Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Neurosci ; 35(1): 386-95, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25568130

RESUMEN

Basic region leucine zipper (bZIP) transcription factors regulate gene expression critical for long-term synaptic plasticity or neuronal excitability contributing to learning and memory. At sensorimotor synapses of Aplysia, changes in activation or expression of CREB1 and CREB2 in sensory neurons are required for long-term synaptic plasticity. However, it is unknown whether concomitant stimulus-induced changes in expression and activation of bZIP transcription factors in the postsynaptic motor neuron also contribute to persistent long-term facilitation (P-LTF). We overexpressed various forms of CREB1, CREB2, or cJun in the postsynaptic motor neuron L7 in cell culture to examine whether these factors contribute to P-LTF. P-LTF is evoked by 2 consecutive days of 5-HT applications (2 5-HT), while a transient form of LTF is produced by 1 day of 5-HT applications (1 5-HT). Significant increases in the expression of both cJun and CREB2 mRNA in L7 accompany P-LTF. Overexpressing each bZIP factor in L7 did not alter basal synapse strength, while coexpressing cJun and CREB2 in L7 evoked persistent increases in basal synapse strength. In contrast, overexpressing cJun and CREB2 in sensory neurons evoked persistent decreases in basal synapse strength. Overexpressing wild-type cJun or CREB2, but not CREB1, in L7 can replace the second day of 5-HT applications in producing P-LTF. Reducing cJun activity in L7 blocked P-LTF evoked by 2 5-HT. These results suggest that expression and activation of different bZIP factors in both presynaptic and postsynaptic neurons contribute to persistent change in synapse strength including stimulus-dependent long-term synaptic plasticity.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/biosíntesis , Proteínas Quinasas JNK Activadas por Mitógenos/biosíntesis , Potenciación a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas Represoras/biosíntesis , Células Receptoras Sensoriales/metabolismo , Sinapsis/metabolismo , Potenciales Sinápticos/fisiología , Animales , Aplysia , Células Cultivadas
2.
J Neurosci ; 34(14): 4776-85, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24695698

RESUMEN

Short-term and long-term synaptic plasticity are cellular correlates of learning and memory of different durations. Little is known, however, how these two forms of plasticity interact at the same synaptic connection. We examined the reciprocal impact of short-term heterosynaptic or homosynaptic plasticity at sensorimotor synapses of Aplysia in cell culture when expressing persistent long-term facilitation (P-LTF) evoked by serotonin [5-hydroxytryptamine (5-HT)]. Short-term heterosynaptic plasticity induced by 5-HT (facilitation) or the neuropeptide FMRFa (depression) and short-term homosynaptic plasticity induced by tetanus [post-tetanic potentiation (PTP)] or low-frequency stimulation [homosynaptic depression (HSD)] of the sensory neuron were expressed in both control synapses and synapses expressing P-LTF in the absence or presence of protein synthesis inhibitors. All forms of short-term plasticity failed to significantly affect ongoing P-LTF in the absence of protein synthesis inhibitors. However, P-LTF reversed to control levels when either 5-HT or FMRFa was applied in the presence of rapamycin. In contrast, P-LTF was unaffected when either PTP or HSD was evoked in the presence of either rapamycin or anisomycin. These results indicate that synapses expressing persistent plasticity acquire a "new" baseline and functionally express short-term changes as naive synapses, but the new baseline becomes labile following selective activations-heterosynaptic stimuli that evoke opposite forms of plasticity-such that when presented in the presence of protein synthesis inhibitors produce a rapid reversal of the persistent plasticity. Activity-selective induction of a labile state at synapses expressing persistent plasticity may facilitate the development of therapies for reversing inappropriate memories.


Asunto(s)
Plasticidad Neuronal/fisiología , Células Receptoras Sensoriales/fisiología , Sinapsis/fisiología , Análisis de Varianza , Animales , Anisomicina/farmacología , Aplysia , Biofisica , Células Cultivadas , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , FMRFamida/farmacología , Ganglios de Invertebrados/citología , Moduladores del Transporte de Membrana/farmacología , Plasticidad Neuronal/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Serotonina/farmacología , Sirolimus/farmacología , Sinapsis/clasificación , Sinapsis/efectos de los fármacos , Factores de Tiempo
3.
Learn Mem ; 21(3): 128-34, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24532836

RESUMEN

An important cellular mechanism contributing to the strength and duration of memories is activity-dependent alterations in the strength of synaptic connections within the neural circuit encoding the memory. Reversal of the memory is typically correlated with a reversal of the cellular changes to levels expressed prior to the stimulation. Thus, for stimulus-induced changes in synapse strength and their reversals to be functionally relevant, cellular mechanisms must regulate and maintain synapse strength both prior to and after the stimuli inducing learning and memory. The strengths of synapses within a neural circuit at any given moment are determined by cellular and molecular processes initiated during development and those subsequently regulated by the history of direct activation of the neural circuit and system-wide stimuli such as stress or motivational state. The cumulative actions of stimuli and other factors on an already modified neural circuit are attenuated by homeostatic mechanisms that prevent changes in overall synaptic inputs and excitability above or below specific set points (synaptic scaling). The mechanisms mediating synaptic scaling prevent potential excitotoxic alterations in the circuit but also may attenuate additional cellular changes required for learning and memory, thereby apparently limiting information storage. What cellular and molecular processes control synaptic strengths before and after experience/activity and its reversals? In this review we will explore the synapse-, whole cell-, and circuit level-specific processes that contribute to an overall zero sum-like set of changes and long-term maintenance of synapse strengths as a consequence of the accommodative interactions between long-term synaptic plasticity and homeostasis.


Asunto(s)
Memoria/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Homeostasis/fisiología , Humanos
4.
J Neurosci ; 31(24): 8841-50, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21677168

RESUMEN

Most memories are strengthened by additional stimuli, but it is unclear how additional stimulation or training reinforces long-term memory. To address this we examined whether long-term facilitation (LTF) of Aplysia sensorimotor synapses in cell culture-a cellular correlate of long-term sensitization of defensive withdrawal reflexes in Aplysia californica-can be prolonged by additional stimulation. We found that 1 d treatment with serotonin (5-HT; five brief applications at 20 min intervals) produced LTF lasting ∼3 d, whereas 2 d of such 5-HT treatments induced a persistent LTF lasting >7 d. Incubation with the protein synthesis inhibitor rapamycin during the second set of 5-HT treatments abolished all facilitation, and synapse strength returned prematurely to baseline. Persistent LTF required more persistent elevation in the expression of the neurotrophin-like peptide sensorin and its secretion. Activation of protein kinase C (PKC) during the second day of 5-HT treatments, not required for LTF or changes in sensorin expression during the first set of 5-HT treatments, is critical for persistent LTF and replaces phosphoinositide 3 kinase (PI3K) activity in mediating the increase in sensorin expression. In contrast, activations of PKC during the first day of 5-HT treatments and PI3K during the second day of 5-HT treatments are unnecessary for persistent LTF or the increases in sensorin expression. Thus, additional stimuli make preexisting plasticity labile as they recruit a new signaling cascade to regulate the synthesis of a neurotrophin-like peptide required for persistent alterations in synaptic efficacy.


Asunto(s)
Potenciación a Largo Plazo/fisiología , Células Receptoras Sensoriales/fisiología , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Anticuerpos/farmacología , Aplysia , Células Cultivadas , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ganglios de Invertebrados/citología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunosupresores/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Neuropéptidos/inmunología , Neuropéptidos/metabolismo , Proteína Quinasa C/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Serotonina/farmacología , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Factores de Tiempo
5.
J Neurosci ; 30(25): 8353-66, 2010 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-20573882

RESUMEN

To explore the role of both Aplysia cell adhesion molecule (ApCAM) and activity of specific protein kinase C (PKC) isoforms in the initial formation of sensory neuron synapses with specific postsynaptic targets (L7 but not L11), we examined presynaptic growth, initial synapse formation, and the expression of the presynaptic neuropeptide sensorin following cell-specific reduction of ApCAM or of a novel PKC activity. Synapse formation between sensory neurons and L7 begins by 3 h after plating and is accompanied by a rapid accumulation of a novel PKC to sites of synaptic interaction. Reducing ApCAM expression specifically from the surface of L7 blocks presynaptic growth and initial synapse formation, target-induced increase of sensorin in sensory neuron cell bodies and the rapid accumulation of the novel PKC to sites of interaction. Selective blockade of the novel PKC activity in L7, but not in sensory neurons, with injection of a dominant negative construct that interferes with the novel PKC activity, produces the same actions as downregulating ApCAM; blockade of presynaptic growth and initial synapse formation, and the target-induced increase of sensorin in sensory neuron cell bodies. The results indicate that signals initiated by postsynaptic cell adhesion molecule ApCAM coupled with the activation of a novel PKC in the appropriate postsynaptic neuron produce the retrograde signals required for presynaptic growth associated with initial synapse formation, and the target-induced expression of a presynaptic neuropeptide critical for synapse maturation.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Proteína Quinasa C/metabolismo , Sinapsis/metabolismo , Análisis de Varianza , Animales , Aplysia/crecimiento & desarrollo , Aplysia/metabolismo , Células Cultivadas , Electrofisiología , Colorantes Fluorescentes , Ganglios de Invertebrados/metabolismo , Inmunohistoquímica , Microscopía Fluorescente , Neuronas/citología , Neuropéptidos/metabolismo , Transmisión Sináptica/fisiología
6.
J Neurosci ; 29(30): 9553-62, 2009 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-19641118

RESUMEN

Activity-dependent long-term synaptic plasticity requires gene expression and protein synthesis. Identifying essential genes and studying their transcriptional and translational regulation are key steps to understanding how synaptic changes become long lasting. Recently, the enzyme poly-(ADP-ribose) polymerase 1 (PARP-1) was shown to be necessary for long-term memory (LTM) in Aplysia. Since PARP-1 decondenses chromatin, we hypothesize that this enzyme regulates the expression of specific genes essential for long-term synaptic plasticity that underlies LTM. We cloned Aplysia PARP-1 (ApPARP-1) and determined that its expression in sensory neurons is necessary for serotonin (5-HT)-mediated long-term facilitation (LTF) of sensorimotor neuron synapses. PARP enzymatic activity is also required, since transient application of PARP inhibitors blocked LTF. Differential display and RNA analysis of ganglia dissected from intact animals exposed to 5-HT identified the ribosomal RNA genes as PARP-dependent effector genes. The increase in the expression of rRNAs is long lasting and dynamic. Pulse-labeling RNA studies showed a PARP-dependent increase in rRNAs but not in the total RNA 24 h after 5-HT treatment. Moreover, the expression of both the AprpL27a (Aplysia ribosomal protein L27a) and the ApE2N (Aplysia ubiquitin-conjugating enzyme E2N) mRNAs also increased after 5-HT. Thus, our results suggest that 5-HT, in part by regulating PARP-1 activity, alters the expression of transcripts required for the synthesis of new ribosomes necessary for LTF.


Asunto(s)
Potenciación a Largo Plazo/fisiología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Células Receptoras Sensoriales/fisiología , Serotonina/metabolismo , Animales , Aplysia , Secuencia de Bases , Benzamidas/administración & dosificación , Células Cultivadas , Inhibidores Enzimáticos/administración & dosificación , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Datos de Secuencia Molecular , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/enzimología , Neuronas Motoras/fisiología , Fenantrenos/administración & dosificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/genética , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/enzimología , Sinapsis/efectos de los fármacos , Sinapsis/enzimología , Sinapsis/fisiología , Factores de Tiempo , Enzimas Ubiquitina-Conjugadoras/metabolismo
7.
Neuron ; 43(3): 373-85, 2004 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-15294145

RESUMEN

In Aplysia, long-term facilitation (LTF) of sensory neuron synapses requires activation of both protein kinase A (PKA) and mitogen-activated protein kinase (MAPK). We find that 5-HT through activation of PKA regulates secretion of the sensory neuron-specific neuropeptide sensorin, which binds autoreceptors to activate MAPK. Anti-sensorin antibody blocked LTF and MAPK activation produced by 5-HT and LTF produced by medium containing sensorin that was secreted from sensory neurons after 5-HT treatment. A single application of 5-HT followed by a 2 hr incubation with sensorin produced protein synthesis-dependent LTF, growth of new presynaptic varicosities, and activation of MAPK and its translocation into sensory neuron nuclei. Inhibiting PKA during 5-HT applications and inhibiting receptor tyrosine kinase or MAPK during sensorin application blocked both LTF and MAPK activation and translocation. Thus, long-term synaptic plasticity is produced when stimuli activate kinases in a specific sequence by regulating the secretion and autocrine action of a neuropeptide.


Asunto(s)
Aplysia/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuropéptidos/metabolismo , Serotonina/farmacología , Secuencia de Aminoácidos/genética , Animales , Aplysia/enzimología , Comunicación Autocrina/efectos de los fármacos , Comunicación Autocrina/fisiología , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Datos de Secuencia Molecular , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/enzimología , Sinapsis/metabolismo
8.
J Neurosci ; 27(33): 8927-39, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17699674

RESUMEN

Long-term facilitation (LTF) of sensory neuron synapses in Aplysia is produced by either nonassociative or associative stimuli. Nonassociative LTF can be produced by five spaced applications of serotonin (5-HT) and requires a phosphoinosotide 3-kinase (PI3K)-dependent and rapamycin-sensitive increase in the local synthesis of the sensory neuron neuropeptide sensorin and a protein kinase A (PKA)-dependent increase in the secretion of the newly synthesized sensorin. We report here that associative LTF produced by a single pairing of a brief tetanus with one application of 5-HT requires a rapid protein kinase C (PKC)-dependent and rapamycin-sensitive increase in local sensorin synthesis. This rapid increase in sensorin synthesis does not require PI3K activity or the presence of the sensory neuron cell body but does require the presence of the motor neuron. The secretion of newly synthesized sensorin by 2 h after stimulation requires both PKA and PKC activities to produce associative LTF because incubation with exogenous anti-sensorin antibody or the kinase inhibitors after tetanus plus 5-HT blocked LTF. The secreted sensorin leads to phosphorylation and translocation of p42/44 mitogen-activated protein kinase (MAPK) into the nuclei of the sensory neurons. Thus, different stimuli activating different signaling pathways converge by regulating the synthesis and release of a neuropeptide to produce long-term synaptic plasticity.


Asunto(s)
Plasticidad Neuronal/fisiología , Neuronas Aferentes/metabolismo , Neuropéptidos/metabolismo , Proteína Quinasa C/fisiología , Sinapsis/fisiología , Análisis de Varianza , Animales , Aplysia , Células Cultivadas , Técnicas de Cocultivo/métodos , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Ganglios de Invertebrados , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Neuronas Motoras/fisiología , Neuronas Aferentes/efectos de los fármacos , Serotonina/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación
9.
J Neurosci ; 27(43): 11712-24, 2007 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-17959813

RESUMEN

Target-dependent increases in axon growth and varicosities accompany the formation of functional synapses between Aplysia sensory neurons and specific postsynaptic neurons (L7 and not L11). The enhanced growth is regulated in part by a target-dependent increase in the secretion of sensorin, the sensory neuron neuropeptide. We report here that protein kinase C (PKC) activity is required for synapse formation by sensory neurons with L7 and for the target-dependent increases in sensorin synthesis and secretion. Blocking PKC activity reversibly blocked synapse formation and axon growth of sensory neurons contacting L7, but did not affect axon growth of sensory neurons contacting L11 or axon growth of the postsynaptic targets. Blocking PKC activity also blocked the target-induced increase in sensorin synthesis and secretion. Sensorin then activates additional signaling pathways required for synapse maturation and synapse-associated growth. Exogenous anti-sensorin antibody blocked target-induced activation and translocation into sensory neuron nuclei of p42/44 mitogen-activated protein kinase (MAPK), attenuated synapse maturation, and curtailed growth of sensory neurons contacting L7, but not the growth of sensory neurons contacting L11. Inhibitors of MAPK or phosphoinositide 3-kinase also attenuated synapse maturation and curtailed growth and varicosity formation of sensory neurons contacting L7, but not growth of sensory neurons contacting L11. These results suggest that PKC activity regulated by specific cell-cell interactions initiates the formation of specific synapses and the subsequent synthesis and release of a neuropeptide to activate additional signaling pathways required for synapse maturation.


Asunto(s)
Proteína Quinasa C/fisiología , Sinapsis/enzimología , Animales , Aplysia , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ganglios de Invertebrados/efectos de los fármacos , Ganglios de Invertebrados/enzimología , Ganglios de Invertebrados/crecimiento & desarrollo , Proteína Quinasa C/antagonistas & inhibidores , Sinapsis/efectos de los fármacos
10.
Neurochem Res ; 33(10): 2099-106, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18452056

RESUMEN

Our previous results have shown that somatostatin receptor subtype SST(2A) is responsible for thermal, but not mechanical nociceptive transmission in the rat spinal cord. The present study was undertaken to further examine the ultrastructural localization of SST(2A) receptor in lamina II of the spinal dorsal horn and the role of SST(2A) receptor in thermal hyperalgesia following Complete Freund's Adjuvant (CFA)-induced inflammation. We found that SST(2A) receptors in lamina II are located primarily in postsynaptic dendrites and soma, but not in axons or synaptic terminals. CFA-induced inflammation markedly increased SST(2A) receptor-like immunoreactivity in lamina II. Paw withdrawal latency (PWL) evoked by noxious heating was obviously shortened 1 h after intraplantar injection of CFA, exhibiting thermal hyperalgesia. Pre-blocking SST(2A) activity by intrathecal pre-administration of CYN154806, a broad-spectrum antagonist of SST(2) receptor, or specific antiserum against SST(2A) receptor (anti-SST(2A)) significantly attenuated thermal hyperalgesia in a dose-dependent fashion in CFA-treated rats. But, administration of anti-SST(2A) or CYN154806 after CFA treatment had no effect upon thermal hyperalgesia. Intrathecal application of SST(2A) agonist SOM-14 at different doses prior to CFA treatment did not influence thermal hyperalgesia in inflamed rats, but at a low dose shortened PWL evoked by noxious heating in normal rats. These results suggest that spinal SST(2A) receptors play a key role in triggering the generation, but not maintenance, of thermal hyperalgesia evoked by CFA-induced inflammation. The up-regulation of SST(2A) receptors in the spinal cord may be one of the mechanisms underlying inflammation-induced thermal hyperalgesia.


Asunto(s)
Conducta Animal/fisiología , Hiperalgesia/fisiopatología , Inflamación/fisiopatología , Receptores de Somatostatina/fisiología , Animales , Adyuvante de Freund , Inflamación/inducido químicamente , Masculino , Oligopéptidos/farmacología , Células del Asta Posterior/ultraestructura , Ratas , Ratas Sprague-Dawley , Receptores de Somatostatina/antagonistas & inhibidores
11.
Sheng Li Ke Xue Jin Zhan ; 39(1): 21-6, 2008 Jan.
Artículo en Zh | MEDLINE | ID: mdl-18357683

RESUMEN

Long-term synaptic plasticity is the cellular and molecular basis of learning and memory, and the maintenance of their late phases requires both transcription and translation. How targeting gene products shipped from cell body to the few activated synapses in a vast dendritic tree is not yet fully understood. The recent researches demonstrated that the induction of long-term synaptic plasticity could mark an activated synapse by a synaptic tag to capture and utilize synaptic plasticity-related transcriptional products that then serve to stabilize early to late phase of long-term synaptic plasticity. In this review, we outline the advancement in research of synaptic tagging.


Asunto(s)
Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Sinapsis/fisiología , Animales , Humanos
12.
J Neurosci ; 26(3): 1026-35, 2006 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-16421322

RESUMEN

Activation of several signaling pathways contributes to long-term synaptic plasticity, but how brief stimuli produce coordinated activation of these pathways is not understood. In Aplysia, the long-term facilitation (LTF) of sensory neuron synapses by 5-hydroxytryptamine (serotonin; 5-HT) requires the activation of several kinases, including mitogen-activated protein kinase (MAPK). The 5-HT-enhanced secretion of the sensory neuron-specific neuropeptide sensorin mediates the activation of MAPK. We find that stimulus-induced activation of two signaling pathways, phosphoinositide 3-kinase (PI3K) and type II protein kinase A (PKA), regulate sensorin secretion and responses. Treatment with 5-HT produces a rapid increase in sensorin synthesis, especially at varicosities, which precedes the secretion of sensorin. PI3K inhibitor and rapamycin block LTF and the rapid synthesis of sensorin at varicosities even in the absence of sensory neuron cell bodies. Secretion of the newly synthesized sensorin from the varicosities and activation of the autocrine responses of sensorin to produce LTF require type II PKA interaction with AKAPs (A-kinase anchoring proteins). Thus, long-term synaptic plasticity is produced when multiple signaling pathways that are important for regulating distinct cellular functions are activated in a specific sequence and recruit the secretion of a neuropeptide to activate additional critical pathways.


Asunto(s)
Aplysia/fisiología , Regulación de la Expresión Génica/fisiología , Potenciación a Largo Plazo/fisiología , Neuropéptidos/biosíntesis , Neuropéptidos/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Proteína Quinasa Tipo II Dependiente de AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Neuropéptidos/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Serotonina/farmacología , Transducción de Señal/efectos de los fármacos
13.
J Neurosci ; 26(19): 5204-14, 2006 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-16687512

RESUMEN

Targeting mRNAs to different functional domains within neurons is crucial to memory storage. In Aplysia sensory neurons, syntaxin mRNA accumulates at the axon hillock during long-term facilitation of sensory-motor neuron synapses produced by serotonin (5-HT). We find that the 3' untranslated region of Aplysia syntaxin mRNA has two targeting elements, the cytosolic polyadenylation element (CPE) and stem-loop double-stranded structures that appear to interact with mRNA-binding proteins CPEB and Staufen. Blocking the interaction between these targeting elements and their RNA-binding proteins abolished both accumulation at the axon hillock and long-term facilitation. CPEB, which we previously have shown to be upregulated after stimulation with 5-HT, is required for the relocalization of syntaxin mRNA to the axon hillock from the opposite pole in the cell body of the sensory neuron during long-term facilitation, whereas Staufen is required for maintaining the accumulation of the mRNA both at the axon hillock after the treatment with 5-HT and at the opposite pole in stable, unstimulated sensory neurons. Thus, the cooperative actions of the two mRNA-binding proteins serve to direct the distribution of an mRNA encoding a key synaptic protein.


Asunto(s)
Aplysia/fisiología , Potenciación a Largo Plazo/fisiología , Neuronas Aferentes/fisiología , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Células Cultivadas , Factores de Escisión y Poliadenilación de ARNm/metabolismo
14.
J Neurosci ; 23(5): 1804-15, 2003 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-12629184

RESUMEN

Syntaxin has an important role in regulating vesicle docking and fusion essential for neurotransmitter release. Here, we demonstrate that the distribution of syntaxin mRNA in cell bodies of sensory neurons (SNs) of Aplysia maintained in cell culture is affected by synapse formation, synapse stabilization, and long-term facilitation (LTF) produced by 5-HT. The distribution of the mRNA in turn regulates expression and axonal transport of the protein. Syntaxin mRNA and protein accumulated at the axon hillock of SNs during the initial phase of synapse formation. Significant numbers of granules containing syntaxin were detected in the SN axon. When synaptic strength was stable, both mRNA and protein were targeted away from the axon hillock, and the number of syntaxin granules in the SN axon was reduced. Dramatic increases in mRNA and protein accumulation at the axon hillock and number of syntaxin granules in the SN axon were produced when cultures with stable connections were treated with 5-HT that evoked LTF. Anisomycin (protein synthesis inhibitor) or KT5720 (protein kinase A inhibitor) blocked LTF, accumulation of syntaxin mRNA and protein at the axon hillock, and the increase in syntaxin granules in SN axons. The results indicate that without significant effects on overall mRNA expression, both target interaction and 5-HT via activation of protein kinase A pathway regulate expression of syntaxin and its packaging for transport into axons by influencing the distribution of its mRNA in the SN cell body.


Asunto(s)
Proteínas de la Membrana/metabolismo , Plasticidad Neuronal/fisiología , Neuronas Aferentes/metabolismo , ARN Mensajero/metabolismo , Sinapsis/metabolismo , Animales , Aplysia , Transporte Axonal/fisiología , Axones/efectos de los fármacos , Axones/metabolismo , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Proteínas de la Membrana/genética , Plasticidad Neuronal/efectos de los fármacos , Neuronas Aferentes/citología , Neuronas Aferentes/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas/fisiología , Proteínas Qa-SNARE , Serotonina/farmacología
15.
J Neurosci ; 22(7): 2669-78, 2002 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-11923432

RESUMEN

Several factors regulate export of mRNAs from neuronal cell bodies. Using in situ hybridization and RT-PCR, we examined how target interaction influences the distribution of mRNAs expressed in sensory neurons (SNs) of Aplysia maintained in cell culture. Interaction with a synaptic target has two effects on the distribution of mRNA encoding an SN-specific peptide, sensorin: the target affects the accumulation of sensorin mRNA at the axon hillock and the stability of sensorin mRNA exported to distal sites. Synapse formation with motor neuron L7 results in the accumulation of high levels of sensorin mRNA in the axon hillock of the SN and in SN neurites contacting L7. SNs cultured alone or in contact with motor neuron L11, with which no synapses form, show a more uniform distribution of sensorin mRNA in the cytoplasm of the SN cell body, with little expression in neurites. Contact with L7 or L11 had little or no effect on the distribution of two other mRNAs in the cytoplasm of SN cell bodies. Sensorin mRNA exported to SN neurites after 1 d in culture is more stable when the SN contacts L7 compared with SN neurites that contact L11. After removal of the SN cell body, the amounts of sensorin mRNA already exported to the neurites are greater when neurites contact L7 compared with neurites in contact with L11. The results indicate that target interaction and synapse formation regulate both the accumulations of specific mRNAs destined for export and their stability at distant sites.


Asunto(s)
Neuronas Aferentes/metabolismo , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Potenciales de Acción/fisiología , Animales , Aplysia , Axones/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Hibridación in Situ , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Neuritas/metabolismo , Neuronas Aferentes/citología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
J Neurosci ; 24(10): 2465-74, 2004 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-15014122

RESUMEN

Activation of the cAMP-dependent protein kinase (PKA) is critical for both short- and long-term facilitation in Aplysia sensory neurons. There are two types of the kinase, I and II, differing in their regulatory (R) subunits. We cloned Aplysia RII; RI was cloned previously. Type I PKA is mostly soluble in the cell body whereas type II is enriched at nerve endings where it is bound to two prominent A kinase-anchoring-proteins (AKAPs). Disruption of the binding of RII to AKAPs by Ht31, an inhibitory peptide derived from a human thyroid AKAP, prevents both the short- and the long-term facilitation produced by serotonin (5-HT). During long-term facilitation, RII is transcriptionally upregulated; in contrast, the amount of RI subunits decreases, and previous studies have indicated that the decrease is through ubiquitin-proteosome-mediated proteolysis. Experiments with antisense oligonucleotides injected into the sensory neuron cell body show that the increase in RII protein is essential for the production of long-term facilitation. Using synaptosomes, we found that 5-HT treatment causes RII protein to increase at nerve endings. In addition, using reverse transcription-PCR, we found that RII mRNA is transported from the cell body to nerve terminals. Our results suggest that type I operates in the nucleus to maintain cAMP response element-binding protein-dependent gene expression, and type II PKA acts at sensory neuron synapses phosphorylating proteins to enhance release of neurotransmitter. Thus, the two types of the kinase have distinct but complementary functions in the production of facilitation at synapses of an identified neuron.


Asunto(s)
Aplysia/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Aplysia/efectos de los fármacos , Secuencia de Bases , Clonación Molecular , Proteína Quinasa Tipo II Dependiente de AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Electrofisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ganglios de Invertebrados/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Datos de Secuencia Molecular , Plasticidad Neuronal/genética , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Oligonucleótidos Antisentido/farmacología , Filogenia , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Serotonina/farmacología , Sinapsis/enzimología
17.
J Neurosci ; 24(44): 9933-43, 2004 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-15525778

RESUMEN

The correct wiring of neurons is critical for the normal functioning of the nervous system. Sensory neurons of Aplysia form synapses with specific postsynaptic targets. Interaction with appropriate target cells in culture induces a significant increase in axon growth, the number of sensory neuron varicosities with release sites contacting the target, and regulates the expression and distribution of mRNAs encoding presynaptic proteins such as syntaxin and the sensory neuron-specific neuropeptide sensorin. Synapse stabilization is accompanied by the maintenance of presynaptic varicosities and target-dependent regulation of mRNA distributions. We report here that specific targets induce the release of sensorin from sensory neurons, which then regulates synaptic efficacy, axonal growth associated with synapse formation, the maintenance of synaptic contacts, and the specific distribution of mRNAs. Bath application of an antisensorin antibody during the early phase of synapse formation blocked the expected increase in synaptic strength, the growth and formation of new presynaptic varicosities, and the target-dependent regulation of mRNA distribution. In contrast, bath application of sensorin accelerated the increase in synaptic strength and enhanced the formation of new varicosities and target-dependent regulation of mRNA distribution in sensory neurons. As synapses stabilize, sensorin secretion declines but is required for the maintenance of synaptic efficacy, presynaptic varicosities, and mRNA distributions. These results suggest that a retrograde target signal regulates the secretion and actions of a presynaptic neuropeptide critical for the formation and maintenance of specific synapses.


Asunto(s)
Neuronas/fisiología , Neuropéptidos/fisiología , Sinapsis/fisiología , Secuencia de Aminoácidos , Animales , Aplysia , Comunicación Autocrina/fisiología , Axones/fisiología , Células Cultivadas , Potenciales Postsinápticos Excitadores/fisiología , Datos de Secuencia Molecular , Neuronas Motoras/fisiología , Neuritas/fisiología , Neuronas/metabolismo , Neuronas/ultraestructura , Neuronas Aferentes/fisiología , Neuropéptidos/biosíntesis , Neuropéptidos/metabolismo , Terminales Presinápticos/fisiología , ARN Mensajero/metabolismo
18.
J Neurobiol ; 56(3): 275-86, 2003 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-12884266

RESUMEN

Protein synthesis at synaptic terminals contributes to LTP in hippocampus and to the formation of new synaptic connections by sensory neurons (SNs) of Aplysia. Here we report that after removal of the SN cell body, isolated SN synapses of Aplysia in culture express protein-synthesis dependent long-term facilitation (LTF) produced by 5-HT that decays rapidly. Changes in expression of a SN-specific neuropeptide sensorin in isolated SN varicosities parallel the changes in synaptic efficacy. At 24 h after 5-HT the magnitude of LTF produced at isolated SN synapses was significantly greater than that produced when SN cell bodies were present. LTF was maintained at 48 h at connections with SN cell bodies, but not at isolated SN synapses. The increase in synaptic efficacy at isolated SN synapses at 24 h was blocked by the protein synthesis inhibitor anisomycin. LTF was accompanied by changes in expression of sensorin. The increase in sensorin level at isolated SN varicosities with 5-HT was blocked by anisomycin or was reversed 48 h after 5-HT treatment alone. The results suggest that, as is the case for initial synapse formation between SNs and L7, changes in protein synthesis at synaptic terminals may contribute directly to LTF of stable synapses. Changes in expression within the cell body provide additional contributions for long-term maintenance of the new level of synaptic efficacy that was initiated directly by local changes in protein synthesis at or near synaptic terminals.


Asunto(s)
Potenciación a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo , Sinapsis/metabolismo , Animales , Aplysia , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Regulación de la Expresión Génica/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Neuronas Aferentes/efectos de los fármacos , Sinapsis/efectos de los fármacos
19.
Exp Neurol ; 178(2): 280-7, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12504886

RESUMEN

The present study was undertaken to investigate the role of spinal somatostatin SSTR2A receptors in nociceptive processing. SSTR2A receptor-like immunoreactivity was found in a dense network in the spinal cord of normal rats. With Western blot analysis a major band of approximately 80-85 kDa was detected. Both immunohistochemistry and immunoblot analysis indicated a significant increase in SSTR2A receptor content in the spinal cord 6 h after noxious thermal stimulation that lasted for at least 24 h. However, there were no notable changes in SSTR2A receptor content 3, 6, 12, or 24 h after noxious mechanical stimulation. Effects of intrathecally administered polyclonal antiserum to SSTR2A receptor (anti-SSTR2A) on thermal and mechanical pain thresholds were determined with behavioral tests. In normal rats, pretreatment with anti-SSTR2A (1 microl, intrathecal) did not affect paw withdrawal latency or pinch threshold. Hindpaw inflammation induced by complete Freund's adjuvant led to thermal and mechanical hyperalgesia as reflected by a robust decrease in paw withdrawal latency and pinch threshold. Significant attenuation of the thermal hyperalgesia was observed 3, 5, 7, 9, and 24 h after pretreatment with anti-SSTR2A. This effect disappeared in another 24 h. In contrast, pretreatment with anti-SSTR2A failed to exert any notable effect on adjuvant-induced mechanical hyperalgesia. The present findings provide the first evidence that SSTR2A receptors are responsible for thermal, but not mechanical, nociceptive transmission in the spinal cord. The results also suggest that somatostatin has an excitatory role in spinal nociceptive processing and that there are differential receptor responses to different types of noxious stimuli.


Asunto(s)
Mecanorreceptores/fisiología , Dimensión del Dolor/métodos , Receptores de Somatostatina/biosíntesis , Médula Espinal/metabolismo , Regulación hacia Arriba/fisiología , Animales , Calor , Vértebras Lumbares/metabolismo , Masculino , Dimensión del Dolor/estadística & datos numéricos , Estimulación Física/métodos , Ratas , Ratas Sprague-Dawley , Receptores de Somatostatina/fisiología , Médula Espinal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA