Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664801

RESUMEN

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Asunto(s)
Caveolina 1 , Dieta Alta en Grasa , Células Endoteliales , Endotelio Vascular , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III , Vasodilatación , Animales , Masculino , Ratones , Aorta/enzimología , Aorta/fisiopatología , Aorta/metabolismo , Aorta/efectos de los fármacos , Aorta/patología , Caveolina 1/metabolismo , Caveolina 1/deficiencia , Caveolina 1/genética , Células Cultivadas , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/fisiopatología , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/enzimología , Endotelio Vascular/efectos de los fármacos , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/enzimología , Obesidad/fisiopatología , Obesidad/metabolismo , Transducción de Señal , Esterol Esterasa/metabolismo , Esterol Esterasa/genética , Ubiquitinación , Vasodilatación/efectos de los fármacos
2.
Cell Commun Signal ; 22(1): 488, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394127

RESUMEN

Vascular calcification (VC) arises from the accumulation of calcium salts in the intimal or tunica media layer of the aorta, contributing to higher risk of cardiovascular events and mortality. Despite this, the mechanisms driving VC remain incompletely understood. We previously described that nesfatin-1 functioned as a switch for vascular smooth muscle cells (VSMCs) plasticity in hypertension and neointimal hyperplasia. In this study, we sought to investigate the role and mechanism of nesfatin-1 in VC. The expression of nesfatin-1 was measured in calcified VSMCs and aortas, as well as in patients. Loss- and gain-of-function experiments were evaluated the roles of nesfatin-1 in VC pathogenesis. The transcription activation of nesfatin-1 was detected using a mass spectrometry. We found higher levels of nesfatin-1 in both calcified VSMCs and aortas, as well as in patients with coronary calcification. Loss-of-function and gain-of-function experiments revealed that nesfatin-1 was a key regulator of VC by facilitating the osteogenic transformation of VSMCs. Mechanistically, nesfatin-1 promoted the de-ubiquitination and stability of BMP-2 via inhibiting the E3 ligase SYTL4, and the interaction of nesfatin-1 with BMP-2 potentiated BMP-2 signaling and induced phosphorylation of Smad, followed by HDAC4 phosphorylation and nuclear exclusion. The dissociation of HDAC4 from RUNX2 elicited RUNX2 acetylation and subsequent nuclear translocation, leading to the transcription upregulation of OPN, a critical player in VC. From a small library of natural compounds, we identified that Curculigoside and Chebulagic acid reduced VC development via binding to and inhibiting nesfatin-1. Eventually, we designed a mass spectrometry-based DNA-protein interaction screening to identify that STAT3 mediated the transcription activation of nesfatin-1 in the context of VC. Overall, our study demonstrates that nesfatin-1 enhances BMP-2 signaling by inhibiting the E3 ligase SYTL4, thereby stabilizing BMP-2 and facilitating the downstream phosphorylation of SMAD1/5/9 and HDAC4. This signaling cascade leads to RUNX2 activation and the transcriptional upregulation of MSX2, driving VC. These insights position nesfatin-1 as a potential therapeutic target for preventing or treating VC, advancing our understanding of the molecular mechanisms underlying this critical cardiovascular condition.


Asunto(s)
Proteína Morfogenética Ósea 2 , Músculo Liso Vascular , Nucleobindinas , Osteogénesis , Transducción de Señal , Calcificación Vascular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Nucleobindinas/metabolismo , Nucleobindinas/genética , Humanos , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Calcificación Vascular/genética , Proteína Morfogenética Ósea 2/metabolismo , Animales , Masculino , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Miocitos del Músculo Liso/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Aorta/metabolismo , Aorta/patología
3.
Eur J Pharmacol ; 976: 176696, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38821160

RESUMEN

Cichoric acid (CA), a widely utilized polyphenolic compound in medicine, has garnered significant attention due to its potential health benefits. Sepsis-induced acute kidney disease (AKI) is related with an elevated risk of end-stage kidney disease (ESKD). However, it remains unclear whether CA provides protection against septic AKI. The aim of this study is to investigated the protective effect and possible mechanisms of CA against LPS-induced septic AKI. Sepsis-induced AKI was induced in mice through intraperitoneal injection of lipopolysaccharide (LPS), and RAW264.7 macrophages were incubated with LPS. LPS exposure significantly increased the levels of M1 macrophage biomarkers while reducing the levels of M2 macrophage indicators. This was accompanied by the release of inflammatory factors, superoxide anion production, mitochondrial dysfunction, activation of succinate dehydrogenase (SDH), and subsequent succinate formation. Conversely, pretreatment with CA mitigated these abnormalities. CA attenuated hypoxia-inducible factor-1α (HIF-1α)-induced glycolysis by lifting the NAD+/NADH ratio in macrophages. Additionally, CA disrupted the K (lysine) acetyltransferase 2A (KAT2A)/α-tubulin complex, thereby reducing α-tubulin acetylation and subsequently inactivating the NLRP3 inflammasome. Importantly, administration of CA ameliorated LPS-induced renal pathological damage, apoptosis, inflammation, oxidative stress, and disturbances in mitochondrial function in mice. Overall, CA restrained HIF-1α-mediated glycolysis via inactivation of SDH, leading to NLRP3 inflammasome inactivation and the amelioration of sepsis-induced AKI.


Asunto(s)
Lesión Renal Aguda , Ácidos Cafeicos , Lipopolisacáridos , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Sepsis , Succinatos , Animales , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Ratones , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Masculino , Succinatos/farmacología , Succinatos/uso terapéutico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células RAW 264.7 , Estrés Oxidativo/efectos de los fármacos , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Glucólisis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Activación de Macrófagos/efectos de los fármacos
4.
Redox Biol ; 77: 103373, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39357422

RESUMEN

The role of gut microbiome in acute kidney injury (AKI) is increasing recognized. Caloric restriction (CR) has been shown to enhance the resistance to ischemia/reperfusion injury to the kidneys in rodents. Nonetheless, it is unknown whether intestinal microbiota mediated CR protection against ischemic/reperfusion-induced injury (IRI) in the kidneys. Herein, we showed that CR ameliorated IRI-elicited renal dysfunction, oxidative stress, apoptosis, and inflammation, along with enhanced intestinal barrier function. In addition, gut microbiota depletion blocked the favorable effects of CR in AKI mice. 16S rRNA and metabolomics analysis showed that CR enriched the gut commensal Parabacteroides goldsteinii (P. goldsteinii) and upregulated the level of serum metabolite dodecafluorpentan. Intestinal colonization of P. goldsteinii and oral administration of dodecafluorpentan showed the similar beneficial effects as CR in AKI mice. RNA sequencing and experimental data revealed that dodecafluorpentan protected against AKI-induced renal injury by antagonizing oxidative burst and NFκB-induced NLRP3 inflammasome activation. In addition, we screened and found that Hamaudol improved renal insufficiency by boosting the growth of P. goldsteinii. Our results shed light on the role of intestinal microbiota P. goldsteinii and serum metabolites dodecafluorpentan in CR benefits to AKI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA