Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(4): 649-658, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36130209

RESUMEN

BACKGROUND: The relations of alcohol consumption and gene expression remain to be elucidated. MATERIALS AND METHODS: We examined cross-sectional associations between alcohol consumption and whole blood derived gene expression levels and between alcohol-associated genes and obesity, hypertension, and diabetes in 5531 Framingham Heart Study (FHS) participants. RESULTS: We identified 25 alcohol-associated genes. We further showed cross-sectional associations of 16 alcohol-associated genes with obesity, nine genes with hypertension, and eight genes with diabetes at P < 0.002. For example, we observed decreased expression of PROK2 (ß = -0.0018; 95%CI: -0.0021, -0.0007; P = 6.5e - 5) and PAX5 (ß = -0.0014; 95%CI: -0.0021, -0.0007; P = 6.5e - 5) per 1 g/day increase in alcohol consumption. Consistent with our previous observation on the inverse association of alcohol consumption with obesity and positive association of alcohol consumption with hypertension, we found that PROK2 was positively associated with obesity (OR = 1.42; 95%CI: 1.17, 1.72; P = 4.5e - 4) and PAX5 was negatively associated with hypertension (OR = 0.73; 95%CI: 0.59, 0.89; P = 1.6e - 3). We also observed that alcohol consumption was positively associated with expression of ABCA13 (ß = 0.0012; 95%CI: 0.0007, 0.0017; P = 1.3e - 6) and ABCA13 was positively associated with diabetes (OR = 2.57; 95%CI: 1.73, 3.84; P = 3.5e - 06); this finding, however, was inconsistent with our observation of an inverse association between alcohol consumption and diabetes. CONCLUSIONS: We showed strong cross-sectional associations between alcohol consumption and expression levels of 25 genes in FHS participants. Nonetheless, complex relationships exist between alcohol-associated genes and CVD risk factors.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Hipertensión , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/complicaciones , Transcriptoma , Estudios Transversales , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/genética , Hipertensión/genética , Factores de Riesgo , Obesidad/epidemiología , Obesidad/genética , Obesidad/complicaciones , Diabetes Mellitus/epidemiología , Diabetes Mellitus/genética , Estudios Longitudinales , Biomarcadores
2.
Hum Mol Genet ; 31(21): 3683-3693, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35531992

RESUMEN

Factor I (FI) is a serine protease inhibitor of the complement system. Heterozygous rare genetic variants in complement factor I (CFI) are associated with advanced age-related macular degeneration (AMD). The clinical impact of these variants is unknown since a majority have not been functionally characterized and are classified as 'variants of uncertain significance' (VUS). This study assessed the functional significance of VUS in CFI. Our previous cross-sectional study using a serum-based assay demonstrated that CFI variants in advanced AMD can be categorized into three types. Type 1 variants cause a quantitative deficiency of FI. Type 2 variants demonstrate a qualitative deficiency. However, Type 3 variants consist of VUS that are less dysfunctional than Types 1 and 2 but are not as biologically active as wild type (WT). In this study, we employed site-directed mutagenesis followed by expression of the recombinant variant and a comprehensive set of functional assays to characterize nine Type 3 variants that were identified in 37 individuals. Our studies establish that the expression of the recombinant protein compared with WT is reduced for R202I, Q217H, S221Y and G263V. Further, G362A and N536K, albeit expressed normally, have significantly less cofactor activity. These results led to re-categorization of CFI variants R202I, Q217H, S221Y and G263V as Type 1 variants and to reclassification of N536K and G362A as Type 2. The variants K441R, Q462H and I492L showed no functional defect and remained as Type 3. This study highlights the utility of an in-depth biochemical analysis in defining the pathologic and clinical implications of complement variants underlying AMD.


Asunto(s)
Factor I de Complemento , Degeneración Macular , Humanos , Factor I de Complemento/genética , Fibrinógeno/genética , Predisposición Genética a la Enfermedad , Heterocigoto , Degeneración Macular/patología , Polimorfismo de Nucleótido Simple
3.
Br J Nutr ; 131(12): 2058-2067, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38606596

RESUMEN

Machine learning methods have been used in identifying omics markers for a variety of phenotypes. We aimed to examine whether a supervised machine learning algorithm can improve identification of alcohol-associated transcriptomic markers. In this study, we analysed array-based, whole-blood derived expression data for 17 873 gene transcripts in 5508 Framingham Heart Study participants. By using the Boruta algorithm, a supervised random forest (RF)-based feature selection method, we selected twenty-five alcohol-associated transcripts. In a testing set (30 % of entire study participants), AUC (area under the receiver operating characteristics curve) of these twenty-five transcripts were 0·73, 0·69 and 0·66 for non-drinkers v. moderate drinkers, non-drinkers v. heavy drinkers and moderate drinkers v. heavy drinkers, respectively. The AUC of the selected transcripts by the Boruta method were comparable to those identified using conventional linear regression models, for example, AUC of 1958 transcripts identified by conventional linear regression models (false discovery rate < 0·2) were 0·74, 0·66 and 0·65, respectively. With Bonferroni correction for the twenty-five Boruta method-selected transcripts and three CVD risk factors (i.e. at P < 6·7e-4), we observed thirteen transcripts were associated with obesity, three transcripts with type 2 diabetes and one transcript with hypertension. For example, we observed that alcohol consumption was inversely associated with the expression of DOCK4, IL4R, and SORT1, and DOCK4 and SORT1 were positively associated with obesity, and IL4R was inversely associated with hypertension. In conclusion, using a supervised machine learning method, the RF-based Boruta algorithm, we identified novel alcohol-associated gene transcripts.


Asunto(s)
Consumo de Bebidas Alcohólicas , Algoritmos , Humanos , Consumo de Bebidas Alcohólicas/genética , Masculino , Femenino , Persona de Mediana Edad , Aprendizaje Automático , Enfermedades Cardiovasculares/genética , Transcriptoma , Adulto , Factores de Riesgo , Aprendizaje Automático Supervisado , Bosques Aleatorios
4.
Hum Mol Genet ; 31(2): 309-319, 2021 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-34415308

RESUMEN

We conducted cohort- and race-specific epigenome-wide association analyses of mitochondrial deoxyribonucleic acid (mtDNA) copy number (mtDNA CN) measured in whole blood from participants of African and European origins in five cohorts (n = 6182, mean age = 57-67 years, 65% women). In the meta-analysis of all the participants, we discovered 21 mtDNA CN-associated DNA methylation sites (CpG) (P < 1 × 10-7), with a 0.7-3.0 standard deviation increase (3 CpGs) or decrease (18 CpGs) in mtDNA CN corresponding to a 1% increase in DNA methylation. Several significant CpGs have been reported to be associated with at least two risk factors (e.g. chronological age or smoking) for cardiovascular disease (CVD). Five genes [PR/SET domain 16, nuclear receptor subfamily 1 group H member 3 (NR1H3), DNA repair protein, DNA polymerase kappa and decaprenyl-diphosphate synthase subunit 2], which harbor nine significant CpGs, are known to be involved in mitochondrial biosynthesis and functions. For example, NR1H3 encodes a transcription factor that is differentially expressed during an adipose tissue transition. The methylation level of cg09548275 in NR1H3 was negatively associated with mtDNA CN (effect size = -1.71, P = 4 × 10-8) and was positively associated with the NR1H3 expression level (effect size = 0.43, P = 0.0003), which indicates that the methylation level in NR1H3 may underlie the relationship between mtDNA CN, the NR1H3 transcription factor and energy expenditure. In summary, the study results suggest that mtDNA CN variation in whole blood is associated with DNA methylation levels in genes that are involved in a wide range of mitochondrial activities. These findings will help reveal molecular mechanisms between mtDNA CN and CVD.


Asunto(s)
Epigenoma , Genoma Mitocondrial , Anciano , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Epigenoma/genética , Femenino , Genoma Mitocondrial/genética , Humanos , Masculino , Persona de Mediana Edad
5.
BMC Med ; 21(1): 443, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37968697

RESUMEN

BACKGROUND: Metabolite signatures of long-term alcohol consumption are lacking. To better understand the molecular basis linking alcohol drinking and cardiovascular disease (CVD), we investigated circulating metabolites associated with long-term alcohol consumption and examined whether these metabolites were associated with incident CVD. METHODS: Cumulative average alcohol consumption (g/day) was derived from the total consumption of beer, wine, and liquor on average of 19 years in 2428 Framingham Heart Study Offspring participants (mean age 56 years, 52% women). We used linear mixed models to investigate the associations of alcohol consumption with 211 log-transformed plasma metabolites, adjusting for age, sex, batch, smoking, diet, physical activity, BMI, and familial relationship. Cox models were used to test the association of alcohol-related metabolite scores with fatal and nonfatal incident CVD (myocardial infarction, coronary heart disease, stroke, and heart failure). RESULTS: We identified 60 metabolites associated with cumulative average alcohol consumption (p < 0.05/211 ≈ 0.00024). For example, 1 g/day increase of alcohol consumption was associated with higher levels of cholesteryl esters (e.g., CE 16:1, beta = 0.023 ± 0.002, p = 6.3e - 45) and phosphatidylcholine (e.g., PC 32:1, beta = 0.021 ± 0.002, p = 3.1e - 38). Survival analysis identified that 10 alcohol-associated metabolites were also associated with a differential CVD risk after adjusting for age, sex, and batch. Further, we built two alcohol consumption weighted metabolite scores using these 10 metabolites and showed that, with adjustment age, sex, batch, and common CVD risk factors, the two scores had comparable but opposite associations with incident CVD, hazard ratio 1.11 (95% CI = [1.02, 1.21], p = 0.02) vs 0.88 (95% CI = [0.78, 0.98], p = 0.02). CONCLUSIONS: We identified 60 long-term alcohol consumption-associated metabolites. The association analysis with incident CVD suggests a complex metabolic basis between alcohol consumption and CVD.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad Coronaria , Humanos , Femenino , Persona de Mediana Edad , Masculino , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Estudios Prospectivos , Consumo de Bebidas Alcohólicas/epidemiología , Consumo de Bebidas Alcohólicas/efectos adversos , Enfermedad Coronaria/complicaciones , Dieta , Factores de Riesgo
6.
Circ Res ; 128(1): e1-e23, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33092465

RESUMEN

RATIONALE: Previous translational studies implicate plasma extracellular microRNA-30d (miR-30d) as a biomarker in left ventricular remodeling and clinical outcome in heart failure (HF) patients, although precise mechanisms remain obscure. OBJECTIVE: To investigate the mechanism of miR-30d-mediated cardioprotection in HF. METHODS AND RESULTS: In rat and mouse models of ischemic HF, we show that miR-30d gain of function (genetic, lentivirus, or agomiR-mediated) improves cardiac function, decreases myocardial fibrosis, and attenuates cardiomyocyte (CM) apoptosis. Genetic or locked nucleic acid-based knock-down of miR-30d expression potentiates pathological left ventricular remodeling, with increased dysfunction, fibrosis, and cardiomyocyte death. RNA sequencing of in vitro miR-30d gain and loss of function, together with bioinformatic prediction and experimental validation in cardiac myocytes and fibroblasts, were used to identify and validate direct targets of miR-30d. miR-30d expression is selectively enriched in cardiomyocytes, induced by hypoxic stress and is acutely protective, targeting MAP4K4 (mitogen-associate protein kinase 4) to ameliorate apoptosis. Moreover, miR-30d is secreted primarily in extracellular vesicles by cardiomyocytes and inhibits fibroblast proliferation and activation by directly targeting integrin α5 in the acute phase via paracrine signaling to cardiac fibroblasts. In the chronic phase of ischemic remodeling, lower expression of miR-30d in the heart and plasma extracellular vesicles is associated with adverse remodeling in rodent models and human subjects and is linked to whole-blood expression of genes implicated in fibrosis and inflammation, consistent with observations in model systems. CONCLUSIONS: These findings provide the mechanistic underpinning for the cardioprotective association of miR-30d in human HF. More broadly, our findings support an emerging paradigm involving intercellular communication of extracellular vesicle-contained miRNAs (microRNAs) to transregulate distinct signaling pathways across cell types. Functionally validated RNA biomarkers and their signaling networks may warrant further investigation as novel therapeutic targets in HF.


Asunto(s)
MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Comunicación Paracrina , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Apoptosis , Células Cultivadas , Modelos Animales de Enfermedad , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas Sprague-Dawley , Ratas Transgénicas , Transducción de Señal , Quinasa de Factor Nuclear kappa B
7.
Am J Respir Crit Care Med ; 206(3): 321-336, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35536696

RESUMEN

Rationale: Methylation integrates factors present at birth and modifiable across the lifespan that can influence pulmonary function. Studies are limited in scope and replication. Objectives: To conduct large-scale epigenome-wide meta-analyses of blood DNA methylation and pulmonary function. Methods: Twelve cohorts analyzed associations of methylation at cytosine-phosphate-guanine probes (CpGs), using Illumina 450K or EPIC/850K arrays, with FEV1, FVC, and FEV1/FVC. We performed multiancestry epigenome-wide meta-analyses (total of 17,503 individuals; 14,761 European, 2,549 African, and 193 Hispanic/Latino ancestries) and interpreted results using integrative epigenomics. Measurements and Main Results: We identified 1,267 CpGs (1,042 genes) differentially methylated (false discovery rate, <0.025) in relation to FEV1, FVC, or FEV1/FVC, including 1,240 novel and 73 also related to chronic obstructive pulmonary disease (1,787 cases). We found 294 CpGs unique to European or African ancestry and 395 CpGs unique to never or ever smokers. The majority of significant CpGs correlated with nearby gene expression in blood. Findings were enriched in key regulatory elements for gene function, including accessible chromatin elements, in both blood and lung. Sixty-nine implicated genes are targets of investigational or approved drugs. One example novel gene highlighted by integrative epigenomic and druggable target analysis is TNFRSF4. Mendelian randomization and colocalization analyses suggest that epigenome-wide association study signals capture causal regulatory genomic loci. Conclusions: We identified numerous novel loci differentially methylated in relation to pulmonary function; few were detected in large genome-wide association studies. Integrative analyses highlight functional relevance and potential therapeutic targets. This comprehensive discovery of potentially modifiable, novel lung function loci expands knowledge gained from genetic studies, providing insights into lung pathogenesis.


Asunto(s)
Metilación de ADN , Epigenoma , Islas de CpG , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Pulmón
8.
Genet Epidemiol ; 45(3): 280-292, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33038041

RESUMEN

Multiple methods have been proposed to aggregate genetic variants in a gene or a region and jointly test their association with a trait of interest. However, these joint tests do not provide estimates of the individual effect of each variant. Moreover, few methods have evaluated the joint association of multiple variants with DNA methylation. We propose a method based on linear mixed models to estimate the joint and individual effect of multiple genetic variants on DNA methylation leveraging genomic annotations. Our approach is flexible, can incorporate covariates and annotation features, and takes into account relatedness and linkage disequilibrium (LD). Our method had correct Type-I error and overall high power for different simulated scenarios where we varied the number and specificity of functional annotations, number of causal and total genetic variants, frequency of genetic variants, LD, and genetic variant effect. Our method outperformed the family Sequence Kernel Association Test and had more stable estimations of effects than a classical single-variant linear mixed-effect model. Applied genome-wide to the Framingham Heart Study data, our method identified 921 DNA methylation sites influenced by at least one rare or low-frequency genetic variant located within 50 kilobases (kb) of the DNA methylation site.


Asunto(s)
Metilación de ADN , Modelos Genéticos , Humanos , Modelos Lineales , Desequilibrio de Ligamiento , Fenotipo
9.
J Nutr ; 151(9): 2574-2582, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34159370

RESUMEN

BACKGROUND: Alcohol consumption and cardiovascular disease (CVD) have a complex relation. OBJECTIVES: We examined the associations between alcohol consumption, fasting plasma proteins, and CVD risk. METHODS: We performed cross-sectional association analyses of alcohol consumption with 71 CVD-related plasma proteins, and also performed prospective association analyses of alcohol consumption and protein concentrations with 3 CVD risk factors (obesity, hypertension, and diabetes) in 6745 Framingham Heart Study (FHS) participants (mean age 49 y; 53% women). RESULTS: A unit increase in log10 transformed alcohol consumption (g/d) was associated with an increased risk of hypertension (HR = 1.14; 95% CI: 1.04, 1.26; P = 0.007), and decreased risks of obesity (HR = 0.80; 95% CI: 0.71, 0.91; P = 4.6 × 10-4) and diabetes (HR: 0.68; 95% CI: 0.58, 0.80; P = 5.1 × 10-6) in a median of 13-y (interquartile = 7, 14) of follow-up. We identified 43 alcohol-associated proteins in a discovery sample (n = 4348, false discovery rate <0.05) and 20 of them were significant (P <0.05/43) in an independent validation sample (n = 2397). Eighteen of the 20 proteins were inversely associated with alcohol consumption. Four of the 20 proteins demonstrated 3-way associations, as expected, with alcohol consumption and CVD risk factors. For example, a greater concentration of APOA1 was associated with higher alcohol consumption (P = 1.2 × 10-65), and it was also associated with a lower risk of diabetes (P = 8.5 × 10-6). However, several others showed unexpected 3-way associations. CONCLUSIONS: We identified 20 alcohol-associated proteins in 6745 FHS samples. These alcohol-associated proteins demonstrated complex relations with the 3 CVD risk factors. Future studies with integration of more proteomic markers and larger sample size are warranted to unravel the complex relation between alcohol consumption and CVD risk.


Asunto(s)
Enfermedades Cardiovasculares , Consumo de Bebidas Alcohólicas/efectos adversos , Biomarcadores , Enfermedades Cardiovasculares/etiología , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Proteómica , Factores de Riesgo
10.
Circulation ; 140(8): 645-657, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31424985

RESUMEN

BACKGROUND: DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts. METHODS: Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts. RESULTS: Among 11 461 individuals (mean age 64 years, 67% women, 35% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate<0.05). These CpGs map to genes with key roles in calcium regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among others. Mendelian randomization analyses supported a causal effect of DNA methylation on incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA transcripts. CONCLUSION: Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD.


Asunto(s)
Enfermedad Coronaria/diagnóstico , Islas de CpG/genética , Metilación de ADN/fisiología , Leucocitos/fisiología , Infarto del Miocardio/diagnóstico , Adulto , Anciano , Estudios de Cohortes , Enfermedad Coronaria/epidemiología , Europa (Continente)/epidemiología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Infarto del Miocardio/epidemiología , Grupos de Población , Pronóstico , Estudios Prospectivos , Riesgo , Estados Unidos/epidemiología
11.
Am J Hum Genet ; 100(4): 571-580, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28285768

RESUMEN

Identifying causal genetic variants and understanding their mechanisms of effect on traits remains a challenge in genome-wide association studies (GWASs). In particular, how genetic variants (i.e., trans-eQTLs) affect expression of remote genes (i.e., trans-eGenes) remains unknown. We hypothesized that some trans-eQTLs regulate expression of distant genes by altering the expression of nearby genes (cis-eGenes). Using published GWAS datasets with 39,165 single-nucleotide polymorphisms (SNPs) associated with 1,960 traits, we explored whole blood gene expression associations of trait-associated SNPs in 5,257 individuals from the Framingham Heart Study. We identified 2,350 trans-eQTLs (at p < 10-7); more than 80% of them were found to have cis-associated eGenes. Mediation testing suggested that for 35% of trans-eQTL-trans-eGene pairs in different chromosomes and 90% pairs in the same chromosome, the disease-associated SNP may alter expression of the trans-eGene via cis-eGene expression. In addition, we identified 13 trans-eQTL hotspots, affecting from ten to hundreds of genes, suggesting the existence of master genetic regulators. Using causal inference testing, we searched causal variants across eight cardiometabolic traits (BMI, systolic and diastolic blood pressure, LDL cholesterol, HDL cholesterol, total cholesterol, triglycerides, and fasting blood glucose) and identified several cis-eGenes (ALDH2 for systolic and diastolic blood pressure, MCM6 and DARS for total cholesterol, and TRIB1 for triglycerides) that were causal mediators for the corresponding traits, as well as examples of trans-mediators (TAGAP for LDL cholesterol). The finding of extensive evidence of genome-wide mediation effects suggests a critical role of cryptic gene regulation underlying many disease traits.


Asunto(s)
Enfermedades Cardiovasculares/genética , Estudio de Asociación del Genoma Completo , Enfermedades Cardiovasculares/sangre , Estudios Clínicos como Asunto , Femenino , Perfilación de la Expresión Génica , Proyecto Genoma Humano , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Mapas de Interacción de Proteínas , Sitios de Carácter Cuantitativo
12.
Am J Hum Genet ; 101(6): 888-902, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29198723

RESUMEN

Genome-wide association studies have identified hundreds of genetic variants associated with blood pressure (BP), but sequence variation accounts for a small fraction of the phenotypic variance. Epigenetic changes may alter the expression of genes involved in BP regulation and explain part of the missing heritability. We therefore conducted a two-stage meta-analysis of the cross-sectional associations of systolic and diastolic BP with blood-derived genome-wide DNA methylation measured on the Infinium HumanMethylation450 BeadChip in 17,010 individuals of European, African American, and Hispanic ancestry. Of 31 discovery-stage cytosine-phosphate-guanine (CpG) dinucleotides, 13 replicated after Bonferroni correction (discovery: N = 9,828, p < 1.0 × 10-7; replication: N = 7,182, p < 1.6 × 10-3). The replicated methylation sites are heritable (h2 > 30%) and independent of known BP genetic variants, explaining an additional 1.4% and 2.0% of the interindividual variation in systolic and diastolic BP, respectively. Bidirectional Mendelian randomization among up to 4,513 individuals of European ancestry from 4 cohorts suggested that methylation at cg08035323 (TAF1B-YWHAQ) influences BP, while BP influences methylation at cg00533891 (ZMIZ1), cg00574958 (CPT1A), and cg02711608 (SLC1A5). Gene expression analyses further identified six genes (TSPAN2, SLC7A11, UNC93B1, CPT1A, PTMS, and LPCAT3) with evidence of triangular associations between methylation, gene expression, and BP. Additional integrative Mendelian randomization analyses of gene expression and DNA methylation suggested that the expression of TSPAN2 is a putative mediator of association between DNA methylation at cg23999170 and BP. These findings suggest that heritable DNA methylation plays a role in regulating BP independently of previously known genetic variants.


Asunto(s)
Presión Sanguínea/genética , Metilación de ADN/genética , Proteínas del Tejido Nervioso/genética , Tetraspaninas/genética , Anciano , Islas de CpG/genética , Estudios Transversales , Epigénesis Genética/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Sitios de Carácter Cuantitativo/genética
13.
PLoS Genet ; 13(9): e1007040, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28957322

RESUMEN

Cardiovascular diseases (CVD) and type 2 diabetes (T2D) are closely interrelated complex diseases likely sharing overlapping pathogenesis driven by aberrant activities in gene networks. However, the molecular circuitries underlying the pathogenic commonalities remain poorly understood. We sought to identify the shared gene networks and their key intervening drivers for both CVD and T2D by conducting a comprehensive integrative analysis driven by five multi-ethnic genome-wide association studies (GWAS) for CVD and T2D, expression quantitative trait loci (eQTLs), ENCODE, and tissue-specific gene network models (both co-expression and graphical models) from CVD and T2D relevant tissues. We identified pathways regulating the metabolism of lipids, glucose, and branched-chain amino acids, along with those governing oxidation, extracellular matrix, immune response, and neuronal system as shared pathogenic processes for both diseases. Further, we uncovered 15 key drivers including HMGCR, CAV1, IGF1 and PCOLCE, whose network neighbors collectively account for approximately 35% of known GWAS hits for CVD and 22% for T2D. Finally, we cross-validated the regulatory role of the top key drivers using in vitro siRNA knockdown, in vivo gene knockout, and two Hybrid Mouse Diversity Panels each comprised of >100 strains. Findings from this in-depth assessment of genetic and functional data from multiple human cohorts provide strong support that common sets of tissue-specific molecular networks drive the pathogenesis of both CVD and T2D across ethnicities and help prioritize new therapeutic avenues for both CVD and T2D.


Asunto(s)
Enfermedades Cardiovasculares/genética , Diabetes Mellitus Tipo 2/genética , Etnicidad/genética , Redes Reguladoras de Genes , Adipocitos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Caveolina 1/genética , Caveolina 1/metabolismo , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Glucosa/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Reproducibilidad de los Resultados , Estados Unidos
14.
Hum Mol Genet ; 25(21): 4611-4623, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28158590

RESUMEN

Cigarette smoking is a leading modifiable cause of death worldwide. We hypothesized that cigarette smoking induces extensive transcriptomic changes that lead to target-organ damage and smoking-related diseases. We performed a meta-analysis of transcriptome-wide gene expression using whole blood-derived RNA from 10,233 participants of European ancestry in six cohorts (including 1421 current and 3955 former smokers) to identify associations between smoking and altered gene expression levels. At a false discovery rate (FDR) <0.1, we identified 1270 differentially expressed genes in current vs. never smokers, and 39 genes in former vs. never smokers. Expression levels of 12 genes remained elevated up to 30 years after smoking cessation, suggesting that the molecular consequence of smoking may persist for decades. Gene ontology analysis revealed enrichment of smoking-related genes for activation of platelets and lymphocytes, immune response, and apoptosis. Many of the top smoking-related differentially expressed genes, including LRRN3 and GPR15, have DNA methylation loci in promoter regions that were recently reported to be hypomethylated among smokers. By linking differential gene expression with smoking-related disease phenotypes, we demonstrated that stroke and pulmonary function show enrichment for smoking-related gene expression signatures. Mediation analysis revealed the expression of several genes (e.g. ALAS2) to be putative mediators of the associations between smoking and inflammatory biomarkers (IL6 and C-reactive protein levels). Our transcriptomic study provides potential insights into the effects of cigarette smoking on gene expression in whole blood and their relations to smoking-related diseases. The results of such analyses may highlight attractive targets for treating or preventing smoking-related health effects.


Asunto(s)
Fumar Cigarrillos/genética , Expresión Génica/efectos de los fármacos , Adulto , Anciano , Fumar Cigarrillos/sangre , Estudios de Cohortes , Islas de CpG , Metilación de ADN , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Humanos , Leucocitos/efectos de los fármacos , Masculino , Persona de Mediana Edad , Fumar/genética , Transcriptoma/efectos de los fármacos , Población Blanca/genética
15.
PLoS Genet ; 11(3): e1005035, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25785607

RESUMEN

Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%-9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension.


Asunto(s)
Presión Sanguínea/genética , Estudio de Asociación del Genoma Completo , Hipertensión/genética , Transcriptoma/genética , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Hipertensión/patología , Polimorfismo de Nucleótido Simple
16.
BMC Genomics ; 18(1): 139, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28178938

RESUMEN

BACKGROUND: Cardiometabolic (CM) risk factors are heritable and cluster in individuals. We hypothesized that CM risk factors are associated with multiple shared and unique mRNA and microRNA (miRNA) signatures. We examined associations of mRNA and miRNA levels with 6 CM traits: body mass index, HDL-cholesterol and triglycerides, fasting glucose, and systolic and diastolic blood pressures through cross-sectional analysis of 2812 Framingham Heart Study who had whole blood collection for RNA isolation for mRNA and miRNA expression studies and who consented to genetic research. We excluded participants taking medication for hypertension, dyslipidemia, or diabetes. We measured mRNA (n = 17,318; using the Affymetrix GeneChip Human Exon 1.0 ST Array) and miRNA (n = 315; using qRT-PCR) expression in whole blood. We used linear regression for mRNA analyses and a combination of linear and logistic regression for miRNA analyses. We conducted miRNA-mRNA coexpression and gene ontology enrichment analyses to explore relations between pleiotropic miRNAs, mRNA expression, and CM trait clustering. RESULTS: We identified hundreds of significant associations between mRNAs, miRNAs, and individual CM traits. Four mRNAs (FAM13A, CSF2RB, HIST1H2AC, WNK1) were associated with all 6 CM traits (FDR < 0.001) and four miRNAs (miR-197-3p, miR-328, miR-505-5p, miR-145-5p) were associated with four CM traits (FDR < 0.05). Twelve mRNAs, including WNK1, that were coexpressed with the four most pleiotropic miRNAs, were also miRNA targets. mRNAs coexpressed with pleiotropic miRNAs were enriched for RNA metabolism (miR-505-5p), ubiquitin-dependent protein catabolism (miR-197-3p, miR-328) and chromatin assembly (miR-328). CONCLUSIONS: We identified mRNA and miRNA signatures of individual CM traits and their clustering. Implicated transcripts may play causal roles in CM risk or be downstream consequences of CM risk factors on the transcriptome. Studies are needed to establish whether or not pleiotropic circulating transcripts illuminate causal pathways for CM risk.


Asunto(s)
Enfermedades Cardiovasculares/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Transcriptoma , Adulto , Anciano , Enfermedades Cardiovasculares/etiología , Estudios de Cohortes , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Humanos , Modelos Logísticos , Masculino , MicroARNs/sangre , MicroARNs/genética , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos , ARN Mensajero/sangre , ARN Mensajero/genética , Factores de Riesgo
17.
PLoS Med ; 14(1): e1002215, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28095459

RESUMEN

BACKGROUND: The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain. METHODS AND FINDINGS: We conducted an association study of body mass index (BMI) and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1]), demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83) of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination. CONCLUSIONS: We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases.


Asunto(s)
Índice de Masa Corporal , Enfermedad de la Arteria Coronaria/genética , Metilación de ADN , Regulación de la Expresión Génica , Leucocitos/metabolismo , Metabolismo de los Lípidos , Anciano , Enfermedad de la Arteria Coronaria/etiología , Epigénesis Genética , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Metabolismo de los Lípidos/genética , Masculino , Análisis de la Aleatorización Mendeliana , Obesidad/complicaciones , Análisis de Secuencia por Matrices de Oligonucleótidos
18.
PLoS Genet ; 10(7): e1004502, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25033284

RESUMEN

The majority of the heritability of coronary artery disease (CAD) remains unexplained, despite recent successes of genome-wide association studies (GWAS) in identifying novel susceptibility loci. Integrating functional genomic data from a variety of sources with a large-scale meta-analysis of CAD GWAS may facilitate the identification of novel biological processes and genes involved in CAD, as well as clarify the causal relationships of established processes. Towards this end, we integrated 14 GWAS from the CARDIoGRAM Consortium and two additional GWAS from the Ottawa Heart Institute (25,491 cases and 66,819 controls) with 1) genetics of gene expression studies of CAD-relevant tissues in humans, 2) metabolic and signaling pathways from public databases, and 3) data-driven, tissue-specific gene networks from a multitude of human and mouse experiments. We not only detected CAD-associated gene networks of lipid metabolism, coagulation, immunity, and additional networks with no clear functional annotation, but also revealed key driver genes for each CAD network based on the topology of the gene regulatory networks. In particular, we found a gene network involved in antigen processing to be strongly associated with CAD. The key driver genes of this network included glyoxalase I (GLO1) and peptidylprolyl isomerase I (PPIL1), which we verified as regulatory by siRNA experiments in human aortic endothelial cells. Our results suggest genetic influences on a diverse set of both known and novel biological processes that contribute to CAD risk. The key driver genes for these networks highlight potential novel targets for further mechanistic studies and therapeutic interventions.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Transducción de Señal/genética , Animales , Enfermedad de la Arteria Coronaria/patología , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Ratones
19.
Circulation ; 131(6): 536-49, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25533967

RESUMEN

BACKGROUND: Cardiovascular disease (CVD) reflects a highly coordinated complex of traits. Although genome-wide association studies have reported numerous single nucleotide polymorphisms (SNPs) to be associated with CVD, the role of most of these variants in disease processes remains unknown. METHODS AND RESULTS: We built a CVD network using 1512 SNPs associated with 21 CVD traits in genome-wide association studies (at P≤5×10(-8)) and cross-linked different traits by virtue of their shared SNP associations. We then explored whole blood gene expression in relation to these SNPs in 5257 participants in the Framingham Heart Study. At a false discovery rate <0.05, we identified 370 cis-expression quantitative trait loci (eQTLs; SNPs associated with altered expression of nearby genes) and 44 trans-eQTLs (SNPs associated with altered expression of remote genes). The eQTL network revealed 13 CVD-related modules. Searching for association of eQTL genes with CVD risk factors (lipids, blood pressure, fasting blood glucose, and body mass index) in the same individuals, we found examples in which the expression of eQTL genes was significantly associated with these CVD phenotypes. In addition, mediation tests suggested that a subset of SNPs previously associated with CVD phenotypes in genome-wide association studies may exert their function by altering expression of eQTL genes (eg, LDLR and PCSK7), which in turn may promote interindividual variation in phenotypes. CONCLUSIONS: Using a network approach to analyze CVD traits, we identified complex networks of SNP-phenotype and SNP-transcript connections. Integrating the CVD network with phenotypic data, we identified biological pathways that may provide insights into potential drug targets for treatment or prevention of CVD.


Asunto(s)
Enfermedades Cardiovasculares/genética , Redes Reguladoras de Genes/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Adulto , Mapeo Cromosómico , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 1/genética , Femenino , Expresión Génica , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/genética , Lipoproteínas HDL/genética , Lipoproteínas LDL/genética , Masculino , Fenotipo , Factores de Riesgo , Fumar/genética
20.
Hum Mol Genet ; 23(7): 1947-56, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24242183

RESUMEN

Many complex human diseases exhibit sex or age differences in gene expression. However, the presence and the extent of genotype-specific variations in gene regulation are largely unknown. Here, we report results of a comprehensive analysis of expression regulation of genetic variation related to 11,672 complex disease-associated SNPs as a function of sex and age in whole-blood-derived RNA from 5254 individuals. At false discovery rate <0.05, we identified 14 sex- and 10 age-interacting expression quantitative trait loci (eQTLs). We show that these eQTLs are also associated with many sex- or age-associated traits. These findings provide important context regarding the regulation of phenotypes by genotype-environment interaction.


Asunto(s)
Regulación de la Expresión Génica/genética , Predisposición Genética a la Enfermedad , Sitios de Carácter Cuantitativo/genética , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Genotipo , Humanos , Lisofosfolipasa/genética , Masculino , Proteínas de Transporte de Membrana/genética , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA