Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 97(1): 283-409, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27974512

RESUMEN

Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Animales , Modelos Animales de Enfermedad , Electrofisiología , Ratones
2.
Subcell Biochem ; 103: 201-252, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37120470

RESUMEN

The vertebrate nervous system is divided into central (CNS) and peripheral (PNS) components. In turn, the PNS is divided into the autonomic (ANS) and enteric (ENS) nervous systems. Ageing implicates time-related changes to anatomy and physiology in reducing organismal fitness. In the case of the CNS, there exists substantial experimental evidence of the effects of age on individual neuronal and glial function. Although many such changes have yet to be experimentally observed in the PNS, there is considerable evidence of the role of ageing in the decline of ANS function over time. As such, this chapter will argue that the ANS constitutes a paradigm for the physiological consequences of ageing, as well as for their clinical implications.


Asunto(s)
Sistema Nervioso Autónomo , Neuronas , Sistema Nervioso Autónomo/fisiología
3.
J Physiol ; 601(5): 923-940, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36354758

RESUMEN

In cardiac myocytes, the voltage-gated sodium channel NaV 1.5 opens in response to membrane depolarisation and initiates the action potential. The NaV 1.5 channel is typically associated with regulatory ß-subunits that modify gating and trafficking behaviour. These ß-subunits contain a single extracellular immunoglobulin (Ig) domain, a single transmembrane α-helix and an intracellular region. Here we focus on the role of the ß1 and ß3 subunits in regulating NaV 1.5. We catalogue ß1 and ß3 domain specific mutations that have been associated with inherited cardiac arrhythmia, including Brugada syndrome, long QT syndrome, atrial fibrillation and sudden death. We discuss how new structural insights into these proteins raises new questions about physiological function.


Asunto(s)
Arritmias Cardíacas , Síndrome de QT Prolongado , Humanos , Potenciales de Acción/fisiología , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canales de Sodio/metabolismo , Subunidades de Proteína
4.
J Cell Physiol ; 238(6): 1354-1367, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37042220

RESUMEN

The voltage-gated sodium channel NaV 1.7 is involved in various pain phenotypes and is physiologically regulated by the NaV -ß3-subunit. Venom toxins ProTx-II and OD1 modulate NaV 1.7 channel function and may be useful as therapeutic agents and/or research tools. Here, we use patch-clamp recordings to investigate how the ß3-subunit can influence and modulate the toxin-mediated effects on NaV 1.7 function, and we propose a putative binding mode of OD1 on NaV 1.7 to rationalise its activating effects. The inhibitor ProTx-II slowed the rate of NaV 1.7 activation, whilst the activator OD1 reduced the rate of fast inactivation and accelerated recovery from inactivation. The ß3-subunit partially abrogated these effects. OD1 induced a hyperpolarising shift in the V1/2 of steady-state activation, which was not observed in the presence of ß3. Consequently, OD1-treated NaV 1.7 exhibited an enhanced window current compared with OD1-treated NaV 1.7-ß3 complex. We identify candidate OD1 residues that are likely to prevent the upward movement of the DIV S4 helix and thus impede fast inactivation. The binding sites for each of the toxins and the predicted location of the ß3-subunit on the NaV 1.7 channel are distinct. Therefore, we infer that the ß3-subunit influences the interaction of toxins with NaV 1.7 via indirect allosteric mechanisms. The enhanced window current shown by OD1-treated NaV 1.7 compared with OD1-treated NaV 1.7-ß3 is discussed in the context of differing cellular expressions of NaV 1.7 and the ß3-subunit in dorsal root ganglion (DRG) neurons. We propose that ß3, as the native binding partner for NaV 1.7 in DRG neurons, should be included during screening of molecules against NaV 1.7 in relevant analgesic discovery campaigns.


Asunto(s)
Ponzoñas , Canales de Sodio Activados por Voltaje , Humanos , Ponzoñas/uso terapéutico , Péptidos/farmacología , Péptidos/uso terapéutico , Analgésicos/uso terapéutico , Dolor/tratamiento farmacológico
5.
Biochem Biophys Res Commun ; 666: 61-67, 2023 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-37178506

RESUMEN

The RGD motif on the SARS-CoV-2 spike protein has been suggested to interact with RGD-binding integrins αVß3 and α5ß1 to enhance viral cell entry and alter downstream signaling cascades. The D405N mutation on the Omicron subvariant spike proteins, resulting in an RGN motif, has recently been shown to inhibit binding to integrin αVß3. Deamidation of asparagines in protein ligand RGN motifs has been demonstrated to generate RGD and RGisoD motifs that permit binding to RGD-binding integrins. Two asparagines, N481 and N501, on the Wild-type spike receptor-binding domain have been previously shown to have deamidation half-lives of 16.5 and 123 days, respectively, which may occur during the viral life cycle. Deamidation of Omicron subvariant N405 may recover the ability to interact with RGD-binding integrins. Thus, herein, all-atom molecular dynamics simulations of the Wild-type and Omicron subvariant spike protein receptor-binding domains were conducted to investigate the potential for asparagines, the Omicron subvariant N405 in particular, to assume the optimized geometry for deamidation to occur. In summary, the Omicron subvariant N405 was primarily found to be stabilized in a state unfavourable for deamidation after hydrogen bonding with downstream E406. Nevertheless, a small number of RGD or RGisoD motifs on the Omicron subvariant spike proteins may restore the ability to interact with RGD-binding integrins. The simulations also provided structural clarification regarding the deamidation rates of Wild-type N481 and N501 and highlighted the utility of tertiary structure dynamics information in predicting asparagine deamidation. Further work is needed to characterize the effects of deamidation on spike-integrin interactions.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Asparagina , Integrina alfaVbeta3
6.
J Mol Cell Cardiol ; 164: 110-125, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34774547

RESUMEN

Effects of hypertrophic challenge on small-conductance, Ca2+-activated K+(SK2) channel expression were explored in intact murine hearts, isolated ventricular myocytes and neonatal rat cardiomyocytes (NRCMs). An established experimental platform applied angiotensin II (Ang II) challenge in the presence and absence of reduced p21-activated kinase (PAK1) (PAK1cko vs. PAK1f/f, or shRNA-PAK1 interference) expression. SK2 current contributions were detected through their sensitivity to apamin block. Ang II treatment increased such SK2 contributions to optically mapped action potential durations (APD80) and their heterogeneity, and to patch-clamp currents. Such changes were accentuated in PAK1cko compared to PAK1f/f, intact hearts and isolated cardiomyocytes. They paralleled increased histological and echocardiographic hypertrophic indices, reduced cardiac contractility, and increased SK2 protein expression, changes similarly greater with PAK1cko than PAK1f/f. In NRCMs, Ang II challenge replicated such increases in apamin-sensitive SK patch clamp currents as well as in real-time PCR and western blot measures of SK2 mRNA and protein expression and cell hypertrophy. Furthermore, the latter were enhanced by shRNA-PAK1 interference and mitigated by the PAK1 agonist FTY720. Increased CaMKII and CREB phosphorylation accompanied these effects. These were rescued by both FTY720 as well as the CaMKII inhibitor KN93, but not its inactive analogue KN92. Such CREB then specifically bound to the KCNN2 promoter sequence in luciferase assays. These findings associate Ang II induced hypertrophy with increased SK2 expression brought about by a CaMKII/CREB signaling convergent with the PAK1 pathway thence upregulating the KCNN2 promoter activity. SK2 may then influence cardiac electrophysiology under conditions of cardiac hypertrophy and failure.


Asunto(s)
Angiotensina II , Quinasas p21 Activadas , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Apamina/metabolismo , Apamina/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/metabolismo , Clorhidrato de Fingolimod/metabolismo , Clorhidrato de Fingolimod/farmacología , Ratones , Miocitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinasas , ARN Interferente Pequeño/metabolismo , Ratas , Regulación hacia Arriba , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/farmacología
7.
J Med Virol ; 94(9): 4181-4192, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35575289

RESUMEN

Cleavage of the severe respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein has been demonstrated to contribute to viral-cell fusion and syncytia formation. Studies have shown that variants of concern (VOC) and variants of interest (VOI) show differing membrane fusion capacity. Mutations near cleavage motifs, such as the S1/S2 and S2' sites, may alter interactions with host proteases and, thus, the potential for fusion. The biochemical basis for the differences in interactions with host proteases for the VOC/VOI spike proteins has not yet been explored. Using sequence and structure-based bioinformatics, mutations near the VOC/VOI spike protein cleavage sites were inspected for their structural effects. All mutations found at the S1/S2 sites were predicted to increase affinity to the furin protease but not TMPRSS2. Mutations at the spike residue P681 in several strains, such P681R in the Delta strain, resulted in the disruption of a proline-directed kinase phosphorylation motif at the S1/S2 site, which may lessen the impact of phosphorylation for these variants. However, the unique N679K mutation in the Omicron strain was found to increase the propensity for O-linked glycosylation at the S1/S2 cleavage site, which may prevent recognition by proteases. Such glycosylation in the Omicron strain may hinder entry at the cell surface and, thus, decrease syncytia formation and induce cell entry through the endocytic pathway as has been shown in previous studies. Further experimental work is needed to confirm the effect of mutations and posttranslational modifications on SARS-CoV-2 spike protein cleavage sites.


Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicosilación , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
8.
J Shoulder Elbow Surg ; 31(2): 318-323, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34411722

RESUMEN

BACKGROUND: Biofilm formation and hemolytic activity are factors that may correlate with the virulence of Cutibacterium. We sought to compare the prevalence of these potential markers of pathogenicity between Cutibacterium recovered from deep specimens obtained at the time of surgical revision for failed shoulder arthroplasty and Cutibacterium recovered from skin samples from normal subjects. METHODS: We compared 42 deep-tissue or explant isolates with 43 control Cutibacterium samples obtained from skin isolates from normal subjects. Subtyping information was available for all isolates. Biofilm-forming capacity was measured by inoculating a normalized amount of each isolate onto a 96-well plate. Planktonic bacteria were removed, the remaining adherent bacteria were stained with crystal violet, the crystal violet was re-solubilized in ethyl alcohol, and biofilm-forming capacity was quantitated by optical density (OD). Hemolytic activity was measured by plating a normalized amount of isolate onto agar plates. The area of the colony and the surrounding area of blood lysis were measured and reported as minimal, moderate, or severe hemolysis. RESULTS: Biofilm-forming capacity was significantly higher in the tissue and explant samples compared with the control skin samples (OD of 0.34 ± 0.30 for deep tissue vs. 0.20 ± 0.28 for skin, P = .002). Hemolytic activity was also significantly higher in the tissue and explant samples than in the control skin samples (P < .0001). Samples with hemolytic activity had significantly higher biofilm-forming capacity compared with samples without hemolytic activity (OD of 0.27 ± 0.29 vs. 0.12 ± 0.15, P = .015). No difference in biofilm-forming capacity or hemolytic activity was found between subtypes. CONCLUSIONS: Cutibacterium obtained from deep specimens at the time of revision shoulder arthroplasty has higher biofilm-forming capacity and hemolytic activity than Cutibacterium recovered from the skin of normal subjects. These data add support for the view that Cutibacterium harvested from deep tissues may have clinically significant virulence characteristics. The lack of correlation between these clinically relevant phenotypes and subtypes indicates that additional study is needed to identify genotypic markers that better correlate with biofilm and hemolytic activity.


Asunto(s)
Artroplastía de Reemplazo de Hombro , Propionibacteriaceae , Biopelículas , Hemólisis , Humanos , Piel
9.
J Cell Sci ; 132(10)2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31028179

RESUMEN

Mutations in the cardiac ryanodine receptor Ca2+ release channel (RyR2) can cause deadly ventricular arrhythmias and atrial fibrillation (AF). The RyR2-P2328S mutation produces catecholaminergic polymorphic ventricular tachycardia (CPVT) and AF in hearts from homozygous RyR2P2328S/P2328S (denoted RyR2S/S) mice. We have now examined P2328S RyR2 channels from RyR2S/S hearts. The activity of wild-type (WT) and P2328S RyR2 channels was similar at a cytoplasmic [Ca2+] of 1 mM, but P2328S RyR2 was significantly more active than WT at a cytoplasmic [Ca2+] of 1 µM. This was associated with a >10-fold shift in the half maximal activation concentration (AC50) for Ca2+ activation, from ∼3.5 µM Ca2+ in WT RyR2 to ∼320 nM in P2328S channels and an unexpected >1000-fold shift in the half maximal inhibitory concentration (IC50) for inactivation from ∼50 mM in WT channels to ≤7 µM in P2328S channels, which is into systolic [Ca2+] levels. Unexpectedly, the shift in Ca2+ activation was not associated with changes in sub-conductance activity, S2806 or S2814 phosphorylation or the level of FKBP12 (also known as FKBP1A) bound to the channels. The changes in channel activity seen with the P2328S mutation correlate with altered Ca2+ homeostasis in myocytes from RyR2S/S mice and the CPVT and AF phenotypes.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Arritmias Cardíacas/metabolismo , Fibrilación Atrial/metabolismo , Activación del Canal Iónico/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Arritmias Cardíacas/genética , Fibrilación Atrial/genética , Calcio/metabolismo , Citoplasma/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/genética
10.
Clin Gastroenterol Hepatol ; 19(7): 1355-1365.e4, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33010411

RESUMEN

BACKGROUND & AIMS: The prevalence and significance of digestive manifestations in coronavirus disease 2019 (COVID-19) remain uncertain. We aimed to assess the prevalence, spectrum, severity, and significance of digestive manifestations in patients hospitalized with COVID-19. METHODS: Consecutive patients hospitalized with COVID-19 were identified across a geographically diverse alliance of medical centers in North America. Data pertaining to baseline characteristics, symptomatology, laboratory assessment, imaging, and endoscopic findings from the time of symptom onset until discharge or death were abstracted manually from electronic health records to characterize the prevalence, spectrum, and severity of digestive manifestations. Regression analyses were performed to evaluate the association between digestive manifestations and severe outcomes related to COVID-19. RESULTS: A total of 1992 patients across 36 centers met eligibility criteria and were included. Overall, 53% of patients experienced at least 1 gastrointestinal symptom at any time during their illness, most commonly diarrhea (34%), nausea (27%), vomiting (16%), and abdominal pain (11%). In 74% of cases, gastrointestinal symptoms were judged to be mild. In total, 35% of patients developed an abnormal alanine aminotransferase or total bilirubin level; these were increased to less than 5 times the upper limit of normal in 77% of cases. After adjusting for potential confounders, the presence of gastrointestinal symptoms at any time (odds ratio, 0.93; 95% CI, 0.76-1.15) or liver test abnormalities on admission (odds ratio, 1.31; 95% CI, 0.80-2.12) were not associated independently with mechanical ventilation or death. CONCLUSIONS: Among patients hospitalized with COVID-19, gastrointestinal symptoms and liver test abnormalities were common, but the majority were mild and their presence was not associated with a more severe clinical course.


Asunto(s)
COVID-19 , Enfermedades Gastrointestinales/virología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , América del Norte , Adulto Joven
11.
Biochem Soc Trans ; 49(5): 1941-1961, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34643236

RESUMEN

Voltage-dependent Na+ channel activation underlies action potential generation fundamental to cellular excitability. In skeletal and cardiac muscle this triggers contraction via ryanodine-receptor (RyR)-mediated sarcoplasmic reticular (SR) Ca2+ release. We here review potential feedback actions of intracellular [Ca2+] ([Ca2+]i) on Na+ channel activity, surveying their structural, genetic and cellular and functional implications, translating these to their possible clinical importance. In addition to phosphorylation sites, both Nav1.4 and Nav1.5 possess potentially regulatory binding sites for Ca2+ and/or the Ca2+-sensor calmodulin in their inactivating III-IV linker and C-terminal domains (CTD), where mutations are associated with a range of skeletal and cardiac muscle diseases. We summarize in vitro cell-attached patch clamp studies reporting correspondingly diverse, direct and indirect, Ca2+ effects upon maximal Nav1.4 and Nav1.5 currents (Imax) and their half-maximal voltages (V1/2) characterizing channel gating, in cellular expression systems and isolated myocytes. Interventions increasing cytoplasmic [Ca2+]i down-regulated Imax leaving V1/2 constant in native loose patch clamped, wild-type murine skeletal and cardiac myocytes. They correspondingly reduced action potential upstroke rates and conduction velocities, causing pro-arrhythmic effects in intact perfused hearts. Genetically modified murine RyR2-P2328S hearts modelling catecholaminergic polymorphic ventricular tachycardia (CPVT), recapitulated clinical ventricular and atrial pro-arrhythmic phenotypes following catecholaminergic challenge. These accompanied reductions in action potential conduction velocities. The latter were reversed by flecainide at RyR-blocking concentrations specifically in RyR2-P2328S as opposed to wild-type hearts, suggesting a basis for its recent therapeutic application in CPVT. We finally explore the relevance of these mechanisms in further genetic paradigms for commoner metabolic and structural cardiac disease.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Activación del Canal Iónico , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sodio/metabolismo , Potenciales de Acción , Animales , Sitios de Unión , Modelos Animales de Enfermedad , Flecainida/uso terapéutico , Humanos , Ratones , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/tratamiento farmacológico , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Resultado del Tratamiento , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
12.
FASEB J ; 34(3): 3537-3553, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31950564

RESUMEN

Voltage-gated sodium channels comprise an ion-selective α-subunit and one or more associated ß-subunits. The ß3-subunit (encoded by the SCN3B gene) is an important physiological regulator of the heart-specific sodium channel, Nav1.5. We have previously shown that when expressed alone in HEK293F cells, the full-length ß3-subunit forms trimers in the plasma membrane. We extend this result with biochemical assays and use the proximity ligation assay (PLA) to identify oligomeric ß3-subunits, not just at the plasma membrane, but throughout the secretory pathway. We then investigate the corresponding clustering properties of the α-subunit and the effects upon these of the ß3-subunits. The oligomeric status of the Nav1.5 α-subunit in vivo, with or without the ß3-subunit, has not been previously investigated. Using super-resolution fluorescence imaging, we show that under conditions typically used in electrophysiological studies, the Nav1.5 α-subunit assembles on the plasma membrane of HEK293F cells into spatially localized clusters rather than individual and randomly dispersed molecules. Quantitative analysis indicates that the ß3-subunit is not required for this clustering but ß3 does significantly change the distribution of cluster sizes and nearest-neighbor distances between Nav1.5 α-subunits. However, when assayed by PLA, the ß3-subunit increases the number of PLA-positive signals generated by anti-(Nav1.5 α-subunit) antibodies, mainly at the plasma membrane. Since PLA can be sensitive to the orientation of proteins within a cluster, we suggest that the ß3-subunit introduces a significant change in the relative alignment of individual Nav1.5 α-subunits, but the clustering itself depends on other factors. We also show that these structural and higher-order changes induced by the ß3-subunit do not alter the degree of electrophysiological gating cooperativity between Nav1.5 α-subunits. Our data provide new insights into the role of the ß3-subunit and the supramolecular organization of sodium channels, in an important model cell system that is widely used to study Nav channel behavior.


Asunto(s)
Membrana Celular/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Subunidades de Proteína/metabolismo , Electrofisiología , Células HEK293 , Humanos , Inmunoprecipitación , Cinética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Técnicas de Placa-Clamp , Subunidades de Proteína/química , Subunidades de Proteína/genética
13.
Reprod Biomed Online ; 42(6): 1075-1085, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33820741

RESUMEN

RESEARCH QUESTION: Can artificial intelligence (AI) discriminate a blastocyst's cellular area from unedited time-lapse image files using semantic segmentation and a deep learning optimized U-Net architecture for use in selecting single blastocysts for transfer? DESIGN: This platform was retrospectively applied to time-lapse files from 101 sequentially transferred single blastocysts that were prospectively selected for transfer by their highest expansion ranking within cohorts using a 10 h expansion assay rather than standard grading. RESULTS: The AI platform provides expansion curves and raw data files to classify and compare blastocyst phenotypes within both cohorts and populations. Of 35 sequential unbiopsied single blastocyst transfers, 23 (65.7%) resulted in a live birth. Of 66 sequential single euploid blastocyst transfers, also selected for their most robust expansion, 49 (74.2%) resulted in live birth. The AI platform revealed that the averaged expansion rate was significantly (P = 0.007) greater in euploid blastocysts that resulted in live births compared with those resulting in failure to give a live birth. The platform further provides a framework to analyse fragmentation phenotypes that can test new hypotheses for developmental regulation during the preimplantation period. CONCLUSIONS: AI can be used to quantitatively describe blastocyst expansion from unedited time-lapse image files and can be used to quantitatively rank-order blastocysts for transfer. Early clinical results from such single blastocyst selection suggests that live birth rates without biopsy may be comparable to those found using single euploid blastocysts in younger, good responder patients.


Asunto(s)
Blastocisto/fisiología , Aprendizaje Profundo , Transferencia de un Solo Embrión/estadística & datos numéricos , Imagen de Lapso de Tiempo , Adulto , Femenino , Humanos , Nacimiento Vivo , Embarazo , Estudios Retrospectivos , Adulto Joven
14.
J Mol Cell Cardiol ; 139: 190-200, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31958466

RESUMEN

The SCN5A gene encodes Nav1.5, which, as the cardiac voltage-gated Na+ channel's pore-forming α subunit, is crucial for the initiation and propagation of atrial and ventricular action potentials. The arrhythmogenic propensity of inherited SCN5A mutations implicates the Na+ channel in determining cardiomyocyte excitability under normal conditions. Cytosolic kinases have long been known to alter the kinetic profile of Nav1.5 inactivation via phosphorylation of specific residues. Recent substantiation of both the role of calmodulin-dependent kinase II (CaMKII) in modulating the properties of the Nav1.5 inactivation gate and the significant rise in oxidation-dependent autonomous CaMKII activity in structural heart disease has raised the possibility of a novel pathway for acquired arrhythmias - the CaMKII-Nav1.5 relationship. The aim of this review is to: (1) outline the relationship's translation from physiological adaptation to pathological vicious circle; and (2) discuss the relative merits of each of its components as pharmacological targets.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Miocardio/metabolismo , Miocardio/patología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Animales , Arritmias Cardíacas/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Humanos , Modelos Biológicos , Terapia Molecular Dirigida , Canal de Sodio Activado por Voltaje NAV1.5/química
15.
Am J Respir Cell Mol Biol ; 63(2): 160-171, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32255665

RESUMEN

Mutations in the gene encoding BMPR2 (bone morphogenetic protein type 2 receptor) are the major cause of heritable pulmonary arterial hypertension (PAH). Point mutations in the BMPR2 ligand-binding domain involving cysteine residues (such as C118W) are causative of PAH and predicted to cause protein misfolding. Using heterologous overexpression systems, we showed previously that these mutations lead to retention of BMPR2 in the endoplasmic reticulum but are partially rescued by chemical chaperones. Here, we sought to determine whether the chemical chaperone 4-phenylbutyrate (4PBA) restores BMPR2 signaling in primary cells and in a knockin mouse harboring a C118W mutation. First, we confirmed dysfunctional BMP signaling in dermal fibroblasts isolated from a family with PAH segregating the BMPR2 C118W mutation. After BMP4 treatment, the induction of downstream signaling targets (Smad1/5, ID1 [inhibitor of DNA binding 1], and ID2) was significantly reduced in C118W mutant cells. Treatment with 4PBA significantly rescued Smad1/5, ID1, and ID2 expression. Pulmonary artery smooth muscle cells isolated from the lungs of heterozygous mice harboring the Bmpr2 C118W mutation exhibited significantly increased proliferation. In the presence of 4PBA, hyperproliferation was dramatically reduced. Furthermore, in vivo, 4PBA treatment of Bmpr2 C118W mice partially rescued Bmpr2 expression, restored downstream signaling, and improved vascular remodeling. These findings demonstrate in primary cells and in a knockin mouse that the repurposed small-molecule chemical chaperone 4PBA might be a promising precision medicine approach to treat PAH in patients with specific subtypes of BMPR2 mutation involving cysteine substitutions in the ligand-binding domain.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Cisteína/genética , Mutación/genética , Compuestos Organofosforados/farmacología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Humanos , Ratones , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Hipertensión Arterial Pulmonar/genética , Arteria Pulmonar/efectos de los fármacos , Transducción de Señal/genética , Remodelación Vascular/efectos de los fármacos , Remodelación Vascular/genética
16.
J Biol Chem ; 294(51): 19752-19763, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31659116

RESUMEN

The auxiliary ß3-subunit is an important functional regulator of the cardiac sodium channel Nav1.5, and some ß3 mutations predispose individuals to cardiac arrhythmias. The ß3-subunit uses its transmembrane α-helix and extracellular domain to bind to Nav1.5. Here, we investigated the role of an unusually located and highly conserved glutamic acid (Glu-176) within the ß3 transmembrane region and its potential for functionally synergizing with the ß3 extracellular domain (ECD). We substituted Glu-176 with lysine (E176K) in the WT ß3-subunit and in a ß3-subunit lacking the ECD. Patch-clamp experiments indicated that the E176K substitution does not affect the previously observed ß3-dependent depolarizing shift of V½ of steady-state inactivation but does attenuate the accelerated recovery from inactivation conferred by the WT ß3-subunit. Removal of the ß3-ECD abrogated both the depolarizing shift of steady-state inactivation and the accelerated recovery, irrespective of the presence or absence of the Glu-176 residue. We found that steady-state inactivation and recovery from inactivation involve movements of the S4 helices within the DIII and DIV voltage sensors in response to membrane potential changes. Voltage-clamp fluorometry revealed that the E176K substitution alters DIII voltage sensor dynamics without affecting DIV. In contrast, removal of the ECD significantly altered the dynamics of both DIII and DIV. These results imply distinct roles for the ß3-Glu-176 residue and the ß3-ECD in regulating the conformational changes of the voltage sensors that determine channel inactivation and recovery from inactivation.


Asunto(s)
Regulación de la Expresión Génica , Ácido Glutámico/química , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/genética , Animales , Humanos , Activación del Canal Iónico , Cinética , Lisina/química , Potenciales de la Membrana , Mutagénesis , Mutación , Oocitos/metabolismo , Técnicas de Placa-Clamp , Dominios Proteicos , Estructura Secundaria de Proteína , Xenopus
17.
PLoS Med ; 17(3): e1003040, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32134952

RESUMEN

BACKGROUND: Electrocardiographic QT interval prolongation is the most widely used risk marker for ventricular arrhythmia potential and thus an important component of drug cardiotoxicity assessments. Several antimalarial medicines are associated with QT interval prolongation. However, interpretation of electrocardiographic changes is confounded by the coincidence of peak antimalarial drug concentrations with recovery from malaria. We therefore reviewed all available data to characterise the effects of malaria disease and demographic factors on the QT interval in order to improve assessment of electrocardiographic changes in the treatment and prevention of malaria. METHODS AND FINDINGS: We conducted a systematic review and meta-analysis of individual patient data. We searched clinical bibliographic databases (last on August 21, 2017) for studies of the quinoline and structurally related antimalarials for malaria-related indications in human participants in which electrocardiograms were systematically recorded. Unpublished studies were identified by the World Health Organization (WHO) Evidence Review Group (ERG) on the Cardiotoxicity of Antimalarials. Risk of bias was assessed using the Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium (PROTECT) checklist for adverse drug events. Bayesian hierarchical multivariable regression with generalised additive models was used to investigate the effects of malaria and demographic factors on the pretreatment QT interval. The meta-analysis included 10,452 individuals (9,778 malaria patients, including 343 with severe disease, and 674 healthy participants) from 43 studies. 7,170 (68.6%) had fever (body temperature ≥ 37.5°C), and none developed ventricular arrhythmia after antimalarial treatment. Compared to healthy participants, patients with uncomplicated falciparum malaria had shorter QT intervals (-61.77 milliseconds; 95% credible interval [CI]: -80.71 to -42.83) and increased sensitivity of the QT interval to heart rate changes. These effects were greater in severe malaria (-110.89 milliseconds; 95% CI: -140.38 to -81.25). Body temperature was associated independently with clinically significant QT shortening of 2.80 milliseconds (95% CI: -3.17 to -2.42) per 1°C increase. Study limitations include that it was not possible to assess the effect of other factors that may affect the QT interval but are not consistently collected in malaria clinical trials. CONCLUSIONS: Adjustment for malaria and fever-recovery-related QT lengthening is necessary to avoid misattributing malaria-disease-related QT changes to antimalarial drug effects. This would improve risk assessments of antimalarial-related cardiotoxicity in clinical research and practice. Similar adjustments may be indicated for other febrile illnesses for which QT-interval-prolonging medications are important therapeutic options.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Electrocardiografía , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca , Malaria/fisiopatología , Potenciales de Acción , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antimaláricos/efectos adversos , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/diagnóstico por imagen , Arritmias Cardíacas/parasitología , Regulación de la Temperatura Corporal , Cardiotoxicidad , Niño , Preescolar , Femenino , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/parasitología , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Lactante , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Malaria/parasitología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Medición de Riesgo , Factores de Riesgo , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Adulto Joven
18.
J Cardiovasc Electrophysiol ; 31(2): 579-592, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31930579

RESUMEN

Cardiac arrhythmias constitute a major public health problem. Pharmacological intervention remains mainstay to their clinical management. This, in turn, depends upon systematic drug classification schemes relating their molecular, cellular, and systems effects to clinical indications and therapeutic actions. This approach was first pioneered in the 1960s Vaughan-Williams classification. Subsequent progress in cardiac electrophysiological understanding led to a lag between the fundamental science and its clinical translation, partly addressed by The working group of the European Society of Cardiology (1991), which, however, did not emerge with formal classifications. We here utilize the recent Revised Oxford Classification Scheme to review antiarrhythmic drug pharmacology. We survey drugs and therapeutic targets offered by the more recently characterized ion channels, transporters, receptors, intracellular Ca2+ handling, and cell signaling molecules. These are organized into their strategic roles in cardiac electrophysiological function. Following analysis of the arrhythmic process itself, we consider (a) pharmacological agents directly targeting membrane function, particularly the Na+ and K+ ion channels underlying depolarizing and repolarizing events in the cardiac action potential. (b) We also consider agents that modify autonomic activity that, in turn, affects both the membrane and (c) the Ca2+ homeostatic and excitation-contraction coupling processes linking membrane excitation to contractile activation. Finally, we consider (d) drugs acting on more upstream energetic and structural remodeling processes currently the subject of clinical trials. Such systematic correlations of drug actions and arrhythmic mechanisms at different molecular to systems levels of cardiac function will facilitate current and future antiarrhythmic therapy.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Sistema de Conducción Cardíaco/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Función Ventricular/efectos de los fármacos , Animales , Antiarrítmicos/efectos adversos , Antiarrítmicos/clasificación , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Sistema de Conducción Cardíaco/metabolismo , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Terapia Molecular Dirigida , Contracción Miocárdica/efectos de los fármacos , Resultado del Tratamiento , Remodelación Ventricular/efectos de los fármacos
19.
Muscle Nerve ; 61(1): 101-104, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31599458

RESUMEN

BACKGROUND: Ulnar neuropathy at the elbow (UNE) is the second commonest entrapment neuropathy after carpal tunnel syndrome (CTS) and yet the laterality is not well delineated. Our aim was to establish the laterality of UNE in a large cohort of patients. METHODS: All new patients with clinical and electrodiagnostic (EDX) confirmed UNE over a 13-year period were included. We used multivariate analysis to examine potential predictors of laterality, and unilateral vs bilateral UNE. RESULTS: Of 880 cases, 61% were left-sided and 39% right-sided. These proportions did not change regardless of the handedness of the patient. Patients with bilateral UNE were much more likely to be older male and have a variety of comorbidities. CONCLUSIONS: UNE appears to be present on the left 50% more often than on the right, regardless of the patient's handedness.


Asunto(s)
Codo , Lateralidad Funcional , Síndromes de Compresión Nerviosa/epidemiología , Síndromes de Compresión Nerviosa/patología , Neuropatías Cubitales/epidemiología , Neuropatías Cubitales/patología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Comorbilidad , Estudios Transversales , Electrodiagnóstico , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Factores de Riesgo , Factores Sexuales
20.
J Pathol ; 249(3): 356-367, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31257577

RESUMEN

Pulmonary arterial hypertension (PAH) is characterised by an increase in mean pulmonary arterial pressure which almost invariably leads to right heart failure and premature death. More than 70% of familial PAH and 20% of idiopathic PAH patients carry heterozygous mutations in the bone morphogenetic protein (BMP) type 2 receptor (BMPR2). However, the incomplete penetrance of BMPR2 mutations suggests that other genetic and environmental factors contribute to the disease. In the current study, we investigate the contribution of autophagy in the degradation of BMPR2 in pulmonary vascular cells. We demonstrate that endogenous BMPR2 is degraded through the lysosome in primary human pulmonary artery endothelial (PAECs) and smooth muscle cells (PASMCs): two cell types that play a key role in the pathology of the disease. By means of an elegant HaloTag system, we show that a block in lysosomal degradation leads to increased levels of BMPR2 at the plasma membrane. In addition, pharmacological or genetic manipulations of autophagy allow us to conclude that autophagy activation contributes to BMPR2 degradation. It has to be further investigated whether the role of autophagy in the degradation of BMPR2 is direct or through the modulation of the endocytic pathway. Interestingly, using an iPSC-derived endothelial cell model, our findings indicate that BMPR2 heterozygosity alone is sufficient to cause an increased autophagic flux. Besides BMPR2 heterozygosity, pro-inflammatory cytokines also contribute to an augmented autophagy in lung vascular cells. Furthermore, we demonstrate an increase in microtubule-associated protein 1 light chain 3 beta (MAP1LC3B) levels in lung sections from PAH induced in rats. Accordingly, pulmonary microvascular endothelial cells (MVECs) from end-stage idiopathic PAH patients present an elevated autophagic flux. Our findings support a model in which an increased autophagic flux in PAH patients contributes to a greater decrease in BMPR2 levels. Altogether, this study sheds light on the basic mechanisms of BMPR2 degradation and highlights a crucial role for autophagy in PAH. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Autofagia , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Células Endoteliales/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Presión Arterial , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Heterocigoto , Humanos , Mediadores de Inflamación/metabolismo , Lisosomas/metabolismo , Lisosomas/patología , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/patología , Proteolisis , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratas , Transducción de Señal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA