Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Circulation ; 147(6): 482-497, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36515099

RESUMEN

BACKGROUND: Transplant arteriosclerosis is a major complication in long-term survivors of heart transplantation. Increased lymph flow from donor heart to host lymph nodes has been reported to play a role in transplant arteriosclerosis, but how lymphangiogenesis affects this process is unknown. METHODS: Vascular allografts were transplanted among various combinations of mice, including wild-type, Lyve1-CreERT2;R26-tdTomato, CAG-Cre-tdTomato, severe combined immune deficiency, Ccr2KO, Foxn1KO, and lghm/lghdKO mice. Whole-mount staining and 3-dimensional reconstruction identified lymphatic vessels within the grafted arteries. Lineage tracing strategies delineated the cellular origin of lymphatic endothelial cells. Adeno-associated viral vectors and a selective inhibitor were used to regulate lymphangiogenesis. RESULTS: Lymphangiogenesis within allograft vessels began at the anastomotic sites and extended from preexisting lymphatic vessels in the host. Tertiary lymphatic organs were identified in transplanted arteries at the anastomotic site and lymphatic vessels expressing CCL21 (chemokine [C-C motif] ligand 21) were associated with these immune structures. Fibroblasts in the vascular allografts released VEGF-C (vascular endothelial growth factor C), which stimulated lymphangiogenesis into the grafts. Inhibition of VEGF-C signaling inhibited lymphangiogenesis, neointima formation, and adventitial fibrosis of vascular allografts. These studies identified VEGF-C released from fibroblasts as a signal stimulating lymphangiogenesis extending from the host into the vascular allografts. CONCLUSIONS: Formation of lymphatic vessels plays a key role in the immune response to vascular transplantation. The inhibition of lymphangiogenesis may be a novel approach to prevent transplant arteriosclerosis.


Asunto(s)
Arteriosclerosis , Trasplante de Corazón , Vasos Linfáticos , Ratones , Animales , Humanos , Linfangiogénesis , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/farmacología , Trasplante de Corazón/efectos adversos , Células Endoteliales/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Donantes de Tejidos , Vasos Linfáticos/patología , Arteriosclerosis/metabolismo
2.
FASEB J ; 37(2): e22723, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36583708

RESUMEN

Autophagy is a highly conserved cellular process that profoundly impacts the efficacy of genotoxic chemotherapeutic drugs. TGF-ß-activated kinase 1 (TAK1) is a serine/threonine kinase that activates several signaling pathways involved in inducing autophagy and suppressing cell death. Xanthine oxidoreductase (XOR) is a rate-limiting enzyme that converts hypoxanthine to xanthine, and xanthine to uric acid and hydrogen peroxide in the purine catabolism pathway. Recent studies showed that uric acid can bind to TAK1 and prolong its activation. We hypothesized that genotoxic drugs may induce autophagy and apoptosis resistance by activating TAK1 through XOR-generated uric acid. Here, we report that gemcitabine and 5-fluorouracil (5-FU), two genotoxic drugs, induced autophagy in HeLa and HT-29 cells by activating TAK1 and its two downstream kinases, AMP-activated kinase (AMPK) and c-Jun terminal kinase (JNK). XOR knockdown and the XOR inhibitor allopurinol blocked gemcitabine-induced TAK1, JNK, AMPK, and Unc51-like kinase 1 (ULK1)S555 phosphorylation and gemcitabine-induced autophagy. Inhibition of the ATM-Chk pathway, which inhibits genotoxic drug-induced uric acid production, blocked gemcitabine-induced autophagy by inhibiting TAK1 activation. Exogenous uric acid in its salt form, monosodium urate (MSU), induced autophagy by activating TAK1 and its downstream kinases JNK and AMPK. Gene knockdown or the inhibitors of these kinases blocked gemcitabine- and MSU-induced autophagy. Inhibition of autophagy by allopurinol, chloroquine, and 5Z-7-oxozeaenol (5Z), a TAK1-specific inhibitor, enhanced gemcitabine-induced apoptosis. Our study uncovers a previously unrecognized role of XOR in regulating genotoxic drug-induced autophagy and apoptosis and has implications for designing novel therapeutic strategies for cancer treatment.


Asunto(s)
Ácido Úrico , Xantina Deshidrogenasa , Humanos , Ácido Úrico/farmacología , Ácido Úrico/metabolismo , Xantina Deshidrogenasa/genética , Xantina Deshidrogenasa/metabolismo , Alopurinol , Proteínas Quinasas Activadas por AMP/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Autofagia , Daño del ADN , Apoptosis
3.
Circ Res ; 130(2): 213-229, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34870453

RESUMEN

BACKGROUND: Vascular calcification is a prevalent complication in chronic kidney disease and contributes to increased cardiovascular morbidity and mortality. XBP1 (X-box binding protein 1), existing as the XBP1u (unspliced XBP1) and XBP1s (spliced XBP1) forms, is a key component of the endoplasmic reticulum stress involved in vascular diseases. However, whether XBP1u participates in the development of vascular calcification remains unclear. METHODS: We aim to investigate the role of XBP1u in vascular calcification. XBP1u protein levels were reduced in high phosphate-induced calcified vascular smooth muscle cells, calcified aortas from mice with adenine diet-induced chronic renal failure, and calcified radial arteries from patients with chronic renal failure. RESULTS: Inhibition of XBP1u rather than XBP1s upregulated in the expression of the osteogenic markers Runx2 (runt-related transcription factor 2) and Msx2 (msh homeobox 2), and exacerbated high phosphate-induced vascular smooth muscle cell calcification, as verified by calcium deposition and Alizarin red S staining. In contrast, XBP1u overexpression in high phosphate-induced vascular smooth muscle cells significantly inhibited osteogenic differentiation and calcification. Consistently, smooth muscle cell-specific XBP1 deficiency in mice markedly aggravated the adenine diet- and 5/6 nephrectomy-induced vascular calcification compared with that in the control littermates. Further interactome analysis revealed that XBP1u is bound directly to ß-catenin, a key regulator of vascular calcification, via amino acid (aa) 205-230 in its C-terminal degradation domain. XBP1u interacted with ß-catenin to promote its ubiquitin-proteasomal degradation and thus inhibited ß-catenin/TCF (T-cell factor)-mediated Runx2 and Msx2 transcription. Knockdown of ß-catenin abolished the effect of XBP1u deficiency on vascular smooth muscle cell calcification, suggesting a ß-catenin-mediated mechanism. Moreover, the degradation of ß-catenin promoted by XBP1u was independent of GSK-3ß (glycogen synthase kinase 3ß)-involved destruction complex. CONCLUSIONS: Our study identified XBP1u as a novel endogenous inhibitor of vascular calcification by counteracting ß-catenin and promoting its ubiquitin-proteasomal degradation, which represents a new regulatory pathway of ß-catenin and a promising target for vascular calcification treatment.


Asunto(s)
Empalme del ARN , Calcificación Vascular/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , beta Catenina/metabolismo , Animales , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Células HEK293 , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/metabolismo , Proteolisis , Ratas , Ratas Sprague-Dawley , Ubiquitinación , Calcificación Vascular/genética , Proteína 1 de Unión a la X-Box/genética
4.
Dig Dis Sci ; 69(6): 2044-2054, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38568396

RESUMEN

BACKGROUND: Ozanimod showed efficacy and safety in the phase 2 STEPSTONE study conducted in patients with moderately to severely active Crohn's disease. AIMS: This analysis assessed the effects of ozanimod on circulating lymphocytes in Crohn's disease. METHODS: Patients received ozanimod 0.92 mg for 12 weeks. Lymphocyte subtypes were evaluated using multicolor flow analysis on blood samples collected before treatment and on Week 12. Absolute lymphocyte count changes were analyzed by Wilcoxon signed rank tests. Disease activity changes and efficacy outcomes were evaluated at Week 12, and associations with lymphocyte subtype levels were assessed using Spearman's correlation and logistic regression. RESULTS: Reductions in median total T, Th, and cytotoxic T cells occurred at Week 12 (45.4%-76.8%), with reductions in most subtypes of 47.5% to 91.3% (P < 0.001). CD8+ terminally differentiated effector memory cells were largely unaffected (median change, - 19%; P = 0.44). Reductions in median total B cells occurred at Week 12 (76.7%), with reductions in subtypes of 71.4% to 81.7% (P < 0.001). Natural killer and monocyte cell counts were unchanged. Greater baseline levels and changes in nonswitched memory B cells were significantly associated with clinical, endoscopic, and histologic efficacy (P < 0.05, all comparisons). CONCLUSIONS: Ozanimod reduced circulating levels of all B-cell and most T-cell subsets but not monocytes or natural killer cells. Key subsets relevant to immune surveillance were not reduced, supporting the low risk of infection and malignancy with ozanimod in chronic inflammatory diseases. Levels of nonswitched memory B cells were associated with efficacy, providing a potential marker for ozanimod response. TRIAL REGISTRATION: ClinicalTrials.gov: NCT02531113, EudraCT: 2015-002025-19.


Asunto(s)
Enfermedad de Crohn , Humanos , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/sangre , Masculino , Femenino , Adulto , Oxadiazoles/uso terapéutico , Recuento de Linfocitos , Persona de Mediana Edad , Subgrupos Linfocitarios/efectos de los fármacos , Subgrupos Linfocitarios/inmunología , Indanos/uso terapéutico , Índice de Severidad de la Enfermedad , Moduladores de los Receptores de fosfatos y esfingosina 1/uso terapéutico , Moduladores de los Receptores de fosfatos y esfingosina 1/farmacología , Resultado del Tratamiento , Adulto Joven
5.
Cell Mol Life Sci ; 80(10): 300, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37740736

RESUMEN

AIMS: Mesenchymal stem cells (MSCs) present in the heart cannot differentiate into cardiomyocytes, but may play a role in pathological conditions. Therefore, the aim of this study was to scrutinise the role and mechanism of MSC differentiation in vivo during heart failure. METHODS AND RESULTS: We performed single-cell RNA sequencing of total non-cardiomyocytes from murine and adult human hearts. By analysing the transcriptomes of single cells, we illustrated the dynamics of the cell landscape during the progression of heart hypertrophy, including those of stem cell antigen-1 (Sca1)+ stem/progenitor cells and fibroblasts. By combining genetic lineage tracing and bone marrow transplantation models, we demonstrated that non-bone marrow-derived Sca1+ cells give rise to fibroblasts. Interestingly, partial depletion of Sca1+ cells alleviated the severity of myocardial fibrosis and led to a significant improvement in cardiac function in Sca1-CreERT2;Rosa26-eGFP-DTA mice. Similar non-cardiomyocyte cell composition and heterogeneity were observed in human patients with heart failure. Mechanistically, our study revealed that Sca1+ cells can transform into fibroblasts and affect the severity of fibrosis through the Wnt4-Pdgfra pathway. CONCLUSIONS: Our study describes the cellular landscape of hypertrophic hearts and reveals that fibroblasts derived from Sca1+ cells with a non-bone marrow source largely account for cardiac fibrosis. These findings provide novel insights into the pathogenesis of cardiac fibrosis and have potential therapeutic implications for heart failure. Non-bone marrow-derived Sca1+ cells differentiate into fibroblasts involved in cardiac fibrosis via Wnt4-PDGFRα pathway.

6.
Ren Fail ; 46(1): 2349121, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38916144

RESUMEN

BACKGROUND: In recent years, the research on symptom management in peritoneal dialysis (PD) patients has shifted from a single symptom to symptom clusters and network analysis. This study collected and evaluated unpleasant symptoms in PD patients and explored groups of symptoms that may affect PD patients with a view to higher symptom management. METHODS: The symptoms of PD patients were measured using the modified Dialysis Symptom Index. The symptom network and node characteristics were assessed by network analysis, and symptom clusters were explored by factor analysis. RESULTS: In this study of 602 PD patients (mean age 47.8 ± 16.8 years, 47.34% male), most had less than 2 years of dialysis experience. Five symptom clusters were obtained from factor analysis, which were body symptom cluster, gastrointestinal symptom cluster, mood symptom cluster, sexual disorder symptom cluster, and skin-sleep symptom cluster. Itching and decreased interest in sex may be sentinel symptoms, and being tired or lack of energy and feeling anxious are core symptoms in PD patients. CONCLUSIONS: This study emphasizes the importance of recognizing symptom clusters in PD patients for better symptom management. Five clusters were identified, with key symptoms including itching, decreased interest in sex, fatigue, and anxiety. Early intervention focused on these symptom clusters in PD patients holds promise for alleviating the burden of symptoms.


Asunto(s)
Fatiga , Diálisis Peritoneal , Humanos , Masculino , Femenino , Diálisis Peritoneal/efectos adversos , Persona de Mediana Edad , Adulto , China/epidemiología , Fatiga/etiología , Ansiedad/etiología , Fallo Renal Crónico/terapia , Fallo Renal Crónico/complicaciones , Prurito/etiología , Anciano , Evaluación de Síntomas , Análisis Factorial , Estudios Transversales , Pueblos del Este de Asia
7.
Pak J Med Sci ; 40(6): 1274-1279, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952504

RESUMEN

Objective: The purpose of this review was to examine the association between neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) and mortality rates in patients with acute pulmonary embolism (PE). Methods: PubMed Central, Scopus, Web of Science, and Embase were searched for studies reporting the association between NLR and PLR with mortality up to March 17th 2023. Adjusted ratios were sourced from studies and combined to generate pooled outcomes as odds ratio (OR) in a random-effects model. Risk of bias was assessed using the Newcastle Ottawa Scale. Results: Fifteen studies were included. Meta-analysis showed that NLR was a significant predictor of mortality in patients with PE (OR: 1.42 95% CI: 1.26, 1.61 I2=92%). Results were unchanged on sensitivity analysis and subgroup analysis based on study location, method of diagnosis, sample size, overall mortality rates, cut-offs, and follow-up. Pooled analysis failed to demonstrate PLR as a predictor of mortality in patients with PE (OR: 1.00 95% CI: 1.00, 1.01 I2=57%). Results were unchanged on sensitivity analysis and subgroup analysis based on study location, diagnosis of PE, overall mortality rates, and cut-off. Conclusion: Current evidence from retrospective studies shows that NLR can independently predict mortality in acute PE. Data on PLR was limited and failed to indicate an independent role in the prognosis of PE patients. Registration No. PROSPERO (CRD42023407573).

8.
J Transl Med ; 21(1): 531, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37544989

RESUMEN

OBJECTIVE: No evidence has been found of a relationship between remnant cholesterol (RC) and the likelihood of gestational diabetes mellitus (GDM) in pregnant women. The aim of our study was to investigate the link between serum RC at 12-14 weeks of gestation and the risk of GDM. METHODS: This was a secondary analysis with data from a prospective cohort study in Korea. A total of 590 single pregnant women attending two hospitals in Korea, up to 14 weeks gestation, from November 2014 to July 2016 were included in the study. The formula used to calculate RC in detail was RC (mg/dL) = TC (mg/dL)-HDL-c (mg/dL)-LDL-c (mg/dL). Logistic regression models were employed to examine the relationship between RC and GDM and explore the association between other lipoprotein cholesterol parameters and the risk of GDM. Furthermore, receiver operating characteristic (ROC) analysis was performed to assess the ability of RC to identify GDM. Additionally, sensitivity and subgroup analyses were conducted. RESULTS: The mean age of participants was 32.06 ± 3.80 years. The median of RC was 34.66 mg/dL. 37 pregnant women (6.27%) were eventually diagnosed with GDM. Multivariate adjusted logistic regression analysis showed that RC was positively associated with the risk of GDM (OR = 1.458, 95% CI 1.221, 1.741). There was no significant association between other lipoprotein cholesterols (including TC, LDL-c, HDL-c) and the risk of GDM. The area under the ROC curve for RC as a predictor of GDM was 0.8038 (95% CI 0.7338-0.8738), and the optimal RC cut-off was 24.30 mg/dL. Our findings were demonstrated to be robust by performing a series of sensitivity analyses. CONCLUSION: Serum RC levels at 12-14 weeks of gestation are positively associated with GDM risk in pregnant women. RC in early pregnancy is an early warning indicator of GDM in pregnant women, especially those with normal HDL-c, LDL-c, and TC that are easily overlooked. There is a high risk of developing GDM in pregnant women whose RC is more than 24.30 mg/dL. This study may help optimize GDM prevention in pregnant women and facilitate communication between physicians, pregnant patients, and their families.


Asunto(s)
Diabetes Gestacional , Humanos , Embarazo , Femenino , Adulto , Mujeres Embarazadas , LDL-Colesterol , Triglicéridos , Estudios Prospectivos , Factores de Riesgo , Colesterol
10.
J Allergy Clin Immunol ; 149(6): 2010-2020.e8, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34767869

RESUMEN

BACKGROUND: Psoriasis, a chronic inflammatory disease dependent on the IL-23/TH17 pathway, is initiated through plasmacytoid dendritic cell activation and type I IFN induction in the skin. Deucravacitinib, a selective tyrosine kinase 2 (TYK2) inhibitor, blocks IL-23, IL-12, and type I IFN signaling in cellular assays. OBJECTIVE: We investigated changes in IL-23/TH17 and type I IFN pathway biomarkers and gene responses as well as measures of selectivity for TYK2 over Janus kinases (JAKs) 1-3 in patients with moderate to severe psoriasis receiving deucravacitinib. METHODS: Deucravacitinib was evaluated in a randomized, placebo-controlled, dose-ranging trial. Biopsy samples from nonlesional (day 1) and lesional skin (days 1, 15, and 85) were assessed for changes in IL-23/IL-12 and type I IFN pathway biomarkers by quantitative reverse-transcription polymerase chain reaction, RNA sequencing, and immunohistochemistry. Laboratory markers were measured in blood. Percentage change from baseline in Psoriasis Area and Severity Index (PASI) score was assessed. RESULTS: IL-23 pathway biomarkers in lesional skin returned toward nonlesional levels dose-dependently with deucravacitinib. IFN and IL-12 pathway genes were normalized. Markers of keratinocyte dysregulation, keratin-16, and ß-defensin genes approached nonlesional levels with effective doses. Select laboratory parameters affected by JAK1-3 inhibition were not affected by deucravacitinib. Greater improvements in PASI scores, correlated with biomarker changes, were seen with the highest doses of deucravacitinib versus lower doses or placebo. CONCLUSION: Robust clinical efficacy with deucravacitinib treatment was associated with decreases in IL-23/TH17 and IFN pathway biomarkers. The lack of effect seen on biomarkers specific to JAK1-3 inhibition supports selectivity of deucravacitinib for TYK2; larger confirmatory studies are needed.


Asunto(s)
Compuestos Heterocíclicos , Psoriasis , TYK2 Quinasa , Biomarcadores/metabolismo , Compuestos Heterocíclicos/uso terapéutico , Humanos , Interferón Tipo I , Interleucina-12 , Interleucina-23 , Psoriasis/metabolismo , TYK2 Quinasa/antagonistas & inhibidores
11.
Angew Chem Int Ed Engl ; 62(15): e202217871, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36753391

RESUMEN

Asymmetric sequential hydrogenations of conjugated enynes have been developed using a Ph-BPE-CoI catalyst for the precise synthesis of chiral Z-allylamides in high activity (up to 1000 substrate/catalyst (S/C)) and with excellent enantioselectivity (up to >99 % enantiomeric excess (ee)). Mechanism experiments and theoretical calculations support a cationic CoI /CoIII redox catalytic cycle. The catalytic activity difference between cobalt complexes of Ph-BPE and QuinoxP* was explained by the process decomposition of rate-determining step in the second hydrogenation.

12.
Angew Chem Int Ed Engl ; 62(26): e202303488, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37043303

RESUMEN

Using the diphosphine-cobalt-zinc catalytic system, an efficient asymmetric hydrogenation of internal simple enamides has been realized. In particular, the Ph-BPE ligand can achieve convergent asymmetric hydrogenation of E/Z-substrates. High yields and excellent enantioselectivities were obtained for both acyclic and cyclic enamides bearing α-alkyl-ß-aryl, α-aryl-ß-aryl, and α-aryl-ß-alkyl substituents. Hydrogenated products can be applied for the synthesis of useful chiral drugs such as Arfromoterol, Rotigotine, and Norsertraline. In addition, reasonable catalytic mechanism and stereocontrol mode are proposed based on DFT calculations.


Asunto(s)
Cobalto , Hidrogenación , Estereoisomerismo , Catálisis
13.
Int J Cancer ; 151(11): 2043-2054, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35932450

RESUMEN

Immune checkpoint blockade (ICB) has led to durable clinical responses in multiple cancer types. However, biomarkers that identify which patients are most likely to respond to ICB are not well defined. Many putative biomarkers developed from a small number of samples often fail to maintain their predictive status in larger validation cohorts. We show across multiple human malignancies and syngeneic murine tumor models that neither pretreatment T cell receptor (TCR) clonality nor changes in clonality after ICB correlate with response. Dissection of tumor infiltrating lymphocytes pre- and post-ICB by paired single-cell RNA sequencing and single-cell TCR sequencing reveals conserved and distinct transcriptomic features in expanded TCR clonotypes between anti-PD1 responder and nonresponder murine tumor models. Overall, our results indicate a productive anti-tumor response is agnostic of TCR clonal expansion. Further, we used single-cell transcriptomics to develop a CD8+ T cell specific gene signature for a productive anti-tumor response and show the response signature to be associated with overall survival (OS) on nivolumab monotherapy in CheckMate-067, a phase 3 clinical trial in metastatic melanoma. These results highlight the value of leveraging single-cell assays to dissect heterogeneous tumor and immune subsets and define cell-type specific transcriptomic biomarkers of ICB response.


Asunto(s)
Melanoma , Receptor de Muerte Celular Programada 1 , Animales , Linfocitos T CD8-positivos , Humanos , Inhibidores de Puntos de Control Inmunológico , Melanoma/tratamiento farmacológico , Melanoma/genética , Ratones , Nivolumab/farmacología , Nivolumab/uso terapéutico , Receptores de Antígenos de Linfocitos T/genética
14.
Chemistry ; 28(44): e202201517, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35622378

RESUMEN

The azole-directed cobalt-catalyzed asymmetric hydrogenation of alkenes has been developed with high efficiency. With this approach, chiral pyrazole compounds were obtained in quantitative yields and excellent enantioselectivities (up to 99 % ee) under mild conditions, and the hydrogenation was conducted on a gram scale with up to 2000 TON. Several useful applications were demonstrated including the convenient introduction of ß-chirality to a drug intermediate containing an azole ring.


Asunto(s)
Alquenos , Cobalto , Azoles , Catálisis , Hidrogenación , Estereoisomerismo
15.
Circ Res ; 127(8): 974-993, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32689904

RESUMEN

RATIONALE: Transplant arteriosclerosis is the major limitation to long-term survival of solid organ transplantation. Although both immune and nonimmune cells have been suggested to contribute to this process, the complex cellular heterogeneity within the grafts, and the underlying mechanisms regulating the disease progression remain largely uncharacterized. OBJECTIVE: We aimed to delineate the cellular heterogeneity within the allografts, and to explore possible mechanisms underlying this process. METHODS AND RESULTS: Here, we reported the transcriptional profiling of 11 868 cells in a mouse model of transplant arteriosclerosis by single-cell RNA sequencing. Unbiased clustering analyses identified 21 cell clusters at different stages of diseases, and focused analysis revealed several previously unknown subpopulations enriched in the allografts. Interestingly, we found evidence of the local formation of tertiary lymphoid tissues and suggested a possible local modulation of alloimmune responses within the grafts. Intercellular communication analyses uncovered a potential role of several ligands and receptors, including Ccl21a and Cxcr3, in regulating lymphatic endothelial cell-induced early chemotaxis and infiltration of immune cells. In vivo mouse experiments confirmed the therapeutic potential of CCL21 and CXCR3 neutralizing antibodies in transplant arteriosclerosis. Combinational use of genetic lineage tracing and single-cell techniques further indicate the infiltration of host-derived c-Kit+ stem cells as heterogeneous populations in the allografts. Finally, we compared the immune response between mouse allograft and atherosclerosis models in single-cell RNA-seq analysis. By analyzing susceptibility genes of disease traits, we also identified several cell clusters expressing genes associated with disease risk. CONCLUSIONS: Our study provides a transcriptional and cellular landscape of transplant arteriosclerosis, which could be fundamental to understanding the initiation and progression of this disease. CCL21/CXCR3 was also identified as important regulators of immune response and may serve as potential therapeutic targets in disease treatment.


Asunto(s)
Aorta/trasplante , Arteriosclerosis/genética , Supervivencia de Injerto/genética , Transcriptoma , Tolerancia al Trasplante/genética , Animales , Aorta/inmunología , Aorta/metabolismo , Aorta/patología , Arteriosclerosis/inmunología , Arteriosclerosis/metabolismo , Arteriosclerosis/patología , Linaje de la Célula/efectos de los fármacos , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Inmunidad Celular/genética , Inmunidad Innata/genética , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , RNA-Seq , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Análisis de la Célula Individual , Factores de Tiempo
16.
Arterioscler Thromb Vasc Biol ; 41(1): 167-178, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33028095

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by endothelial dysfunction and vascular remodeling. Despite significant advancement in our understanding of the pathogenesis of PAH in recent years, treatment options for PAH are limited and their prognosis remains poor. PAH is now seen as a severe pulmonary arterial vasculopathy with structural changes driven by excessive vascular proliferation and inflammation. Perturbations of a number of cellular and molecular mechanisms have been described, including pathways involving growth factors, cytokines, metabolic signaling, elastases, and proteases, underscoring the complexity of the disease pathogenesis. Interestingly, emerging evidence suggests that stem/progenitor cells may have an impact on disease development and therapy. In preclinical studies, stem/progenitor cells displayed an ability to promote endothelial repair of dysfunctional arteries and induce neovascularization. The stem cell-based therapy for PAH are now under active investigation. This review article will briefly summarize the updates in the research field, with a special focus on the contribution of stem/progenitor cells to lesion formation via influencing vascular cell functions and highlight the potential clinical application of stem/progenitor cell therapy to PAH.


Asunto(s)
Células Progenitoras Endoteliales/trasplante , Endotelio Vascular/patología , Células Madre Pluripotentes Inducidas/trasplante , Trasplante de Células Madre Mesenquimatosas , Hipertensión Arterial Pulmonar/cirugía , Arteria Pulmonar/patología , Remodelación Vascular , Animales , Presión Arterial , Células Progenitoras Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Fenotipo , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología
17.
Arch Insect Biochem Physiol ; 111(1): e21921, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35635368

RESUMEN

The oriental armyworm Mythimna separata (Walker) is a devastating pest of cereal crops mainly in Asia and Oceania and recently become resistant to beta-cypermethrin (beta-CP). However, molecular biological studies of its response to beta-CP are scarce, and related genomic information is not available. In this study, we sequenced and de novo assembled the transcriptome of beta-CP susceptible M. separata (MsS-whole, abbr. MsS-W). A total of 30,486 unigenes were obtained, with an N50 length of 506 bp. A number of 21,051 unigenes were matched to public databases, of which 10,107 were classified into 59 gene ontology subcategories, 5792 were assigned into 25 clusters of orthologous groups of proteins subgroups and 12,123 were assigned to 257 Kyoto Encyclopedia of Genes and Genomes pathways. A total of 729 simple sequence repeats were detected. In addition, a total of 323 cytochrome P450-associated sequences from nine lepidopterous species, of which 130 were from M. separata, were analyzed using the maximum likelihood method and Bayesian inference. Among the 130 cytochrome P450-associated sequences from M. separata, 60 were dropped into CYP3 clan, which is associated with metabolizing xenobiotics and plant natural compounds. Furthermore, the beta-CP susceptible (MsS-2) and resistant (MsR-2) M. separata population transcriptomes were sequenced. Certain critical genes involved in beta-CP detoxification were detected and verified by quantitative real-time polymerase chain reaction. Collectively, our results provided a basis for further studies of the molecular mechanism of insecticide resistance in M. separata.


Asunto(s)
Mariposas Nocturnas , Animales , Teorema de Bayes , Sistema Enzimático del Citocromo P-450 , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Piretrinas , Transcriptoma
18.
Stem Cells ; 38(4): 556-573, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31721359

RESUMEN

Histone deacetylase 7 (HDAC7) plays a pivotal role in the maintenance of the endothelium integrity. In this study, we demonstrated that the intron-containing Hdac7 mRNA existed in the cytosol and that ribosomes bound to a short open reading frame (sORF) within the 5'-terminal noncoding area of this Hdac7 mRNA in response to vascular endothelial growth factor (VEGF) stimulation in the isolated stem cell antigen-1 positive (Sca1+ ) vascular progenitor cells (VPCs). A 7-amino acid (7A) peptide has been demonstrated to be translated from the sORF in Sca1+ -VPCs in vitro and in vivo. The 7A peptide was shown to receive phosphate group from the activated mitogen-activated protein kinase MEKK1 and transfer it to 14-3-3 gamma protein, forming an MEKK1-7A-14-3-3γ signal pathway downstream VEGF. The exogenous synthetic 7A peptide could increase Sca1+ -VPCs cell migration, re-endothelialization in the femoral artery injury, and angiogenesis in hind limb ischemia. A Hd7-7sFLAG transgenic mice line was generated as the loss-of-function model, in which the 7A peptide was replaced by a FLAG-tagged scrabbled peptide. Loss of the endogenous 7A impaired Sca1+ -VPCs cell migration, re-endothelialization of the injured femoral artery, and angiogenesis in ischemic tissues, which could be partially rescued by the addition of the exogenous 7A/7Ap peptide. This study provides evidence that sORFs can be alternatively translated and the derived peptides may play an important role in physiological processes including vascular remodeling.


Asunto(s)
Histona Desacetilasas/metabolismo , Neovascularización Fisiológica/genética , Animales , Proliferación Celular , Humanos , Masculino , Ratones , Fosforilación , Transducción de Señal
19.
Circ Res ; 124(10): e84-e100, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30879402

RESUMEN

RATIONALE: RNA helicases, highly conserved enzymes, are currently believed to be not only involved in RNA modulation, but also in other biological processes. We recently reported that RNA helicase DDX (DEAD-box protein)-5 is required for maintaining the homeostasis of vascular smooth muscle cells (SMCs). However, the expression and function of RNA helicase in vascular physiology and disease is unknown. OBJECTIVE: To investigate the role of RNA helicase in vascular diseases. METHODS AND RESULTS: We showed here that DDX-5 was the most abundant DEAD-box protein expressed in human and rodent artery, which mainly located in SMCs. It was demonstrated that DDX-5 levels were reduced in cytokine-stimulated SMCs and vascular lesions. DDX-5 knocking down or deficiency increased SMC proliferation and migration, whereas overexpression of DDX-5 prevented aberrant proliferation and migration of SMCs. Mechanistic studies revealed transcription factor GATA (GATA-binding protein)-6 as a novel downstream target of DDX-5, which directly interacted with GATA-6 and protected it from MDM (mouse double minute)-2-mediated degradation. Our ChIP assay identified a previously unreported binding of p27Kip1 promoter to GATA-6. DDX-5 increased the recruitment of GATA-6 to p27Kip1 promoter, which enhanced p27Kip1 expression and maintained SMC quiescence. Finally, we showed exacerbated neointima formation in DDX-5 SMC-deficient mice after femoral artery injury, whereas overexpression of DDX-5 potently inhibited vascular remodeling in balloon-injured rat carotid artery. CONCLUSIONS: These findings provide the first evidence for a role of RNA helicase DDX-5 in the protection against SMC proliferation, migration, and neointimal hyperplasia. Our data extend the fundamental role of RNA helicase beyond RNA modulation, which provides the basic information for new therapeutic strategies for vascular diseases.


Asunto(s)
Proliferación Celular/fisiología , ARN Helicasas DEAD-box/metabolismo , Miocitos del Músculo Liso/fisiología , Remodelación Vascular/fisiología , Animales , Traumatismos de las Arterias Carótidas , Movimiento Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , ARN Helicasas DEAD-box/deficiencia , Arteria Femoral/lesiones , Arteria Femoral/metabolismo , Factor de Transcripción GATA6/metabolismo , Humanos , Ratones , Miocitos del Músculo Liso/metabolismo , Neointima/etiología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ratas
20.
Circ Res ; 125(2): 223-241, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31079549

RESUMEN

RATIONALE: Transplantation-accelerated arteriosclerosis is one of the major challenges for long-term survival of patients with solid organ transplantation. Although stem/progenitor cells have been implicated to participate in this process, the cells of origin and underlying mechanisms have not been fully defined. OBJECTIVE: The objective of our study was to investigate the role of c-Kit lineage cells in allograft-induced neointima formation and to explore the mechanisms underlying this process. METHODS AND RESULTS: Using an inducible lineage tracing Kit-CreER;Rosa26-tdTomato mouse model, we observed that c-Kit is expressed in multiple cell types in the blood vessels, rather than a specific stem/progenitor cell marker. We performed allograft transplantation between different donor and recipient mice, as well as bone marrow transplantation experiments, demonstrating that recipient c-Kit+ cells repopulate neointimal smooth muscle cells (SMCs) and leukocytes, and contribute to neointima formation in an allograft transplantation model. c-Kit-derived SMCs originate from nonbone marrow tissues, whereas bone marrow-derived c-Kit+ cells mainly generate CD45+ leukocytes. However, the exact identity of c-Kit lineage cells contributing to neointimal SMCs remains unclear. ACK2 (anti-c-Kit antibody), which specifically binds and blocks c-Kit function, ameliorates allograft-induced arteriosclerosis. Stem cell factor and TGF (transforming growth factor)-ß1 levels were significantly increased in blood and neointimal lesions after allograft transplantation, by which stem cell factor facilitated c-Kit+ cell migration through the stem cell factor/c-Kit axis and downstream activation of small GTPases, MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal-regulated kinase)/MLC (myosin light chain), and JNK (c-Jun N-terminal kinase)/c-Jun signaling pathways, whereas TGF-ß1 induces c-Kit+ cell differentiation into SMCs via HK (hexokinase)-1-dependent metabolic reprogramming and a possible downstream O-GlcNAcylation of myocardin and serum response factor. CONCLUSIONS: Our findings provide evidence that recipient c-Kit lineage cells contribute to vascular remodeling in an allograft transplantation model, in which the stem cell factor/c-Kit axis is responsible for cell migration and HK-1-dependent metabolic reprogramming for SMC differentiation.


Asunto(s)
Arteriosclerosis/terapia , Movimiento Celular , Miocitos del Músculo Liso/fisiología , Animales , Aorta/fisiología , Aorta/trasplante , Células Cultivadas , Reprogramación Celular , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Regeneración , Factor de Células Madre/metabolismo , Túnica Íntima/citología , Túnica Íntima/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA