Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 632
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 591(7850): 413-419, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33618348

RESUMEN

The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people1,2. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.


Asunto(s)
Genoma Humano/genética , Genómica , Migración Humana/historia , China , Producción de Cultivos/historia , Femenino , Haplotipos/genética , Historia Antigua , Humanos , Japón , Lenguaje/historia , Masculino , Mongolia , Nepal , Oryza , Polimorfismo de Nucleótido Simple/genética , Siberia , Taiwán
2.
Nano Lett ; 24(18): 5513-5520, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38634689

RESUMEN

P-type self-doping is known to hamper tin-based perovskites for developing high-performance solar cells by increasing the background current density and carrier recombination processes. In this work, we propose a gradient homojunction structure with germanium doping that generates an internal electric field across the perovskite film to deplete the charge carriers. This structure reduces the dark current density of perovskite by over 2 orders of magnitude and trap density by an order of magnitude. The resultant tin-based perovskite solar cells exhibit a higher power conversion efficiency of 13.3% and excellent stability, maintaining 95% and 85% of their initial efficiencies after 250 min of continuous illumination and 3800 h of storage, respectively. We reveal the homojunction formation mechanism using density functional theory calculations and molecular level characterizations. Our work provides a reliable strategy for controlling the spatial energy levels in tin perovskite films and offers insights into designing intriguing lead-free perovskite optoelectronics.

3.
Anal Chem ; 96(6): 2620-2627, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38217497

RESUMEN

The CRISPR/Cas12a system is a revolutionary genome editing technique that is widely employed in biosensing and molecular diagnostics. However, there are few reports on precisely managing the trans-cleavage activity of Cas12a by simple modification since the traditional methods to manage Cas12a often require difficult and rigorous regulation of core components. Hence, we developed a novel CRISPR/Cas12a regulatory mechanism, named DNA Robots for Enzyme Activity Management (DREAM), by introducing two simple DNA robots, apurinic/apyrimidinic site (AP site) or nick on target activator. First, we revealed the mechanism of how the DREAM strategy precisely regulated Cas12a through different binding affinities. Second, the DREAM strategy was found to improve the selectivity of Cas12a for identifying base mismatch. Third, a modular biosensor for base excision repair enzymes based on the DREAM strategy was developed by utilizing diversified generation ways of DNA robots, and a multi-signal output platform such as fluorescence, colorimetry, and visual lateral flow strip was constructed. Furthermore, we extended logic sensing circuits to overcome the barrier that Cas12a could not detect simultaneously in a single tube. Overall, the DREAM strategy not only provided new prospects for programmable Cas12a biosensing systems but also enabled portable, specific, and humanized detection with great potential for molecular diagnostics.


Asunto(s)
Técnicas Biosensibles , Robótica , Sistemas CRISPR-Cas/genética , Colorimetría , ADN/genética , Reparación por Escisión
4.
Anal Chem ; 96(22): 8914-8921, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38776971

RESUMEN

MicroRNAs (miRNAs) are a class of endogenous noncoding small RNAs that play important roles in various biological processes and diseases. Direct determination of miRNAs is a cost-efficient and accurate method for analysis. Herein, we established a novel method for the analysis of miRNAs based on a narrow constant-inner-diameter mass spectrometry emitter. We utilized the gravity-assisted sleeving etching method to prepare a constant-inner-diameter mass spectrometry emitter with a capillary inner diameter of 5.5 µm, coupled it with a high-voltage power supply and a high-resolution mass spectrometer, and used it for miRNA direct detection. The method showed high sensitivity and reproducibility for the analysis of four miRNAs, with a limit of detection of 100 nmol/L (170 amol) for the Hsa-miR-1290 analysis. Compared with commercial ion sources, our method achieved higher sensitivity for miRNA detection. In addition, we analyzed the total miRNAs in the A549 cells. The result indicated that both spiked and endogenous miRNAs could be quantified with high accuracy. As a result, this method offers a promising platform for highly sensitive and accurate miRNA analysis. Furthermore, this approach can be extended to the analysis of other small oligonucleotides and holds the potential for studying clinical samples and facilitating disease diagnosis.


Asunto(s)
Espectrometría de Masas , MicroARNs , MicroARNs/análisis , Humanos , Células A549 , Límite de Detección
5.
Anal Chem ; 96(1): 301-308, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38102984

RESUMEN

Developing new strategies to construct sensor arrays that can effectively distinguish multiple natural components with similar structures in mixtures is an exceptionally challenging task. Here, we propose a new multilocus distance-modulated indicator displacement assay (IDA) strategy for constructing a sensor array, incorporating machine learning optimization to identify polyphenols. An 8-element array, comprising two fluorophores and their six dynamic covalent complexes (C1-C6) formed by pairing two fluorophores with three distinct distance-regulated quenchers, has been constructed. Polyphenols with diverse spatial arrangements and combinatorial forms compete with the fluorophores by forming pseudocycles with quenchers within the complexes, leading to varying degrees of fluorescence recovery. The array accurately and effectively distinguished four tea polyphenols and 16 tea varieties, thereby demonstrating the broad applicability of the multilocus distance-modulated IDA array in detecting polyhydroxy foods and natural medicines.


Asunto(s)
Polifenoles , , Espectrometría de Fluorescencia , Aprendizaje Automático
6.
Small ; 20(26): e2306916, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38221813

RESUMEN

Ferroptosis, a novel form of nonapoptotic cell death, can effectively enhance photodynamic therapy (PDT) performance by disrupting intracellular redox homeostasis and promoting apoptosis. However, the extremely hypoxic tumor microenvironment (TME) together with highly expressed hypoxia-inducible factor-1α (HIF-1α) presents a considerable challenge for clinical PDT against osteosarcoma (OS). Hence, an innovative nanoplatform that enhances antitumor PDT by inducing ferroptosis and alleviating hypoxia is fabricated. Capsaicin (CAP) is widely reported to specifically activate transient receptor potential vanilloid 1 (TRPV1) channel, trigger an increase in intracellular Ca2+ concentration, which is closely linked with ferroptosis, and participate in decreased oxygen consumption by inhibiting HIF-1α in tumor cells, potentiating PDT antitumor efficiency. Thus, CAP and the photosensitizer IR780 are coencapsulated into highly biocompatible human serum albumin (HSA) to construct a nanoplatform (CI@HSA NPs) for synergistic tumor treatment under near-infrared (NIR) irradiation. Furthermore, the potential underlying signaling pathways of the combination therapy are investigated. CI@HSA NPs achieve real-time dynamic distribution monitoring and exhibit excellent antitumor efficacy with superior biosafety in vivo. Overall, this work highlights a promising NIR imaging-guided "pro-death" strategy to overcome the limitations of PDT for OS by promoting ferroptosis and alleviating hypoxia, providing inspiration and support for future innovative tumor therapy approaches.


Asunto(s)
Capsaicina , Ferroptosis , Osteosarcoma , Fotoquimioterapia , Ferroptosis/efectos de los fármacos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Osteosarcoma/metabolismo , Fotoquimioterapia/métodos , Humanos , Capsaicina/farmacología , Línea Celular Tumoral , Animales , Nanopartículas/química , Ratones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
7.
Small ; 20(25): e2310728, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38229573

RESUMEN

DNA nanostructures with diverse biological functions have made significant advancements in biomedical applications. However, a universal strategy for the efficient production of DNA nanostructures is still lacking. In this work, a facile and mild method is presented for self-assembling polyethylenimine-modified carbon dots (PEI-CDs) and DNA into nanospheres called CANs at room temperature. This makes CANs universally applicable to multiple biological applications involving various types of DNA. Due to the ultra-small size and strong cationic charge of PEI-CDs, CANs exhibit a dense structure with high loading capacity for encapsulated DNA while providing excellent stability by protecting DNA from enzymatic hydrolysis. Additionally, Mg2+ is incorporated into CANs to form Mg@CANs which enriches the performance of CANs and enables subsequent biological imaging applications by providing exogenous Mg2+. Especially, a DNAzyme logic gate system that contains AND and OR Mg@CANs is constructed and successfully delivered to tumor cells in vitro and in vivo. They can be specifically activated by endogenic human apurinic/apyrimidinic endonuclease 1 and recognize the expression levels of miRNA-21 and miRNA-155 at tumor sites by logic biocomputing. A versatile pattern for delivery of diverse DNA and flexible logic circuits for multiple miRNAs imaging are developed.


Asunto(s)
Carbono , ADN , MicroARNs , Nanosferas , Polietileneimina , Puntos Cuánticos , Carbono/química , Humanos , Nanosferas/química , ADN/química , Puntos Cuánticos/química , Polietileneimina/química , ADN Catalítico/química , Animales , Neoplasias/diagnóstico por imagen , Lógica , Línea Celular Tumoral
8.
Plant Biotechnol J ; 22(2): 497-511, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37883523

RESUMEN

Verticillium dahliae is a widespread and destructive soilborne vascular pathogenic fungus that causes serious diseases in dicot plants. Here, comparative transcriptome analysis showed that the number of genes upregulated in defoliating pathotype V991 was significantly higher than in the non-defoliating pathotype 1cd3-2 during the early response of cotton. Combined with analysis of the secretome during the V991-cotton interaction, an elicitor VP2 was identified, which was highly upregulated at the early stage of V991 invasion, but was barely expressed during the 1cd3-2-cotton interaction. Full-length VP2 could induce cell death in several plant species, and which was dependent on NbBAK1 but not on NbSOBIR1 in N. benthamiana. Knock-out of VP2 attenuated the pathogenicity of V991. Furthermore, overexpression of VP2 in cotton enhanced resistance to V. dahliae without causing abnormal plant growth and development. Several genes involved in JA, SA and lignin synthesis were significantly upregulated in VP2-overexpressing cotton. The contents of JA, SA, and lignin were also significantly higher than in the wild-type control. In summary, the identified elicitor VP2, recognized by the receptor in the plant membrane, triggers the cotton immune response and enhances disease resistance.


Asunto(s)
Ascomicetos , Verticillium , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Gossypium/genética , Gossypium/metabolismo , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas/genética
9.
Opt Lett ; 49(10): 2793-2796, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748163

RESUMEN

This work demonstrates a high-performance photodetector with a 4-cycle Ge0.86Si0.14/Ge multi-quantum well (MQW) structure grown by reduced pressure chemical vapor deposition techniques on a Ge-buffered Si (100) substrate. At -1 V bias, the dark current density of the fabricated PIN mesa devices is as low as 3 mA/cm2, and the optical responsivities are 0.51 and 0.17 A/W at 1310 and 1550 nm, respectively, corresponding to the cutoff wavelength of 1620 nm. At the same time, the device has good high-power performance and continuous repeatable light response. On the other hand, the temperature coefficient of resistance (TCR) of the device is as high as -5.18%/K, surpassing all commercial thermal detectors. These results indicate that the CMOS-compatible and low-cost Ge0.86Si0.14/Ge multilayer structure is promising for short-wave infrared and uncooled infrared imaging.

10.
Cancer Cell Int ; 24(1): 185, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807207

RESUMEN

The aim of this study was to determine the role of lncRNA PART1 and downstream FUT6 in tumorigenesis and progression of head and neck cancer (HNC). Bioinformatics analysis and qRT-PCR revealed that lncRNA PART1 was expressed at low levels in HNC patients. The proliferation, apoptosis, migration and flow cytometry results showed that low expression of lncRNA PART1 inhibited apoptosis and promoted HNC cell migration and proliferation. In addition, animal experiments have also shown that low expression of lncRNA PART1 can promote tumor growth. LncRNA PART1 overexpression promoted apoptosis and inhibited HNC cell migration and proliferation. Through bioinformatics analysis, FUT6 was found to be expressed at low levels in HNC and to be correlated with patient survival. Immunohistochemical and qRT-PCR results revealed that FUT6 was underexpressed in tumour tissues and HNC cells. Cell and animal experiments showed that overexpression of FUT6 could inhibit tumour proliferation and migration. Bioinformatics analysis revealed that lncRNA PART1 was positively correlated with FUT6. By qRT-PCR and western blot, we observed that after knockdown of lncRNA PART1, both the mRNA and protein expression levels of FUT6 were reduced. The above results indicated that lncRNA PART1 and FUT6 play an important role in HNC, and that lncRNA PART1 affected the development of tumor by downstream FUT6.

11.
Respir Res ; 25(1): 72, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317180

RESUMEN

BACKGROUND: Pneumocystis pneumonia (PCP) is a life-threatening opportunistic fungal infection with a high mortality rate in immunocompromised patients, ranging from 20 to 80%. However, current understanding of the variation in host immune response against Pneumocystis across different timepoints is limited. METHODS: In this study, we conducted a time-resolved single-cell RNA sequencing analysis of CD45+ cells sorted from lung tissues of mice infected with Pneumocystis. The dynamically changes of the number, transcriptome and interaction of multiply immune cell subsets in the process of Pneumocystis pneumonia were identified according to bioinformatic analysis. Then, the accumulation of Trem2hi interstitial macrophages after Pneumocystis infection was verified by flow cytometry and immunofluorescence. We also investigate the role of Trem2 in resolving the Pneumocystis infection by depletion of Trem2 in mouse models. RESULTS: Our results characterized the CD45+ cell composition of lung in mice infected with Pneumocystis from 0 to 5 weeks, which revealed a dramatic reconstitution of myeloid compartments and an emergence of PCP-associated macrophage (PAM) following Pneumocystis infection. PAM was marked by the high expression of Trem2. We also predicted that PAMs were differentiated from Ly6C+ monocytes and interacted with effector CD4+ T cell subsets via multiple ligand and receptor pairs. Furthermore, we determine the surface markers of PAMs and validated the presence and expansion of Trem2hi interstitial macrophages in PCP by flow cytometry. PAMs secreted abundant pro-inflammation cytokines, including IL-6, TNF-α, GM-CSF, and IP-10. Moreover, PAMs inhibited the proliferation of T cells, and depletion of Trem2 in mouse lead to reduced fungal burden and decreased lung injury in PCP. CONCLUSION: Our study delineated the dynamic transcriptional changes in immune cells and suggests a role for PAMs in PCP, providing a framework for further investigation into PCP's cellular and molecular basis, which could provide a resource for further discovery of novel therapeutic targets.


Asunto(s)
Glicoproteínas de Membrana , Neumonía por Pneumocystis , Receptores Inmunológicos , Animales , Ratones , Inmunidad , Inflamación/metabolismo , Pulmón/microbiología , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neumonía por Pneumocystis/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
12.
Infection ; 52(1): 19-28, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37878197

RESUMEN

OBJECTIVE: Carbapenem-resistant Enterobacteriaceae (CRE) pose a significant threat to human health and have emerged as a major public health concern. We aimed to compare the efficacy and the safety of ceftazidime-avibactam (CAZ-AVI) and polymyxin in the treatment of CRE infections. METHODS: A systematic review and meta-analysis was performed by searching the databases of EMBASE, PubMed, and the Cochrane Library. Published studies on the use of CAZ-AVI and polymyxin in the treatment of CRE infections were collected from the inception of the database until March 2023. Two investigators independently screened the literature according to the inclusion and exclusion criteria, evaluated the methodological quality of the included studies and extracted the data. The meta-analysis was performed using RevMan 5.4 software. RESULTS: Ten articles with 833 patients were included (CAZ-AVI 325 patients vs Polymyxin 508 patients). Compared with the patients who received polymyxin-based therapy, the patients who received CAZ-AVI therapy had significantly lower 30-days mortality (RR = 0.49; 95% CI 0.01-2.34; I2 = 22%; P < 0.00001), higher clinical cure rate (RR = 2.70; 95% CI 1.67-4.38; I2 = 40%; P < 0.00001), and higher microbial clearance rate (RR = 2.70; 95% CI 2.09-3.49; I2 = 0%; P < 0.00001). However, there was no statistically difference in the incidence of acute kidney injury between patients who received CAZ-AVI and polymyxin therapy (RR = 1.38; 95% CI 0.69-2.77; I2 = 22%; P = 0.36). In addition, among patients with CRE bloodstream infection, those who received CAZ-AVI therapy had significantly lower mortality than those who received polymyxin therapy (RR = 0.44; 95% CI 0.27-0.69, I2 = 26%, P < 0.00004). CONCLUSIONS: Compared to polymyxin, CAZ-AVI demonstrated superior clinical efficacy in the treatment of CRE infections, suggesting that CAZ-AVI may be a superior option for CRE infections.


Asunto(s)
Compuestos de Azabiciclo , Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Enterobacteriaceae , Humanos , Antibacterianos/uso terapéutico , Polimixinas/uso terapéutico , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Ceftazidima/uso terapéutico , Combinación de Medicamentos
13.
Infection ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884857

RESUMEN

OBJECTIVES: In this retrospective observational multicenter study, we aimed to assess efficacy and mortality between ceftazidime/avibactam (CAZ/AVI) or polymyxin B (PMB)-based regimens for the treatment of Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections, as well as identify potential risk factors. METHODS: A total of 276 CRKP-infected patients were enrolled in our study. Binary logistic and Cox regression analysis with a propensity score-matched (PSM) model were performed to identify risk factors for efficacy and mortality. RESULTS: The patient cohort was divided into PMB-based regimen group (n = 98, 35.5%) and CAZ/AVI-based regimen group (n = 178, 64.5%). Compared to the PMB group, the CAZ/AVI group exhibited significantly higher rates of clinical efficacy (71.3% vs. 56.1%; p = 0.011), microbiological clearance (74.7% vs. 41.4%; p < 0.001), and a lower incidence of acute kidney injury (AKI) (13.5% vs. 33.7%; p < 0.001). Binary logistic regression revealed that the treatment duration independently influenced both clinical efficacy and microbiological clearance. Vasoactive drugs, sepsis/septic shock, APACHE II score, and treatment duration were identified as risk factors associated with 30-day all-cause mortality. The CAZ/AVI-based regimen was an independent factor for good clinical efficacy, microbiological clearance, and lower AKI incidence. CONCLUSIONS: For patients with CRKP infection, the CAZ/AVI-based regimen was superior to the PMB-based regimen.

14.
J Fluoresc ; 34(2): 765-774, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37358758

RESUMEN

Sensitive and convenient strategy of tyrosinase (TYR) and its inhibitor atrazine is in pressing demand for essential research as well as pragmatic application. In this work, an exquisite label-free fluorometric assay with high sensitivity, convenience and efficiency was described for detecting TYR and the herbicide atrazine on the basis of fluorescent nitrogen-doped carbon dots (CDs). The CDs were prepared via one-pot hydrothermal reaction starting from citric acid and diethylenetriamine. TYR catalyzed the oxidation of dopamine to dopaquinone derivative which could quench the fluorescence of CDs through a fluorescence resonance energy transfer (FRET) process. Thus, a sensitive and selective quantitative evaluation of TYR can be constructed on the basis of the relationship between the fluorescence of CDs and TYR activity. Atrazine, a typical inhibitor of TYR, inhibited the catalytic activity of TYR, leading to the reduced dopaquinone and the fluorescence was retained. The strategy covered a broad linear range of 0.1-150 U/mL and 4.0-80.0 nM for TYR and atrazine respectively with a low detection limit of 0.02 U/mL and 2.4 nM/mL. It is also demonstrated that the assay can be applied to detect TYR and atrazine in spiked complex real samples, which provides infinite potential in application of disease monitoring along with environmental analysis.


Asunto(s)
Atrazina , Dihidroxifenilalanina/análogos & derivados , Puntos Cuánticos , Monofenol Monooxigenasa/análisis , Carbono , Atrazina/análisis , Benzoquinonas , Colorantes Fluorescentes , Nitrógeno
15.
Phys Chem Chem Phys ; 26(20): 14874-14882, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38738516

RESUMEN

Perovskite/organic bulk heterojunction (BHJ) integrated solar cells have tremendous development potential to exceed the Shockley-Queisser limit efficiency of single-junction photovoltaics, due to the merits of spectra response extension. However, the presence of energy level barriers and severe non-radiative recombination at the interface between perovskite and BHJ greatly hindered the transport and collection of charge carriers, usually leading to large Voc and photocurrent loss, as well as the stability degradation of integrated devices. Therefore, investigating the interface properties of perovskite/BHJ is crucial for understanding the charge transport process and enhancing device performance. In this study, we effectively regulated the interface properties and charge transport in perovskite/BHJ integrated devices using a thermal annealing process. Using Kelvin probe microscopy, photoluminescence, and transient absorption spectroscopy, we revealed that moderate annealing treatment would contribute to forming close interface contact and provide more channels or pathways for charge transfer, which is advantageous for the interface charge collection and device performance. In addition, the lone pair electrons of acyl, thiophene and pyrrole function groups in polymer PDPP3T and PCBM can act as the Lewis base and provide electrons to the under-coordinated lead atoms or clusters in the perovskite, effectively passivating traps on the surface and grain boundaries of the perovskite through Lewis acid-base coordination. Finally, we improved the photovoltaic conversion efficiency of the device to 21.57% with enhanced stability using an optimized thermal annealing process. This study provides a comprehensive understanding of the integrated perovskite/BHJ interface properties, which could be extended to other optoelectronic devices based on a similar integrated structure.

16.
J Infect Chemother ; 30(2): 98-103, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37714266

RESUMEN

PURPOSE: The early and efficient diagnosis of patients suspected of having pulmonary tuberculosis (PTB) remains challenging. This study aimed to evaluate the accuracy of nanopore sequencing for PTB diagnosis using bronchoalveolar lavage fluid (BALF) samples and compared it with other techniques such as acid-fast bacilli smear, culture, Xpert MTB/RIF, and CapitalBio Mycobacterium reverse transcription-polymerase chain reaction (MTB RT-PCR). METHODS: We retrospectively analyzed the clinical data of 195 patients with suspected PTB who were admitted to our hospital. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC) of these assays were calculated and compared. RESULTS: The overall sensitivity, specificity, PPV, NPV, and AUC of nanopore sequencing were 90.70%, 84.85%, 92.13%, 82.35%, and 0.88; those of acid-fast bacilli smear were 12.40%, 98.48%, 94.12%, 36.52%, and 0.55; those of culture were 36.43%, 100%, 100%, 44.59%, and 0.68; those of Xpert MTB/RIF were 41.09%, 100%, 100%, 46.48%, and 0.71; and those of CapitalBio MTB RT-PCR were 34.88%, 98.48%, 97.83%, 43.62%, and 0.67, respectively. CONCLUSION: The nanopore sequencing assay using BALF samples showed the best diagnostic accuracy for sputum-scarce PTB. Moreover, it can improve the clinical diagnosis of PTB.


Asunto(s)
Mycobacterium tuberculosis , Secuenciación de Nanoporos , Tuberculosis Pulmonar , Humanos , Líquido del Lavado Bronquioalveolar/microbiología , Mycobacterium tuberculosis/genética , Esputo/microbiología , Estudios Retrospectivos , Tuberculosis Pulmonar/microbiología , Sensibilidad y Especificidad
17.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33602813

RESUMEN

The assembly and jamming of magnetic nanoparticles (NPs) at liquid-liquid interfaces is a versatile platform to endow structured liquid droplets with a magnetization, i.e., producing ferromagnetic liquid droplets (FMLDs). Here, we use hydrodynamics experiments to probe how the magnetization of FMLDs and their response to external stimuli can be tuned by chemical, structural, and magnetic means. The remanent magnetization stems from magnetic NPs jammed at the liquid-liquid interface and dispersed NPs magneto-statically coupled to the interface. FMLDs form even at low concentrations of magnetic NPs when mixing nonmagnetic and magnetic NPs, since the underlying magnetic dipole-driven clustering of magnetic NP-surfactants at the interface produces local magnetic properties, similar to those found with pure magnetic NP solutions. While the net magnetization is smaller, such a clustering of NPs may enable structured liquids with heterogeneous surfaces.

18.
Mikrochim Acta ; 191(5): 263, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619658

RESUMEN

A green and sensitive ratio fluorescence strategy was proposed for the detection of formaldehyde (FA) in food based on a kind of metal-organic frameworks (MOFs), MIL-53(Fe)-NO2, and nitrogen-doped Ti3C2 MXene quantum dots (N-Ti3C2 MQDs) with a blue fluorescence at 450 nm. As a type of MOFs with oxidase-like activity, MIL-53(Fe)-NO2 can catalyze o-phenylenediamine (OPD) into yellow fluorescent product 2,3-diaminophenazine (DAP) with a fluorescent emission at 560 nm. DAP has the ability to suppress the blue light of N-Ti3C2 MQDs due to inner filter effect (IFE). Nevertheless, Schiff base reaction can occur between FA and OPD, inhibiting DAP production. This results in a weakening of the IFE which reverses the original fluorescence color and intensity of DAP and N-Ti3C2 MQDs. So, the ratio of fluorescence intensity detected at respective 450 nm and 560 nm was designed as the readout signal to detect FA in food. The linear range of FA detection was 1-200 µM, with a limit of detection of 0.49 µM. The method developed was successfully used to detect FA in food with satisfactory results. It indicates that MIL-53(Fe)-NO2, OPD, and N-Ti3C2 MQDs (MON) system constructed by integrating the mimics enzyme, enzyme substrate, and fluorescent quantum dots has potential application for FA detection in practical samples.


Asunto(s)
Estructuras Metalorgánicas , Fenilendiaminas , Puntos Cuánticos , Colorantes Fluorescentes , Dióxido de Nitrógeno , Formaldehído
19.
Angew Chem Int Ed Engl ; 63(16): e202318483, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38407995

RESUMEN

Bacterial infections have emerged as the leading causes of mortality and morbidity worldwide. Herein, we developed a dual-channel fluorescence "turn-on" sensor array, comprising six electrostatic complexes formed from one negatively charged poly(para-aryleneethynylene) (PPE) and six positively charged aggregation-induced emission (AIE) fluorophores. The 6-element array enabled the simultaneous identification of 20 bacteria (OD600=0.005) within 30s (99.0 % accuracy), demonstrating significant advantages over the array constituted by the 7 separate elements that constitute the complexes. Meanwhile, the array realized different mixing ratios and quantitative detection of prevalent bacteria associated with urinary tract infection (UTI). It also excelled in distinguishing six simulated bacteria samples in artificial urine. Remarkably, the limit of detection for E. coli and E. faecalis was notably low, at 0.000295 and 0.000329 (OD600), respectively. Finally, optimized by diverse machine learning algorithms, the designed array achieved 96.7 % accuracy in differentiating UTI clinical samples from healthy individuals using a random forest model, demonstrating the great potential for medical diagnostic applications.


Asunto(s)
Bacterias , Escherichia coli , Humanos , Fluorescencia
20.
Int J Cancer ; 153(5): 1096-1107, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37232006

RESUMEN

Non-diagnostic findings are common in transbronchial lung biopsy (TBLB) and endobronchial ultrasound-guided transbronchial lung biopsy (EBUS-TBLB). One of the challenges is to improve the detection of lung cancer using these techniques. To address this issue, we utilized an 850 K methylation chip to identify methylation sites that distinguish malignant from benign lung nodules. Our study found that a combination of HOXA7, SHOX2 and SCT methylation analysis has the best diagnostic yield in bronchial washing (sensitivity: 74.1%; AUC: 0.851) and brushing samples (sensitivity: 86.1%; AUC: 0.915). We developed a kit comprising these three genes and validated it in 329 unique bronchial washing samples, 397 unique brushing samples and 179 unique patients with both washing and brushing samples. The panel's accuracy in lung cancer diagnosis was 86.9%, 91.2% and 95% in bronchial washing, brushing and washing + brushing samples, respectively. When combined with cytology, rapid on-site evaluation (ROSE), and histology, the panel's sensitivity in lung cancer diagnosis was 90.8% and 95.8% in bronchial washing and brushing samples, respectively, and 100% in washing + brushing samples. Our findings suggest that quantitative analysis of the three-gene panel can improve the diagnosis of lung cancer using bronchoscopy.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pulmón/patología , Biopsia/métodos , Broncoscopía , ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA