Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Exp Pathol ; 103(4): 140-148, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35246889

RESUMEN

Islet autoantibodies, including autoantibodies directed against the 65kDa isoform of glutamate decarboxylase (GAD65Ab), are present in the majority of patients with newly diagnosed type 1 diabetes (T1D). Whereas these autoantibodies are historically viewed as an epiphenomenon of the autoimmune response with no significant pathogenic function, we consider in this study the possibility that they impact the major islet function, namely glucose-stimulated insulin secretion. Two human monoclonal GAD65Ab (GAD65 mAb) (b78 and b96.11) were investigated for uptake by live rat beta cells, subcellular localization and their effect on glucose-stimulated insulin secretion. The GAD65 mAbs were internalized by live pancreatic beta cells, where they localized to subcellular structures in an epitope-specific manner. Importantly, GAD65 mAb b78 inhibited, while GAD65 mAb b96.11 enhanced, glucose-stimulated insulin secretion (GSIS). These opposite effects on GSIS rule out non-specific effects of the antibodies and suggest that internalization of the antibody leads to epitope-specific interaction with intracellular machinery regulating insulin granule release. The most likely explanation for the alteration of GSIS by GAD65 Abs is via changes in GABA release due to inhibition or change in GAD65 enzyme activity. This is the first report indicating an active role of GAD65Ab in the pathogenesis of T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Glutamato Descarboxilasa , Animales , Anticuerpos Monoclonales/farmacología , Autoanticuerpos/farmacología , Epítopos , Glucosa/farmacología , Glutamato Descarboxilasa/química , Glutamato Descarboxilasa/metabolismo , Secreción de Insulina , Ratas
2.
Circ Res ; 126(4): 456-470, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31896304

RESUMEN

RATIONALE: Lipid overload-induced heart dysfunction is characterized by cardiomyocyte death, myocardial remodeling, and compromised contractility, but the impact of excessive lipid supply on cardiac function remains poorly understood. OBJECTIVE: To investigate the regulation and function of the mitochondrial fission protein Drp1 (dynamin-related protein 1) in lipid overload-induced cardiomyocyte death and heart dysfunction. METHODS AND RESULTS: Mice fed a high-fat diet (HFD) developed signs of obesity and type II diabetes mellitus, including hyperlipidemia, hyperglycemia, hyperinsulinemia, and hypertension. HFD for 18 weeks also induced heart hypertrophy, fibrosis, myocardial insulin resistance, and cardiomyocyte death. HFD stimulated mitochondrial fission in mouse hearts. Furthermore, HFD increased the protein level, phosphorylation (at the activating serine 616 sites), oligomerization, mitochondrial translocation, and GTPase activity of Drp1 in mouse hearts, indicating that Drp1 was activated. Monkeys fed a diet high in fat and cholesterol for 2.5 years also exhibited myocardial damage and Drp1 activation in the heart. Interestingly, HFD decreased nicotinamide adenine dinucleotide (oxidized) levels and increased Drp1 acetylation in the heart. In adult cardiomyocytes, palmitate increased Drp1 acetylation, phosphorylation, and protein levels, and these increases were abolished by restoration of the decreased nicotinamide adenine dinucleotide (oxidized) level. Proteomics analysis and in vitro screening revealed that Drp1 acetylation at lysine 642 (K642) was increased by HFD in mouse hearts and by palmitate incubation in cardiomyocytes. The nonacetylated Drp1 mutation (K642R) attenuated palmitate-induced Drp1 activation, its interaction with voltage-dependent anion channel 1, mitochondrial fission, contractile dysfunction, and cardiomyocyte death. CONCLUSIONS: These findings uncover a novel mechanism that contributes to lipid overload-induced heart hypertrophy and dysfunction. Excessive lipid supply created an intracellular environment that facilitated Drp1 acetylation, which, in turn, increased its activity and mitochondrial translocation, resulting in cardiomyocyte dysfunction and death. Thus, Drp1 may be a critical mediator of lipid overload-induced heart dysfunction as well as a potential target for therapy.


Asunto(s)
Dinaminas/metabolismo , Lípidos/análisis , Miocitos Cardíacos/metabolismo , Acetilación , Animales , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Muerte Celular/genética , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Dinaminas/genética , Femenino , Hiperglucemia/etiología , Hiperglucemia/metabolismo , Hiperinsulinismo/etiología , Hiperinsulinismo/metabolismo , Hiperlipidemias/etiología , Hiperlipidemias/metabolismo , Hipertensión/etiología , Hipertensión/metabolismo , Macaca mulatta , Masculino , Ratones Endogámicos C57BL , Mutación , Miocitos Cardíacos/patología , Obesidad/etiología , Obesidad/metabolismo , Ratas Sprague-Dawley
3.
Nitric Oxide ; 46: 204-12, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25461268

RESUMEN

Oxidative stress plays a great role in the pathogenesis of heart failure (HF). Oxidative stress results in apoptosis, which can cause the damage of cardiomyocytes. Hydrogen sulfide (H2S), the third gasotransmitter, is a good reactive oxygen species (ROS) scavenger, which has protective effect against HF. Sirtuin-1 (SIRT1) is a highly conserved nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase that plays a critical role in promoting cell survival under oxidative stress. The purpose of this article is to investigate the interaction between H2S and SIRT1 under oxidative stress in H9c2 cardiomyocytes. Oxidative stress was induced by hydrogen peroxide (H2O2). Treatment with NaSH (25-100 µmol/L) dose-dependently increased the cell viability and improved the cell apoptosis induced by H2O2 in H9c2 cardiomyocytes. The protective effect of NaSH against the apoptosis could be attenuated by SIRT1 inhibitor Ex 527 (10 µmol/L). Treatment with NaSH (100 µmol/L) could increase the expression of SIRT1 in time dependent manner, which decreased by different concentration of H2O2. NaSH (100 µmol/L) increased the cellular ATP level and the expression of ATPase. These effects were attenuated by Ex 527 (10 µmol/L). After NaSH (100 µmol/L) treatment, the decrease in ROS production and the enhancement in SOD, GPx and GST expression were observed. Ex 527 (10 µmol/L) reversed these effects. In conclusion, for the first time, this article can identify antioxidative effects of H2S under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes.


Asunto(s)
Apoptosis/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Sirtuina 1/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Peróxido de Hidrógeno , Mitocondrias , Ratas
4.
Curr Med Chem ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38549538

RESUMEN

The nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) redox couple serves as a substrate or cofactor for many enzymes to maintain cellular redox homeostasis as well as to regulate biosynthetic metabolism. The deficiency or imbalance of NADP+/NADPH redox couple is strongly associated with cardiovascular-related pathologies. An imbalance in the NADP+/NADPH ratio can lead to either oxidative or reductive stress. Reductive stress complicates the cellular redox environment and provides new insights into the cellular redox state. Newly discovered biosynthetic enzymes and developed genetically encoded biosensors provide technical support for studying how cells maintain a compartmentalized NADP(H) pool. NADP(H) plays an important role in cardiovascular pathologies. However, whether NADP(H) is injurious or protective in these diseases is uncertain, as either deficiency or excess NADP(H) levels can lead to imbalances in cellular redox state and metabolic homeostasis, resulting in energy stress, redox stress, and ultimately disease state. Additional study of the replicative regulatory network of NADP(H) metabolism in different compartments, and the mechanisms by which NADP(H) regulates redox state and metabolism under normal and pathological conditions, will develop the targeted and novel therapies based on NADP(H) metabolism.

5.
Front Cardiovasc Med ; 10: 1067732, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860274

RESUMEN

Vascular remodeling is the pathological basis for the development of many cardiovascular diseases. The mechanisms underlying endothelial cell dysfunction, smooth muscle cell phenotypic switching, fibroblast activation, and inflammatory macrophage differentiation during vascular remodeling remain elusive. Mitochondria are highly dynamic organelles. Recent studies showed that mitochondrial fusion and fission play crucial roles in vascular remodeling and that the delicate balance of fusion-fission may be more important than individual processes. In addition, vascular remodeling may also lead to target-organ damage by interfering with the blood supply to major body organs such as the heart, brain, and kidney. The protective effect of mitochondrial dynamics modulators on target-organs has been demonstrated in numerous studies, but whether they can be used for the treatment of related cardiovascular diseases needs to be verified in future clinical studies. Herein, we summarize recent advances regarding mitochondrial dynamics in multiple cells involved in vascular remodeling and associated target-organ damage.

6.
Redox Biol ; 58: 102519, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36327794

RESUMEN

Hydrogen sulfide (H2S), produced by cystathionine γ lyase (CSE), is an important endogenous gasotransmitter to maintain heart function. However, the molecular mechanism for how H2S influences the mitochondrial morphology during heart failure remains poorly understood. Here, we found that CSE/H2S pathway mediated cardiac function and mitochondrial morphology through regulating dynamin related protein 1 (Drp1) activity and translocation. Mechanistically, elevation of H2S levels by CSE overexpression declined protein level, phosphorylation (Ser 616), oligomerization and GTPase activity of Drp1 by S-sulfhydration in mouse hearts. Interestingly, Drp1 S-sulfhydration directly competed with S-nitrosylation by nitric oxide at the specific cysteine 607. The non-S-sulfhydration of Drp1 mutation (C607A) attenuated the regulatory effect of H2S on Drp1 activation, mitochondrial fission and heart function. Moreover, the non-canonical role of Drp1 mediated isoprenaline-induced mitochondrial dysfunction and cardiomyocyte death through interaction with voltage-dependent anion channel 1. These results uncover that a novel mechanism that H2S S-sulfhydrated Drp1 at cysteine 607 to prevent heart failure through modulating its activity and mitochondrial translocation. Our findings also provide initial evidence demonstrating that Drp1 may be a critical regulator as well as an effective strategy for heart dysfunction.


Asunto(s)
Insuficiencia Cardíaca , Sulfuro de Hidrógeno , Ratones , Animales , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Cisteína/metabolismo , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Dinaminas/genética , Insuficiencia Cardíaca/genética
7.
Cell Rep Methods ; 1(7)2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34901920

RESUMEN

The ratio of oxidized to reduced NAD (NAD+/NADH) sets intracellular redox balance and antioxidant capacity. Intracellular NAD is compartmentalized and the mitochondrial NAD+/NADH ratio is intricately linked to cellular function. Here, we report the monitoring of the NAD+/NADH ratio in mitochondrial and cytosolic compartments in live cells by using a modified genetic biosensor (SoNar). The fluorescence signal of SoNar targeted to mitochondria (mt-SoNar) or cytosol (ct-SoNar) responded linearly to physiological NAD+/NADH ratios in situ. NAD+/NADH ratios in cytosol versus mitochondria responded rapidly, but differently, to acute metabolic perturbations, indicating distinct NAD pools. Subcellular NAD redox balance regained homeostasis via communications through malate-aspartate shuttle. Mitochondrial and cytosolic NAD+/NADH ratios are influenced by NAD+ precursor levels and are distinctly regulated under pathophysiological conditions. Compartment-targeted biosensors and real-time imaging allow assessment of subcellular NAD+/NADH redox signaling in live cells, enabling future mechanistic research of NAD redox in cell biology and disease development.


Asunto(s)
Técnicas Biosensibles , NAD , Citosol/metabolismo , NAD/metabolismo , Mitocondrias/genética , Oxidación-Reducción , Técnicas Biosensibles/métodos
8.
Dev Cell ; 53(2): 240-252.e7, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32197067

RESUMEN

Understanding of NAD+ metabolism provides many critical insights into health and diseases, yet highly sensitive and specific detection of NAD+ metabolism in live cells and in vivo remains difficult. Here, we present ratiometric, highly responsive genetically encoded fluorescent indicators, FiNad, for monitoring NAD+ dynamics in living cells and animals. FiNad sensors cover physiologically relevant NAD+ concentrations and sensitively respond to increases and decreases in NAD+. Utilizing FiNad, we performed a head-to-head comparison study of common NAD+ precursors in various organisms and mapped their biochemical roles in enhancing NAD+ levels. Moreover, we showed that increased NAD+ synthesis controls morphofunctional changes of activated macrophages, and directly imaged NAD+ declines during aging in situ. The broad utility of the FiNad sensors will expand our mechanistic understanding of numerous NAD+-associated physiological and pathological processes and facilitate screening for drug or gene candidates that affect uptake, efflux, and metabolism of this important cofactor.


Asunto(s)
Adenosina Difosfato/análisis , Adenosina Trifosfato/análisis , Técnicas Biosensibles/métodos , Fluorescencia , Proteínas Luminiscentes/metabolismo , Macrófagos/metabolismo , NAD/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Envejecimiento , Animales , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Macrófagos/citología , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven , Pez Cebra
9.
Oxid Med Cell Longev ; 2018: 4579140, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271527

RESUMEN

Hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as important regulators in the cardiovascular system, although they were historically considered as toxic gases. As gaseous transmitters, H2S and NO share a wide range of physical properties and physiological functions: they penetrate into the membrane freely; they are endogenously produced by special enzymes, they stimulate endothelial cell angiogenesis, they regulate vascular tone, they protect against heart injury, and they regulate target protein activity via posttranslational modification. Growing evidence has determined that these two gases are not independent regulators but have substantial overlapping pathophysiological functions and signaling transduction pathways. H2S and NO not only affect each other's biosynthesis but also produce novel species through chemical interaction. They play a regulatory role in the cardiovascular system involving similar signaling mechanisms or molecular targets. However, the natural precise mechanism of the interactions between H2S and NO remains unclear. In this review, we discuss the current understanding of individual and interactive regulatory functions of H2S and NO in biosynthesis, angiogenesis, vascular one, cardioprotection, and posttranslational modification, indicating the importance of their cross-talk in the cardiovascular system.


Asunto(s)
Sistema Cardiovascular/metabolismo , Sulfuro de Hidrógeno/metabolismo , Animales , Gasotransmisores/metabolismo , Humanos , Óxido Nítrico
10.
Redox Biol ; 19: 250-262, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30195191

RESUMEN

AIMS: Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in the development of heart failure and in the induction of myocardial mitochondrial injury. Recent evidence has shown that hydrogen sulfide (H2S), produced by the enzyme cystathionine γ-lyase (CSE), improves the cardiac function in heart failure. However, the cellular mechanisms for this remain largely unknown. The present study was conducted to determine the functional role of H2S in protecting against mitochondrial dysfunction in heart failure through the inhibition of CaMKII using wild type and CSE knockout mouse models. RESULTS: Treatment with S-propyl-L-cysteine (SPRC) or sodium hydrosulfide (NaHS), modulators of blood H2S levels, attenuated the development of heart failure in animals, reduced lipid peroxidation, and preserved mitochondrial function. The inhibition CaMKII phosphorylation by SPRC and NaHS as demonstrated using both in vivo and in vitro models corresponded with the cardioprotective effects of these compounds. Interestingly, CaMKII activity was found to be elevated in CSE knockout (CSE-/-) mice as compared to wild type animals and the phosphorylation status of CaMKII appeared to relate to the severity of heart failure. Importantly, in wild type mice SPRC was found to promote S-sulfhydration of CaMKII leading to reduced activity of this protein, however, in CSE-/- mice S-sulfhydration was abolished following SPRC treatment. INNOVATION AND CONCLUSIONS: A novel mechanism depicting a role of S-sulfhydration in the regulation of CaMKII is presented. SPRC mediated S-sulfhydration of CaMKII was found to inhibit CAMKII activity and to preserve cardiovascular homeostasis.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cistationina gamma-Liasa/metabolismo , Insuficiencia Cardíaca/metabolismo , Sulfuro de Hidrógeno/metabolismo , Mitocondrias Cardíacas/metabolismo , Animales , Línea Celular , Cistationina gamma-Liasa/genética , Activación Enzimática , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación , Transducción de Señal
11.
Redox Biol ; 15: 243-252, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29288927

RESUMEN

Therapeutic strategies that increase hydrogen sulfide (H2S) or nitric oxide (NO) are cytoprotective in various models of cardiovascular injury. However, the nature of interaction between H2S and NO in heart failure and the underlying mechanisms for the protective effects remain undefined. The present study tested the cardioprotective effect of ZYZ-803, a novel synthetic H2S-NO hybrid molecule that decomposed to release H2S and NO. ZYZ-803 dose dependently improved left ventricular remodeling and preserved left ventricular function in the setting of isoprenaline-induced heart failure. The cardioprotective effect of ZYZ-803 is significantly more potent than that of H2S and/or NO donor alone. ZYZ-803 stimulated the expression of cystathionine γ-lyase (CSE) for H2S generation and the activity of endothelial NO synthase (eNOS) for NO production. Blocking CSE and/or eNOS suppressed ZYZ-803-induced H2S and NO production and cardioprotection. ZYZ-803 increased vascular endothelial growth factor (VEGF) concentration and cyclic guanosine 5'-monophosphate (cGMP) level. Moreover, ZYZ-803 upregulated the endogenous antioxidants, glutathione peroxidase (GPx) and heme oxygenase 1 (HO-1). These findings indicate that H2S and NO cooperatively attenuates left ventricular remodeling and dysfunction during the development of heart failure through VEGF/cGMP pathway and ZYZ-803 provide expanding insight into strategies for treatment of heart failure.


Asunto(s)
Cardiotónicos/química , Cardiotónicos/farmacología , Cistationina gamma-Liasa/genética , Insuficiencia Cardíaca/tratamiento farmacológico , Sulfuro de Hidrógeno/administración & dosificación , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico/administración & dosificación , Animales , Antioxidantes/metabolismo , Glutatión Peroxidasa/genética , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/patología , Hemo-Oxigenasa 1/genética , Humanos , Sulfuro de Hidrógeno/sangre , Sulfuro de Hidrógeno/síntesis química , Sulfuro de Hidrógeno/química , Proteínas de la Membrana/genética , Ratones , Óxido Nítrico/sangre , Óxido Nítrico/síntesis química , Óxido Nítrico/química
12.
Sci Rep ; 7(1): 4209, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28646144

RESUMEN

In this paper, we propose a novel and sensitive ratiometric analysis method that uses the fractional intensities of time-resolved fluorescence of genetically encoded fluorescent NADH/NAD+ biosensors, Peredox, SoNar, and Frex. When the conformations of the biosensors change upon NADH/NAD+ binding, the fractional intensities (α i τ i ) have opposite changing trends. Their ratios could be exploited to quantify NADH/NAD+ levels with a larger dynamic range and higher resolution versus commonly used fluorescence intensity and lifetime methods. Moreover, only one excitation and one emission wavelength are required for this ratiometric measurement. This eliminates problems of traditional excitation-ratiometric and emission-ratiometric methods. This method could be used to simplify the design and achieve highly sensitive analyte quantification of genetically encoded fluorescent biosensors. Wide potential applications could be developed for imaging live cell metabolism based on this new method.


Asunto(s)
Técnicas Biosensibles/métodos , NAD/análisis , Fluorescencia , Factores de Tiempo
13.
Front Med ; 10(1): 18-27, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26597301

RESUMEN

Hydrogen sulfide (H2S), a colorless gas smelling of rotten egg, has long been considered a toxic gas and environment hazard. However, evidences show that H2S plays a great role in many physiological and pathological activities, and it exhibits different effects when applied at various doses. In this review, we summarize the chemistry and biomedical applications of H2S-releasing compounds, including inorganic salts, phosphorodithioate derivatives, derivatives of Allium sativum extracts, derivatives of thioaminoacids, and derivatives of antiinflammatory drugs.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Antiinflamatorios/uso terapéutico , Ajo , Humanos , Fosfatos/uso terapéutico , Fitoterapia , Extractos Vegetales/uso terapéutico , Sales (Química)/uso terapéutico , Sulfuros/uso terapéutico
14.
Oxid Med Cell Longev ; 2016: 7075682, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26635911

RESUMEN

Endothelium-dependent vasorelaxant injury leads to a lot of cardiovascular diseases. Both hydrogen sulfide (H2S) and nitric oxide (NO) are gasotransmitters, which play a critical role in regulating vascular tone. However, the interaction between H2S and NO in vasorelaxation is still unclear. ZYZ-803 was a novel H2S and NO conjugated donor developed by H2S-releasing moiety (S-propyl-L-cysteine (SPRC)) and NO-releasing moiety (furoxan). ZYZ-803 could time- and dose-dependently relax the sustained contraction induced by PE in rat aortic rings, with potencies of 1.5- to 100-fold greater than that of furoxan and SPRC. Inhibition of the generations of H2S and NO with respective inhibitors abolished the vasorelaxant effect of ZYZ-803. ZYZ-803 increased cGMP level and the activity of vasodilator stimulated phosphoprotein (VASP) in aortic rings, and those effects could be suppressed by the inhibitory generation of H2S and NO. Both the inhibitor of protein kinase G (KT5823) and the inhibitor of KATP channel (glibenclamide) suppressed the vasorelaxant effect of ZYZ-803. Our results demonstrated that H2S and NO generation from ZYZ-803 cooperatively regulated vascular tone through cGMP pathway, which indicated that ZYZ-803 had therapeutic potential in cardiovascular diseases.


Asunto(s)
Aorta , GMP Cíclico/metabolismo , Sulfuro de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Aorta/metabolismo , Aorta/patología , Aorta/fisiopatología , Carbazoles/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Moléculas de Adhesión Celular/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Masculino , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Ratas , Ratas Sprague-Dawley
15.
Antioxid Redox Signal ; 25(8): 498-514, 2016 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-27174595

RESUMEN

AIMS: Revascularization strategies and gene therapy for treatment of ischemic diseases remain to be fully optimized for use in human and veterinary clinical medicine. The continued evolution of such strategies must take into consideration two compounds, which act as critical effectors of angiogenesis by endothelial cells. Nevertheless, the nature of interaction between hydrogen sulfide (H2S) and nitric oxide (NO) remained undefined at the time of this writing. RESULTS: The present study uses ZYZ-803, a novel synthetic H2S-NO hybrid molecule, which, under physiological conditions, slowly decomposes to release H2S and NO. This is observed to dose dependently mediate cell proliferation, migration, and tube-like structure formation in vitro along with increased angiogenesis in rat aortic rings, Matrigel plug in vivo, and a murine ischemic hind limb model. The effects of ZYZ-803 exhibited significantly greater potency than those of H2S and/or NO donor alone. The compound stimulated cystathionine γ-lyase (CSE) expression and endothelial NO synthase (eNOS) activity to produce H2S and NO. Blocking CSE and/or eNOS suppressed both H2S and NO generation as well as the proangiogenic effect of ZYZ-803. Sirtuin-1 (SIRT1), CSE, and/or eNOS small interfering RNA (siRNA) suppressed the angiogenic effect of ZYZ-803-induced SIRT1 expression, VEGF, and cyclic guanosine 5'-monophosphate (cGMP) levels. These gasotransmitters cooperatively regulated angiogenesis through an SIRT1/VEGF/cGMP pathway. INNOVATION AND CONCLUSION: H2S and NO exert mutual influence on biological functions mediated by both compounds. Functional convergence occurs in the SIRT1-dependent proangiogenic processes. These two gasotransmitters are mutually required for physiological regulation of endothelial homeostasis. These ongoing characterizations of mechanisms by which ZYZ-803 influences angiogenesis provide expanding insight into strategies for treatment of ischemic diseases. Antioxid. Redox Signal. 25, 498-514.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Sulfuro de Hidrógeno/administración & dosificación , Óxido Nítrico/administración & dosificación , Inductores de la Angiogénesis/administración & dosificación , Inductores de la Angiogénesis/química , Animales , GMP Cíclico/metabolismo , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Preparaciones de Acción Retardada , Liberación de Fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Extremidades/irrigación sanguínea , Extremidades/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/metabolismo , Isquemia/tratamiento farmacológico , Isquemia/metabolismo , Masculino , Ratones , Modelos Biológicos , Estructura Molecular , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas , Transducción de Señal , Sirtuina 1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
Cell Metab ; 21(5): 777-89, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25955212

RESUMEN

The altered metabolism of tumor cells confers a selective advantage for survival and proliferation, and studies have shown that targeting such metabolic shifts may be a useful therapeutic strategy. We developed an intensely fluorescent, rapidly responsive, pH-resistant, genetically encoded sensor of wide dynamic range, denoted SoNar, for tracking cytosolic NAD(+) and NADH redox states in living cells and in vivo. SoNar responds to subtle perturbations of various pathways of energy metabolism in real time, and allowed high-throughput screening for new agents targeting tumor metabolism. Among > 5,500 unique compounds, we identified KP372-1 as a potent NQO1-mediated redox cycling agent that produced extreme oxidative stress, selectively induced cancer cell apoptosis, and effectively decreased tumor growth in vivo. This study demonstrates that genetically encoded sensor-based metabolic screening could serve as a valuable approach for drug discovery.


Asunto(s)
Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , NAD/metabolismo , Neoplasias/tratamiento farmacológico , Tetrazoles/farmacología , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Humanos , Ratones Desnudos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Tetrazoles/uso terapéutico
17.
Artículo en Zh | WPRIM | ID: wpr-666573

RESUMEN

OBJECTIVE To determine the functional role of hydrogen sulfide (H2S) in protecting against mitochondrial dysfunction in heart failure through the inhibition of Ca2 +/calmodulin-dependent protein kinaseⅡ (CaMKⅡ) using wild type and CSE knockout mouse models. METHODS Continuous subcutaneous injection isoprenaline (7.5 mg·kg-1 per day), once a day for 4 weeks to induce heart failure in male C57BL/6 (6-8 weeks old) mice and CSE-/- mice. 150 μmol·L-1 H2O2 was used to induce oxidative stress in H9c2 cells. Echocardiograph was used to detect cardiac parameters. H&E stain and Masson stain was to observation histopathological changes. Western blot was used to detect protein expression and activity. The siRNA was used to silence protein expression. HPLC was used to detect H2S level. Biotin assay was used to detect the level of S-sulfhydration protein. RESULTS Treatment with S-propyl-L-cysteine (SPRC) or sodium hydrosulfide (NaHS), modulators of blood H2S levels, attenuated the development of heart failure in animals, reduced lipid peroxidation, and preserved mitochondrial function. The inhibition CaMKⅡ phosphorylation by SPRC and NaHS as demonstrated using both in vivo and in vitro models corresponded with the cardioprotective effects of these compounds. Interestingly, CaMKⅡ activity was found to be elevated in CSE-/- mice as compared to wild type animals and the phosphorylation status of CaMK Ⅱ appeared to relate to the severity of heart failure. Importantly, in wild type mice SPRC was found to promote S-sulfhydration of CaMKⅡ leading to reduced activity of this protein however, in CSE-/- mice S-sulfhydration was abolished following SPRC treatment. CONCLUSION A novel mechanism depicting a role of S-sulfhydration in the regulation of CaMKⅡ is presented. SPRC mediated S-sulfhydration of CaMKⅡ was found to inhibit CaMKⅡ activity and to preserve cardiovascular homeostasis.

18.
Artículo en Zh | WPRIM | ID: wpr-666426

RESUMEN

OBJECTIVE To determine the functional role of hydrogen sulfide (H2S) in protecting against mitochondrial dysfunction in heart failure through the inhibition of Ca2 +/calmodulin-dependent protein kinaseⅡ (CaMKⅡ) using wild type and CSE knockout mouse models. METHODS Continuous subcutaneous injection isoprenaline (7.5 mg·kg-1·d-1), once a day for 4 weeks to induce heart failure in Male C57BL/6 (6-8 weeks old) mice and CSE-/- mice. 150 μmol·L-1 H2O2 was used to induce oxidative stress in H9c2 cells. Echocardiograph was used to detect cardiac parameters. H&E stain and Masson stain was to observation histopathological changes. Western blot was used to detect protein expression and activity. The siRNA was used to silence protein expression. HPLC was used to detect H2S level. Biotin assay was used to detect the level of S- sulfhydration protein. RESULTS Treatment with S-propyl-L-cysteine (SPRC) or sodium hydrosulfide (NaHS), modulators of blood H2S levels, attenuated the development of heart failure in animals, reduced lipid peroxidation, and preserved mitochondrial function. The inhibition CaMKⅡ phosphorylation by SPRC and NaHS as demonstrated using both in vivo and in vitro models corresponded with the cardioprotective effects of these compounds. Interestingly, CaMKⅡ activity was found to be elevated in CSE-/- mice as compared to wild type animals and the phosphorylation status of CaMKⅡ appeared to relate to the severity of heart failure. Importantly, in wild type mice SPRC was found to promote S-sulfhydration of CaMKII leading to reduced activity of this protein however, in CSE-/- mice S-sulfhydration was abolished following SPRC treatment. CONCLUSION A novel mechanism depicting a role of S-sulfhydration in the regulation of CaMKⅡ is presented. SPRC mediated S-sulfhydration of CaMKII was found to inhibit CaMKⅡ activity and to preserve cardiovascular homeostasis.

19.
Cell Metab ; 14(4): 555-66, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21982715

RESUMEN

We have developed genetically encoded fluorescent sensors for reduced nicotinamide adenine dinucleotide (NADH), which manifest a large change in fluorescence upon NADH binding. We demonstrate the utility of these sensors in mammalian cells by monitoring the dynamic changes in NADH levels in subcellular organelles as affected by NADH transport, glucose metabolism, electron transport chain function, and redox environment, and we demonstrate the temporal separation of changes in mitochondrial and cytosolic NADH levels with perturbation. These results support the view that cytosolic NADH is sensitive to environmental changes, while mitochondria have a strong tendency to maintain physiological NADH homeostasis. These sensors provide a very good alternative to existing techniques that measure endogenous fluorescence of intracellular NAD(P)H and, owing to their superior sensitivity and specificity, allow for the selective monitoring of total cellular and compartmental responses of this essential cofactor.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , NAD/análisis , Proteínas Bacterianas/genética , Línea Celular , Citosol/metabolismo , Glucosa/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Ácido Láctico/farmacología , Proteínas Luminiscentes/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Ácido Pirúvico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA