Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Quant Imaging Med Surg ; 14(1): 335-351, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223072

RESUMEN

Background: In low-dose computed tomography (LDCT) lung cancer screening, soft tissue is hardly appreciable due to high noise levels. While deep learning-based LDCT denoising methods have shown promise, they typically rely on structurally aligned synthesized paired data, which lack consideration of the clinical reality that there are no aligned LDCT and normal-dose CT (NDCT) images available. This study introduces an LDCT denoising method using clinically structure-unaligned but paired data sets (LDCT and NDCT scans from the same patients) to improve lesion detection during LDCT lung cancer screening. Methods: A cohort of 64 patients undergoing both LDCT and NDCT was randomly divided into training (n=46) and testing (n=18) sets. A two-stage training approach was adopted. First, Gaussian noise was added to NDCT data to create simulated LDCT data for generator training. Then, the model was trained on a clinically structure-unaligned paired data set using a Wasserstein generative adversarial network (WGAN) framework with the initial generator weights obtained during the first stage of training. An attention mechanism was also incorporated into the network. Results: Validated on a clinical CT data set, our proposed method outperformed other available methods [CycleGAN, Pixel2Pixel, block-matching and three-dimensional filtering (BM3D)] in noise removal and detail retention tasks in terms of the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and root mean square error (RMSE) metrics. Compared with the results produced by BM3D, our method yielded an average improvement of approximately 7% in terms of the three evaluation indicators. The probability density profile of the denoised CT output produced using our method best fit the reference NDCT scan. Additionally, our two-stage model outperformed the one-stage WGAN-based model in both objective and subjective evaluations, further demonstrating the higher effectiveness of our two-stage training approach. Conclusions: The proposed method performed the best in removing noise from LDCT scans and exhibited good detail retention, which could potentially enhance the lesion detection and characterization effects obtained for soft tissues in the scanning scope of LDCT lung cancer screening.

2.
Br J Radiol ; 96(1149): 20230038, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37393527

RESUMEN

OBJECTIVES: Our work aims to study the feasibility of a deep learning algorithm to reduce the 68Ga-FAPI radiotracer injected activity and/or shorten the scanning time and to investigate its effects on image quality and lesion detection ability. METHODS: The data of 130 patients who underwent 68Ga-FAPI positron emission tomography (PET)/CT in two centers were studied. Predicted full-dose images (DL-22%, DL-28% and DL-33%) were obtained from three groups of low-dose images using a deep learning method and compared with the standard-dose images (raw data). Injection activity for full-dose images was 2.16 ± 0.61 MBq/kg. The quality of the predicted full-dose PET images was subjectively evaluated by two nuclear physicians using a 5-point Likert scale, and objectively evaluated by the peak signal-to-noise ratio, structural similarity index and root mean square error. The maximum standardized uptake value and the mean standardized uptake value (SUVmean) were used to quantitatively analyze the four volumes of interest (the brain, liver, left lung and right lung) and all lesions, and the lesion detection rate was calculated. RESULTS: Data showed that the DL-33% images of the two test data sets met the clinical diagnosis requirements, and the overall lesion detection rate of the two centers reached 95.9%. CONCLUSION: Through deep learning, we demonstrated that reducing the 68Ga-FAPI injected activity and/or shortening the scanning time in PET/CT imaging was feasible. In addition, 68Ga-FAPI dose as low as 33% of the standard dose maintained acceptable image quality. ADVANCES IN KNOWLEDGE: This is the first study of low-dose 68Ga-FAPI PET images from two centers using a deep learning algorithm.


Asunto(s)
Aprendizaje Profundo , Radioisótopos de Galio , Humanos , Estudios de Factibilidad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Algoritmos , Fluorodesoxiglucosa F18
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA