosan derivatives N-2-Hydroxypropyl trimethyl ammonium chloride (N-2-HACC) and carboxymethyl chitosan (CMCS) with good water solubility were synthesized by our laboratory. In this study, we synthesized mesoporous SiO2 nanoparticles by the emulsion, and then the mesoporous SiO2 nanoparticles were modified with γ-aminopropyltriethoxysilane to synthesize aminated mesoporous SiO2 nanoparticles; CMCS and N-2-HACC was used to cross-link the aminated mesoporous SiO2 nanoparticles to construct SiO2@CMCS-N-2-HACC nanoparticles. Because the aminated mesoporous SiO2 nanoparticles with positively charged can react with the mucous membranes, the virus enters the body mainly through mucous membranes, so Newcastle disease virus (NDV) was selected as the model drug to evaluate the performance of the SiO2@CMCS-N-2-HACC nanoparticles. We prepared the SiO2@CMCS-N-2-HACC nanoparticles loaded with inactivated NDV (NDV/SiO2@CMCS-N-2-HACC). The SiO2@CMCS-N-2-HACC nanoparticles as delivery carrier had high loading capacity, low cytotoxicity, good acid resistance and bile resistance and enteric solubility, and the structure of NDV protein encapsulated in the nano vaccine was not destroyed. In addition, the SiO2@CMCS-N-2-HACC nanoparticles could sustain slowly released NDV. Therefore, the SiO2@CMCS-N-2-HACC nanoparticles have the potential to be served as delivery vehicle for vaccine and/or drug.


Asunto(s)
Quitosano/farmacología , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Enfermedad de Newcastle/tratamiento farmacológico , Animales , Proliferación Celular/efectos de los fármacos , Quitosano/análogos & derivados , Humanos , Nanopartículas/uso terapéutico , Enfermedad de Newcastle/patología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/efectos de los fármacos , Virus de la Enfermedad de Newcastle/patogenicidad , Dióxido de Silicio/química , Vacunas/química , Vacunas/farmacología , Agua/química
12.
Appl Microbiol Biotechnol ; 104(24): 10503-10513, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33141296

RESUMEN

Cell membranes are a great obstacle for entrance of gene therapeutic agents. Cell-penetrating peptides (CPPs) have been proven as a promising gene delivery tool. However, the early TAT peptide derived from the HIV transcription activator protein has been proven that the sequence contains Furin protease cleaved motifs which limited the TAT application in delivery of exogenous active molecules. In the present study, through the bioinformatics and experimental approach, we have identified a novel CPP derived from the N terminus of VP1 protein of chicken anemia virus (CAV), designated as CVP1-N2, which is rich in arginine residues and contains α-helical structure. Then, the ability of CVP1-N2 cell penetrating was detected using confocal imaging and flow cytometry. FITC-labeled CVP1-N2 peptide could rapidly internalize into different types of live cells with dose dependence and without cytotoxic effects by MTT assay. Surprisingly, CVP1-N2 with a pattern of nuclear sub-location has shown the higher uptake efficiency than TAT. At 10, 1, and 0.1 µM, the mean relative internalization of CVP1-N2 was respectively 1.08-, 12-, and 75-fold higher than that of CVP1, as well as 1.6-, 56-, and 75-fold higher than that of TAT. Moreover, using endocytic inhibitors along with low-temperature stress validated that the CVP1-N2 internalization route is direct translocation pathway. Finally, the capacity of CVP1-N2 for delivery of gene into cells was determined, where it was able to carry red fluorescent protein (RFP) and apoptin genes into cells respectively and induce the apoptosis. All these data indicate that CVP1-N2 could be used as a novel gene delivery vehicle for gene therapy in the future. KEY POINTS: • 1CVP1-N2 was identified as a novel more efficient cell-penetrating peptide. • 2. CVP1-N2 localized to the nucleus through the direct transduction pathway. • 3. CVP1-N2 was able to deliver the apoptin gene into HCT116 cells and induce apoptosis.


Asunto(s)
Proteínas de la Cápside , Péptidos de Penetración Celular , Virus de la Anemia del Pollo , Proteínas de la Cápside/genética , Membrana Celular , Virus de la Anemia del Pollo/genética , Terapia Genética , Células HCT116 , Humanos
13.
Vet Res ; 49(1): 16, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29439726

RESUMEN

Cell-penetrating peptide (CPP) is a promising cargo for delivering bioactive molecules. In this study, the N terminus of VP1 from chicken anemia virus, designated as CVP1, was found to carry enriched arginine residues with α-helix. By confocal imaging, flow cytometry and MTT assay, we identified CVP1 as a novel, safe and efficient CPP. CVP1-FITC peptide could entry different types of cells tested with dose dependence, but without cytotoxic effects. Compared with TAT-FITC peptide, the CVP1-FITC peptide showed much higher cell-penetrating activity. Moreover, CVP1 could successfully deliver ß-glycosidase, poly (I:C) and plasmid into HCT116 cells. Inhibitors and temperature sensitivity analysis further indicated that the cell-penetrating activity of CVP1 was based on ATP-dependent and caveolae-mediated endocytosis. All these data demonstrate that CVP1 has efficient cell-penetrating activity and great potential for developing a novel delivery vector.


Asunto(s)
Caveolas/fisiología , Péptidos de Penetración Celular/administración & dosificación , Virus de la Anemia del Pollo/fisiología , Animales , Caveolas/virología , Línea Celular , Pollos , Perros , Sistemas de Liberación de Medicamentos/veterinaria , Endocitosis/fisiología , Células HCT116 , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby
14.
Virol J ; 14(1): 24, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28173845

RESUMEN

BACKGROUND: Peste des petits ruminants (PPR) is an economically important, Office International des Epizooties (OIE) notifiable, transboundary viral disease of small ruminants such as sheep and goat. PPR virus (PPRV), a negative-sense single-stranded RNA virus, is the causal agent of PPR. Therefore, sensitive, specific and rapid diagnostic assay for the detection of PPRV are necessary to accurately and promptly diagnose suspected case of PPR. METHODS: In this study, reverse transcription recombinase polymerase amplification assays using real-time fluorescent detection (real-time RT-RPA assay) and lateral flow strip detection (LFS RT-RPA assay) were developed targeting the N gene of PPRV. RESULTS: The sensitivity of the developed real-time RT-RPA assay was as low as 100 copies per reaction within 7 min at 40 °C with 95% reliability; while the sensitivity of the developed LFS RT-RPA assay was as low as 150 copies per reaction at 39 °C in less than 25 min. In both assays, there were no cross-reactions with sheep and goat pox viruses, foot-and-mouth disease virus and Orf virus. CONCLUSIONS: These features make RPA assay promising candidates either in field use or as a point of care diagnostic technique.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Peste de los Pequeños Rumiantes/diagnóstico , Virus de la Peste de los Pequeños Rumiantes/genética , Virus de la Peste de los Pequeños Rumiantes/aislamiento & purificación , Animales , Reacciones Cruzadas , Colorantes Fluorescentes , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/aislamiento & purificación , Enfermedades de las Cabras/diagnóstico , Enfermedades de las Cabras/virología , Cabras/virología , Virus del Orf/genética , Virus del Orf/aislamiento & purificación , Peste de los Pequeños Rumiantes/virología , ARN Viral/aislamiento & purificación , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Reversa , Sensibilidad y Especificidad , Ovinos/virología , Enfermedades de las Ovejas/diagnóstico , Enfermedades de las Ovejas/virología
15.
NPJ Vaccines ; 9(1): 64, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509167

RESUMEN

Despite prolonged surveillance and interventions, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses continue to pose a severe global health burden. Thus, we developed a chimpanzee adenovirus-based combination vaccine, AdC68-HATRBD, with dual specificity against SARS-CoV-2 and influenza virus. When used as a standalone vaccine, intranasal immunization with AdC68-HATRBD induced comprehensive and potent immune responses consisting of immunoglobin (Ig) G, mucosal IgA, neutralizing antibodies, and memory T cells, which protected the mice from BA.5.2 and pandemic H1N1 infections. When used as a heterologous booster, AdC68-HATRBD markedly improved the protective immune response of the licensed SARS-CoV-2 or influenza vaccine. Therefore, whether administered intranasally as a standalone or booster vaccine, this combination vaccine is a valuable strategy to enhance the overall vaccine efficacy by inducing robust systemic and mucosal immune responses, thereby conferring dual lines of immunological defenses for these two viruses.

16.
Foods ; 12(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37048367

RESUMEN

To evaluate the flavor characteristics of Chinese bayberry alcoholic beverages, fermented bayberry wine (FBW) and integrated bayberry wine (IBW) were investigated for their volatile and soluble profiles using HS-SPME GC-MS and UHPLC Q-TOF and were analyzed with multidimensional statistical analysis, including PCA and OPLS-DA. The volatile compounds 1-pentanol, ß-caryophyllene and isopentanol were only detected in IBW. ß-caryophyllene, the key flavor component of bayberry, was found to be the most abundant volatile compound in IBW (25.89%) and was 3.73 times more abundant in IBW than in FBW. The levels of ethyl octanoate, ethyl nonanoate, and ethyl decanoate were also several times higher in IBW than in FBW. These compounds contributed to the strong bayberry aroma and better fruity flavor of IBW. On the other hand, high levels of ethyl acetate and octanoic acid in FBW, representing pineapple/overripe or sweat odor, were key contributors to the fermented flavor of FBW. Soluble sugars, such as sucrose, D-glucose, and D-tagatose, as well as amino acids, such as L-glutamate and L-aspartate, had much higher levels in IBW. The anthocyanin pigment cyanidin 3-glucoside, which generates red color, was also higher in IBW. On the other hand, most of the differentially expressed alcohols, acids, amino acids, purines/pyrimidines and esters were present in higher concentrations in FBW compared to IBW. This demonstrated that IBW has a much sweeter and more savory taste as well as a better color generated by more anthocyanins, while FBW presents a more acidic and drier taste as well as a complex formation of alcohols and esters. The study also prompts the need for further research on the flavor profiles of IBW and its potential application and market value.

17.
Braz J Microbiol ; 54(4): 3245-3255, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37728681

RESUMEN

As Klebsiella pneumoniae (KP) has acquired high levels of resistance to multiple antibiotics, it is considered a worldwide pathogen of concern, and substitutes for traditional antibiotics are urgently needed. 3-Phenyllactic acid (PLA) has been reported to have antimicrobial activity against food-borne bacteria. However, there was no experiment evidence for the exact antibacterial effect and mechanism of PLA kills pathogenic KP. In this study, the Oxford cup method indicated that PLA is effective to KP with a minimum inhibitory concentration of 2.5 mg/mL. Furthermore, PLA inhibited the growth and biofilm formation of in a time- and concentration-dependent manner. In vivo, PLA could significantly increase the survival rate of infected mice and reduce the pathological tissue damage. The antibacterial mode of PLA against KP was further explored. Firstly, scanning electron microscopy illustrated the disruption of cellular ultrastructure caused by PLA. Secondly, measurement of leaked alkaline phosphatase demonstrated that PLA disrupted the cell wall integrity of KP and flow cytometry analysis with propidium iodide staining suggested that PLA damaged the cell membrane integrity. Finally, the results of fluorescence spectroscopy and agarose gel electrophoresis demonstrated that PLA bound to genomic DNA and initiated its degradation. The anti-KP mode of action of PLA was attributed to the destruction of the cell wall, membrane, and genomic DNA binding. These findings suggest that PLA has great potential applications as antibiotic substitutes in feed additives against KP infection in animals.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Animales , Ratones , Klebsiella pneumoniae/genética , Membrana Celular , Antibacterianos/farmacología , Pared Celular , ADN/farmacología , Genómica , Poliésteres , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología
18.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37796098

RESUMEN

It is of great significance to study the mechanical behavior and permeability properties of hydrate-bearing sediments for a safe, efficient, and sustainable exploitation of hydrate. However, most of the studies conducted so far have focused only on a single stress field or seepage field, which is detached from practical engineering. In this paper, a new integrated experimental system (IES) was proposed, which realizes the coupling study of stress and seepage. The main body of IES is a triaxial subsystem and a seepage subsystem. The triaxial subsystem can realize in situ synthesis and triaxial shear of hydrate-bearing sediments (HBS). Stable seepage can be effectively formed using a constant pressure infusion pump and a back pressure valve. A series of shear-seepage coupling tests were carried out to verify the effectiveness of the IES and explore the stress-seepage coupling characteristics of HBS. The results show that stress has a significant influence on permeability, and its essence is the stress compression on the seepage channel. The stress-strain relationship, volume response, and permeability are related to each other. The permeability will be affected by the coupling of hydrate saturation (pore plugging), effective confining pressure (pore compression), and shear (fracture generation).

19.
Sci Rep ; 13(1): 22199, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097693

RESUMEN

Marine natural gas hydrate (NGH) is a promising substitutive low-carbon energy resource, whereas NGH-production induced geoengineering concerns remain challenging. Advanced forecast of possible geoengineering risks is the fundamental for eco-friendly NGH exploitation. Reservoir creep deformation is an early symptom of the geoengineering risks. However, whether the creep deformation behaviors of the NGH-bearing strata is predictable remains controversial. In this study, a series of multi-step loading creep test are conducted for sandy gas hydrate bearing sediment (GHBS) samples, during which the ultrasonic responses are recorded simultaneously. The acoustic velocity, compression-to-shear velocity ratio, Poission's ratio, main frequency, and main frequency amplitude are used to characterize creep failures of the GHBS for the first time. Combining analyses of the creep behaviors and acoustic responses yield the following conclusions. Firstly, the long-term strength derived from creeping test is 0.45-0.60 times of the shear strength derived from triaxial shearing. Ignoring the creep effect might underestimate the scale and intensity of possible geoengineering risks during long-term NGH exploitation. Secondly, the acoustic velocity increases gently and then decreases continuously during creeping. Once the accelerated creep appears, the acoustic velocity plummets significantly, together with a sudden decrease in the compression-to-shear velocity ratio, and fluctuations in the main frequency and its amplitude. Furthermore, the main frequency and its amplitude shall fluctuate abruptly prior to the emergence of the accelerated creep. Therefore, we anticipate that the combination of abnormal fluctuations of main frequency and its amplitude can be used as early-warning indicators for possible creep failure of the GHBS. The results might have great significance for in-situ detection and prediction of possible reservoir failure during long-term NGH exploitation.

20.
Carbohydr Polym ; 283: 119174, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35153010

RESUMEN

There are various challenges for the mucosal delivery of drug, which is largely attributed to the absence of effective drug carriers that can make delivery to mucosal sites. In the present study, we aimed to synthesize bifunctional mucoadhesive nanoparticles (NPs) that could be used for mucosal delivery. N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (M-N-2-HACC) was modified with D-mannose, and N-acetyl-L-cysteine (NAC) was immobilized on the carboxymethyl chitosan (N-CMCS). The electrostatic interaction between the two substances was used to produce mannose-modified thiolated chitosan NPs (M-N-2-HACC/N-CMCS NPs). The NPs showed a particle size of 196.72 ± 0.45 nm and zeta potential of 17.12 ± 0.50 mV. Moreover, it demonstrated high hydrophilicity, enduring drug release, stability, safety, and mucosal adhesion, which contributed to the effectiveness of mucosal administration. Additionally, the NPs could be instantly absorbed by macrophages. Collectively, these results suggested that M-N-2-HACC/N-CMCS NPs could be used as a promising candidate for mucosal delivery.


Asunto(s)
Quitosano/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Manosa/química , Nanopartículas/química , Acetilcisteína/química , Administración a través de la Mucosa , Fenómenos Químicos , Quitosano/análogos & derivados , Portadores de Fármacos/administración & dosificación , Liberación de Fármacos , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Macrófagos/efectos de los fármacos , Mucinas/metabolismo , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA