Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Clin Periodontol ; 50(6): 796-806, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36843393

RESUMEN

AIM: To examine the immunomodulatory effect of exosomes originating from gingival mesenchymal stem cells (GMSC-Exo) on periodontal bone regeneration and its role in the regulation of the nuclear-factor kappaB (NF-κB) and Wnt/ß-catenin pathways in the periodontal inflammatory microenvironment. MATERIALS AND METHODS: First, periodontal ligament stem cells (PDLSCs) were treated with GMSC-Exo or Porphyromonas gingivalis-derived lipopolysaccharide (P.g-LPS) in vitro. Quantitative real-time PCR (qRT-PCR) and western blot were carried out to detect the expressions of osteogenic differentiation-related factors in cells. Further, PDLSCs were treated with P.g-LPS or inhibitors. The expression of NF-κB pathway-related factors as well as of Wnt/ß-catenin pathway-related factors were detected by qRT-PCR and western blot. RESULTS: GMSC-Exo treatment promoted the expression of osteogenic differentiation-related factors within PDLSCs in both normal and inflammatory environments. Further investigations showed that GMSC-Exo could also inhibit the P.g-LPS-induced activation of the NF-κB pathway, leading to the up-regulation of the Wnt/ß-catenin pathway. When the Wnt/ß-catenin signalling was blocked, the inhibitory effect of GMSC-Exo on the NF-κB pathway was abolished. CONCLUSIONS: GMSC-Exo could promote the osteogenic differentiation of PDLSCs. There could be mutually exclusive regulatory roles between the NF-κB and Wnt/ß-catenin signalling pathways in a periodontal inflammatory environment. GMSC-Exo exhibited an effective cross-regulation ability for both pathways.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Humanos , FN-kappa B/metabolismo , beta Catenina , Osteogénesis , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Exosomas/metabolismo , Inflamación/metabolismo , Vía de Señalización Wnt , Proteínas Wnt , Diferenciación Celular , Ligamento Periodontal , Células Cultivadas
2.
ACS Infect Dis ; 10(2): 500-512, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38175918

RESUMEN

Fungal keratitis (FK) is a refractory global disease characterized by a high incidence of blindness and a lack of effective therapeutic options, and Aspergillus fumigatus (A. fumigatus, AF) is one of the most common causative fungi. This study aimed to investigate the role of extracellular vesicles (EVs) from A. fumigatus in the immune cell function and their protective role in A. fumigatus keratitis in order to explore their therapeutic potential. First, we isolated and characterized the EVs (AF-derived EVs). In vitro, we stimulated RAW264.7 cells and polymorphonuclear cells with AF-derived EVs. The expression levels of inflammatory factors increased in both immune cells along with an M1 polarization variation of RAW264.7 cells. After being incubated with AF-derived EVs, both immune cells exhibited an increased conidia-phagocytic index and a decreased conidia survival rate. In vivo, we injected EVs subconjunctivally on mice resulting in a heightened production of secretory immunoglobulin A (sIgA) in tear fluid. By the injection of EVs on mice in advance, a significant reduction in severity of A. fumigatus FK was witnessed by lower clinical scores, inflammatory appearances, and mitigated fungal load. Collectively, these results positioned AF-derived EVs as a promising and innovative immune therapy for combating FK, while also providing a platform for further investigation into developing an optimal formulation for modulating inflammation in the context of FK.


Asunto(s)
Aspergilosis , Vesículas Extracelulares , Infecciones Fúngicas del Ojo , Queratitis , Animales , Ratones , Aspergillus fumigatus/fisiología , Aspergilosis/tratamiento farmacológico , Aspergilosis/metabolismo , Queratitis/microbiología , Inflamación , Infecciones Fúngicas del Ojo/tratamiento farmacológico
3.
J Biomed Mater Res B Appl Biomater ; 111(6): 1286-1298, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36773322

RESUMEN

This study aimed to establish that copper-deposited Diatom-biosilica have the potential and possibility for clinical applications in repairing bone defects in a state of inflammation, such as periodontitis. Treatment of alveolar bone defects caused by periodontitis is a major challenge for clinicians. To achieve better repair results, the material should not only be bone conductive but also have the ability to stimulate osteogenesis and angiogenesis at the lesion site. Copper (II) and silicon (IV) ions could react to form basic copper silicate, which promoted both osteogenesis and angiogenesis. The mineralized diatom (Cu-DBs) loaded with copper (II) ions were synthesized by processing diatom shells using a hydrothermal method. Periodontal ligament stem cells (PDLSCs) are used to detect the osteogenic properties of Cu-DBs at the gene and protein levels. Using a rat cranial defect model and a full-thickness skin incision model to test the osteogenic properties of Cu-DBs in vivo. Compared with untreated diatoms (DBs), Cu-DBs extract significantly promoted the expression of osteogenesis-related factors like ALP, RUNX2, BSP, OCN, and OPN in PDLSCs. In vivo experiments further confirmed that Cu-DBs could effectively stimulate the osteogenesis of a rat skull defect and promote angiogenesis, significantly inhibit the inflammatory responses to bone damages, and reduce the infiltration of inflammatory immune cells to the lesion site. Due to the unique chemical characteristics of Si4+ and Cu2+ ions, the Cu-DBs composite biomaterial could enhance the osteogenic differentiation of PDLSCS in vitro, as well as stimulate the osteogenesis of the rat in vivo.


Asunto(s)
Diatomeas , Periodontitis , Ratas , Animales , Osteogénesis , Ligamento Periodontal , Cobre/farmacología , Células Madre , Diferenciación Celular , Cráneo , Células Cultivadas , Proliferación Celular
4.
Cell Death Dis ; 14(6): 367, 2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330523

RESUMEN

BACKGROUND: Hepatic ischemia-reperfusion injury (IRI) is considered as an effecting factor for hepatocellular carcinoma (HCC) recurrence. Th17/Treg cells are a pair of essential components in adaptive immune response in liver IRI, and forkhead box O1 (FOXO1) has the properties of maintaining the function and phenotype of immune cells. Herein, we illuminated the correlation and function between Th17/Treg cell balance and FOXO1 in IRI-induced HCC recurrence. METHODS: RNA sequencing was performed on naive CD4+ T cells from normal and IRI model mice to identify relevant transcription factors. Western blotting, qRT-PCR, immunohistochemical staining, and flow cytometry were performed in IRI models to indicate the effect of FOXO1 on the polarization of Th17/Treg cells. Then, transwell assay of HCC cell migration and invasion, clone formation, wound healing assay, and Th17 cells adoptively transfer was utilized to assess the function of Th17 cells in IRI-induced HCC recurrence in vitro and in vivo. RESULTS: Owning to the application of RNA sequencing, FOXO1 was screened and assumed to perform a significant function in hepatic IRI. The IRI model demonstrated that up-regulation of FOXO1 alleviated IR stress by attenuating inflammatory stress, maintaining microenvironment homeostasis, and reducing the polarization of Th17 cells. Mechanistically, Th17 cells accelerated IRI-induced HCC recurrence by shaping the hepatic pre-metastasis microenvironment, activating the EMT program, promoting cancer stemness and angiogenesis, while the upregulation of FOXO1 can stabilize the liver microenvironment homeostasis and alleviate the negative effects of Th17 cells. Moreover, the adoptive transfer of Th17 cells in vivo revealed its inducing function in IRI-induced HCC recurrence. CONCLUSIONS: These results indicated that FOXO1-Th17/Treg axis exerts a crucial role in IRI-mediated immunologic derangement and HCC recurrence, which could be a promising target for reducing the HCC recurrence after hepatectomy. Liver IRI affects the balance of Th17/Treg cells by inhibiting the expression of FOXO1, and the increase of Th17 cells has the ability to induce HCC recurrence through EMT program, cancer stemness pathway, the formation of premetastatic microenvironment and angiogenesis.


Asunto(s)
Carcinoma Hepatocelular , Proteína Forkhead Box O1 , Neoplasias Hepáticas , Daño por Reperfusión , Animales , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Daño por Reperfusión/metabolismo , Células Th17 , Microambiente Tumoral , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo
5.
Front Oncol ; 12: 928022, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185217

RESUMEN

Objective: Hepatocellular carcinoma (HCC) is a malignant tumor. The occurrence of HCC is involved in the alteration of a variety of oncogenes or tumor suppressor genes, but the specific molecular mechanism remains unknown. This research proved the effects of long non-coding RNA NEAT1 (lncRNA NEAT1) on the viability, proliferation, migration, and invasion of hepatocellular carcinoma cells and explored the mechanism behind these effects. Methods: NEAT1 in 97H and Huh7 cell lines was overexpressed or knocked down, respectively. The expression of FOXP3 and its target gene PKM2 was hinged on qRT-PCR and Western blot, respectively. RNA pulldown and RNA immunoprecipitation experiments were carried out to detect the interaction between NEAT1 and proteins. Finally, the effect of NEAT1 on the tumor volume of HCC was verified by animal experiments. Results: A series of experiments have shown that NEAT1 knockdown can inhibit the viability, proliferation, migration, and invasion of HCC cells; NEAT1 can bind FOXP3 to promote PKM2 transcription; PKM2 knockdown can inhibit the viability, proliferation, migration, and invasion of HCC cells; and PKM2 knockdown reversed the function of NEAT1. Conclusion: lncRNA NEAT1 can promote the malignant behavior of HCC cells, while silencing of NEAT1 can inhibit that behavior of HCC cells. Mechanically, NEAT1 promotes the transcriptional activation of PKM2 by binding FOXP3, and PKM2 knockout reverses the function of NEAT1.

6.
Front Chem ; 10: 863364, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464198

RESUMEN

This study aimed to explore the effects of exosomes derived from human gingival mesenchymal stem cells (GMSC-Exo) on the inflammatory response of periodontal ligament stem cells (PDLSCs) in an inflammatory microenvironment in order to restore the regenerative potential of PDLSCs, which promotes periodontal tissue regeneration in patients with periodontitis. Periodontitis is a chronic infectious disease characterized by periodontal tissue inflammation and alveolar bone destruction. PDLSCs are regarded as promising seed cells for restoring periodontal tissue defects because of their ability to regenerate cementum/PDL-like tissue and alveolar bone. However, PDLSCs in the inflammatory environment show significantly attenuated regenerative potential. GMSC-Exo have been reported to have anti-inflammatory and immunosuppressive properties. In this study, we investigated the effects of GMSC-Exo on the inflammatory response of PDLSCs induced by lipopolysaccharides (LPS). LPS was used to simulate the inflammatory microenvironment of periodontitis in vitro. GMSC-Exo were extracted from the culture supernatant of GMSCs by ultracentrifugation. We found that GMSC-Exo attenuated the inflammatory response of PDLSCs induced by LPS. Furthermore, compared to treatment with LPS, treatment with GMSC-Exo attenuated the expression of NF-κB signaling and Wnt5a in LPS-induced PDLSCs. In conclusion, we confirmed that GMSC-Exo could suppress the inflammatory response of PDLSCs by regulating the expression of NF-κB signaling and Wnt5a, which paves the way for the establishment of a therapeutic approach for periodontitis.

7.
Int Immunopharmacol ; 98: 107885, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34153669

RESUMEN

OBJECTIVE: The purpose of this study was to observe the effect of hyperocclusion on the remodeling of gingival tissues and detect the related signaling pathways. DESIGN: Hyperocclusion models were established by tooth extraction in mice. The mice were sacrificed at 3, 7, 14, 28, or 56 days after the surgery, and the left mandibular first molars with gingival tissues were isolated and examinations were focused on the gingival tissues. Apoptotic cells were examined using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) technology. Proliferating cells, p65, inflammatory cytokines, and ß-catenin were detected using immunohistochemical methods. RESULTS: A series of apoptosis and proliferation responses were triggered in stressed gingival tissues. It was observed that the levels of p65, proinflammatory factors including interleukin-1ß and tumor necrosis factor-α in extraction group were higher compared with those from mice with intact dentition, and peaked on days 14, 14 and 7 respectively. The expression of ß-catenin was increased under hyperocclusion situations, peaked on day 14, and declined to the initial levels over time. CONCLUSIONS: The results of this study suggest that hyperocclusion causes remodeling of the gingival tissues by activating a series of adaptive responses. Both nuclear factor kappa B and Wnt/ß-catenin signaling pathways may be responsible for those adaptive responses though the exact mechanism is not clear.


Asunto(s)
Fuerza de la Mordida , Encía/patología , Animales , Proliferación Celular , Encía/inmunología , Masculino , Ratones , Modelos Animales , Estrés Mecánico , Extracción Dental , Vía de Señalización Wnt/inmunología
8.
Int Immunopharmacol ; 94: 107455, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33582592

RESUMEN

OBJECTIVE: The aim of this study was to examine the effect of gingival mesenchymal stem cells derived exosomes (GMSC-Exos) on lipopolysaccharide/interferon-gamma (LPS/INF-γ)-induced inflammatory macrophages in a high-lipid microenvironment. MATERIALS AND METHODS: Exosomes were obtained by culturing gingival mesenchymal stem cells (GMSCs) in alpha-MEM with exosome-free fetal bovine serum for 48 h. The control group was produced in vitro by inducing human acute monocytic leukemia cells (THP-1 cells) into naïve macrophages (M0). Inflammatory macrophages (M1) were made by activating M0 macrophages with LPS/IFN-γ. These M1 macrophages were treated with oxidized low-density lipoprotein (ox-LDL) to create the high-lipid group, of which some macrophages were further treated with GMSC-Exos for 24 h to form the GMSC-Exos group. Supernatants were collected, and total RNA were extracted for downstream analysis. The expression of surface markers in macrophages were analyzed by flow cytometry. The lipid accumulation level was assessed by oil red O staining. RESULTS: Exosomes were successfully isolated from GMSC medium. The GMSC-Exos group showed lower Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-1ß (IL-1ß), and cluster of differentiation 86 (CD86) expression levels than the high-lipid group, and the highest levels of Interleukin-10 (IL-10) among all groups. The GMSC-Exos group showed significant reductions in TNF-α levels than the high-lipid group, and significant escalations in IL-10 levels than the other two groups. Oil red o Staining showed that lipid accumulation in macrophages was inhibited in the GMSC-Exos group. CONCLUSIONS: GMSC-Exos reduce the release level and expression of inflammatory factors, inhibit lipid accumulation, and promote the polarization of pro-inflammatory macrophages into anti-inflammatory phenotype in a high-lipid microenvironment.


Asunto(s)
Exosomas , Macrófagos/inmunología , Células Madre Mesenquimatosas , Adolescente , Adulto , Antígeno B7-2/inmunología , Diferenciación Celular , Encía/citología , Humanos , Inflamación/inmunología , Interleucina-10/inmunología , Lípidos , Fenotipo , Células THP-1 , Factor de Necrosis Tumoral alfa/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA