Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 365: 121683, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963968

RESUMEN

Ammonia recovery from wastewater has positive environmental benefits, avoiding eutrophication and reducing production energy consumption, which is one of the most effective ways to manage nutrients in wastewater. Specifically, ammonia recovery by membrane distillation has been gradually adopted due to its excellent separation properties for volatile substances. However, the global optimization of direct contact membrane distillation (DCMD) operating parameters to maximize ammonia recovery efficiency (ARE) has not been attempted. In this work, three key operating factors affecting ammonia recovery, i.e., feed ammonia concentration, feed pH, and DCMD running time, were identified from eight factors, by a two-level Plackett-Burman Design (PBD). Subsequently, Box-Behnken design (BBD) under the response surface methodology (RSM) was used to model and optimize the significant operating parameters affecting the recovery of ammonia though DCMD identified by PBD and statistically verified by analysis of variance (ANOVA). Results showed that the model had a high coefficient of determination value (R2 = 0.99), and the interaction between NH4Cl concentration and feed pH had a significant effect on ARE. The optimal operating parameters of DCMD as follows: NH4Cl concentration of 0.46 g/L, feed pH of 10.6, DCMD running time of 11.3 h, and the maximum value of ARE was 98.46%. Under the optimized conditions, ARE reached up to 98.72%, which matched the predicted value and verified the validity and reliability of the model for the optimization of ammonia recovery by DCMD process.


Asunto(s)
Amoníaco , Destilación , Aguas Residuales , Amoníaco/química , Destilación/métodos , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Modelos Teóricos , Concentración de Iones de Hidrógeno , Membranas Artificiales
2.
Molecules ; 29(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38999137

RESUMEN

The development of superlyophobic materials in liquid systems, enabling synchronous oil/water separation and dye removal from water, is highly desirable. In this study, we employed a novel superwetting array-like BiOBr nanosheets anchored on waste rock wool (RW) fibers through a simple neutralization alcoholysis method. The resulting BiOBr/RW fibers exhibited superoleophilic and superhydrophilic properties in air but demonstrated underwater superoleophobic and underoil superhydrophobic characteristics. Utilizing its dual superlyophobicity, the fiber layer demonstrated high separation efficiencies and flux velocity for oil/water mixtures by prewetting under a gravity-driven mechanism. Additionally, the novel BiOBr/RW fibers also exhibited excellent dual superlyophobicity and effective separation for immiscible oil/oil systems. Furthermore, the BiOBr/RW fibers could serve as a filter to continuously separate oil/water mixtures with high flux velocity and removal rates (>93.9%) for water-soluble dye rhodamine B (RhB) simultaneously by directly activating peroxymonosulfate (PMS) in cyclic experiments. More importantly, the mechanism of simultaneous oil/water separation and RhB degradation was proposed based on the reactive oxygen species (ROS) quenching experiments and electron paramagnetic resonance (EPR) analysis. Considering the simple modified process and the waste RW as raw material, this work may open up innovative, economical, and environmentally friendly avenues for the effective treatment of wastewater contaminated with oil and water-soluble pollutants.

3.
Inorg Chem ; 62(36): 14804-14814, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37644618

RESUMEN

Artificial photosynthesis from selective methane oxidation or nitrogen reduction to value-added chemicals provides a promising pathway for the sustainable chemical industry, while still remaining a great challenge due to the extreme difficulty in C-H and N≡N bond cleavage under ambient conditions. Catalysts that can cocatalyze these two reactions simultaneously are rarely reported. Here, Fe-ZSM-5 with highly dispersed extra-framework Fe-oxo species enables efficient and selective photocatalytic conversion of methane and nitrogen to coproduce methanol and ammonia using H2O as the redox reagent under ambient conditions. The optimized Fe-ZSM-5 photocatalyst achieves up to 0.88 mol/molFe·h of methanol products with 97% selectivity. Meanwhile, the productivity of ammonia is 0.61 mol/molFe·h. In situ EPR and DRIFT studies disclose that water serves as a redox reagent to provide hydroxyl radicals for methane oxidation and protons for nitrogen hydrogenation. Quantum chemical calculations revealed that Fe-oxo species play a significant role in the coactivation of methane and nitrogen molecules, which lowers the energy barriers of rate-determining steps for methanol and ammonia generation.

4.
Environ Sci Technol ; 56(12): 8920-8931, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35438974

RESUMEN

Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial inactivation and biofilm disruption. Specifically, low-intensity plasma treatment (i.e., 35.20 W) elevated the intracellular oxidative reactive species (ROS) levels by 184%, resulting in the activation of prophage lambda (λ) within antibiotic-resistant Escherichia coli K-12 (lambda+) [E. coli (λ+)]. The phage activation efficiency was 6.50-fold higher than the conventional mitomycin C induction. Following a cascading effect, the activated phages were released upon the lysis of E. coli (λ+), which propagated further and lysed phage-susceptible E. coli K-12 (lambda-) [E. coli (λ-)] within the biofilm. Bacterial intracellular ROS analysis and ROS scavenger tests revealed the importance of plasma-generated ROS (e.g., •OH, 1O2, and •O2-) and associated intracellular oxidative stress on prophage activation. In a mixed-species biofilm on a permeable membrane surface, our "inside-out" strategy could inactivate total bacteria by 49% and increase the membrane flux by 4.33-fold. Furthermore, the metagenomic analysis revealed that the decrease in bacterial abundance was closely associated with the increase in phage levels. As a proof-of-concept, this is the first demonstration of indigenous prophage activations by low-intensity plasma for antibiotic-resistant bacterial inactivation and biofilm eradication, which opens up a new avenue for managing associated microbial problems.


Asunto(s)
Bacteriófagos , Escherichia coli K12 , Gases em Plasma , Antibacterianos/farmacología , Bacterias , Biopelículas , Escherichia coli , Gases em Plasma/farmacología , Profagos/fisiología , Especies Reactivas de Oxígeno
5.
Environ Res ; 204(Pt A): 111892, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34464614

RESUMEN

Membrane distillation (MD) is considered as a promising and attractive technology due to its effective production of fresh water. However, the low permeability and easy wetting of MD membranes limit its practical applications. Herein carbon nanotubes (CNTs) and polyvinylidene fluoride-co-hexafluoropropylene (PcH) were used to fabricate nanofiber membranes by electrospinning. Effects of heat-press temperature and CNTs concentration on the morphology and performance of the as-fabricated membranes were systematically investigated. Dye rejections of CNTs/PcH membranes were also studied and role of CNTs played in the as-prepared MD membranes were analyzed. Results suggest that heat-press treatment effectively improved the mechanical strength as well as liquid entry pressure of membranes, and the optimal heat-press temperature was 150 °C. CNTs were proved to be successfully blended in nanofibers. Hydrophobicity and mechanical strength of membranes increased with CNTs incorporation. The 0.5 wt % CNTs loaded membrane heat-pressed at 150 °C exhibited the highest permeate flux (16.5-18.5 L m-2 h-1), which signified an increase of 42-50 % compared to the commercial MD membrane (11-13 L m-2 h-1) when 35 and 70 g L-1 NaCl solutions were used as feed solutions, respectively. It was noteworthy that salt rejection efficiencies of tested membranes achieved more than 99.99 %. When CNTs/PcH nanofiber membrane was applied to the treatment of dyeing wastewater, the removal rates of acid red and acid yellow reached 100 %. The removal rates of methylene blue and crystal violet were 99.41 % and 99.91 %, respectively. The present study suggested that the as-prepared membranes showed high potential towards MD application.


Asunto(s)
Nanotubos de Carbono , Purificación del Agua , Colorantes , Destilación , Membranas Artificiales , Tecnología
6.
Environ Res ; 195: 110791, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33539834

RESUMEN

Cu2+, tetracycline (TC), and corresponding tetracycline resistance genes (TRGs) are common micropollutants in aquaculture wastewater, which have great impact on environment and human health. In this study, we developed a thin-film nanocomposite (TFN) forward osmosis (FO) membrane with an electrospinning thermoplastic polyurethane/polysulfone (PSF/TPU) substrate and a UiO-66-NH2 particle interlayer modified active layer. The effects of Cu2+ concentration on the synergetic removal of TC and TRGs (e.g., tetA/M/X/O/C, int1, and 16 S rRNA gene) were analyzed to determine the role of Cu2+ in FO process. The rejection mechanism was also analyzed in depth. Results demonstrated that the rejection of TC and Cu2+ was 99.53% and 97.99%. The rejection of TRGs exceeded 90% (specifically, over 99% for tetC) at a Cu2+ concentration of 500 µg/L when 0.5 M (NH4)2HPO4 was used as draw solution. Complexation reaction between Cu2+ and TC, electrostatic interaction, and the adsorption of Cu2+ on membrane surface were the main contributing factors for the high rejection efficiencies. Altogether, the as-prepared FO membrane holds great potential for simultaneously removing heavy metals, antibiotics, and resistance genes in real wastewater.


Asunto(s)
Resistencia a la Tetraciclina , Purificación del Agua , Antibacterianos , Ósmosis , Tetraciclina , Resistencia a la Tetraciclina/genética , Aguas Residuales
7.
Environ Sci Technol ; 54(9): 5913-5921, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32271550

RESUMEN

Gold (Au) has been considered catalytically inert for decades, but recent reports have described the ability of Au nanoparticles to catalyze H2O2 decomposition in the Haber-Weiss cycle. Herein, the design and demonstration of a flow-through electro-Fenton system based on an electrochemical carbon nanotube (CNT) filter functionalized with atomically precise Au nanoclusters (AuNCs) is described. The functionality of the device was then tested for its ability to catalyze antibiotic tetracycline degradation. In the functional filters, the Au core of AuNCs served as a high-performance Fenton catalyst; while the AuNCs ligand shells enabled CNT dispersion in aqueous solution for easy processing. The hybrid filter enabled in situ H2O2 production and catalyzed the subsequent H2O2 decomposition to HO·. The catalytic function of AuNCs lies in their ability to undergo redox cycling of Au+/Au0 under an electric field. The atomically precise AuNCs catalysts demonstrated superior catalytic activity to larger nanoparticles; while the flow-through design provided convection-enhanced mass transport, which yielded a superior performance compared to a conventional batch reactor. The adsorption behavior and decomposition pathway of H2O2 on the filter surfaces were simulated by density functional theory calculations. The research outcomes provided atomic-level mechanistic insights into the Au-mediated Fenton reaction.


Asunto(s)
Oro , Nanopartículas del Metal , Catálisis , Peróxido de Hidrógeno , Oxidación-Reducción
8.
J Sci Food Agric ; 100(13): 4696-4704, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32458471

RESUMEN

BACKGROUND: Financial loss and health risk caused by the substitution of rainbow trout for other salmonid species have become a common issue around the world. The situation could be further exacerbated in China by the 'abused' common name of San Wen Yu (the corresponding Chinese ideogram ) for salmonids, considering the absence of a standardized naming system for seafood species. To prevent such episodes, the present study aimed to develop novel loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR) assays targeting the mitochondrial cytochrome b gene for rapid identification of rainbow trout in processed fish products. RESULTS: Rainbow trout-specific primers (LAMP and PCR) were designed, and the specificity against 23 different fish species was confirmed. The minimum amount of detectable DNA for LAMP assay reached 500 pg, up to 10-fold less than for PCR assay. In addition to agarose gel electrophoresis, naked-eye inspection of the LAMP-positive samples using SYBR Green I under daylight or ultraviolet light was also validated. Finally, commercial San Wen Yu products made from rainbow trout could be accurately identified using the newly developed LAMP and PCR assays, further cross-confirmed by mini DNA barcoding and neighbor-joining dendrograms. CONCLUSIONS: The LAMP and PCR assays established in the study allow a fast and accurate identification of rainbow trout in processed fish products. © 2020 Society of Chemical Industry.


Asunto(s)
Productos Pesqueros/análisis , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Oncorhynchus mykiss/genética , Reacción en Cadena de la Polimerasa/métodos , Animales , China , ADN/genética , Cartilla de ADN/genética , Análisis Discriminante , Peces/genética , Contaminación de Alimentos/análisis
9.
Photochem Photobiol Sci ; 15(5): 666-72, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27105324

RESUMEN

A BiOI/BiOBr composite was successfully fabricated by a simple hydrothermal method. The composite was characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The BiOI/BiOBr composite exhibited enhanced photocatalytic bacteriostatic activity towards E. coli compared to the pure BiOI or BiOBr under visible light irradiation. The enhanced photocatalytic performance can be attributed to the improved separation efficiency of the photogenerated holes because of its heterojunction structure. In addition, the possible bacteriostatic mechanism of the BiOI/BiOBr composite under visible light irradiation is discussed. The hierarchical microsphere BiOI/BiOBr showed enhanced photocatalytic bacteriostasis towards Escherichia coli under visible light.


Asunto(s)
Antibacterianos/farmacología , Bismuto/farmacología , Agua Potable/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de la radiación , Purificación del Agua/métodos , Antibacterianos/química , Bismuto/química , Catálisis , Desinfección/métodos , Infecciones por Escherichia coli/microbiología , Humanos , Luz , Microesferas
10.
Molecules ; 21(5)2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27213318

RESUMEN

A series of BiOBr/BiOI photocatalysts supported on fly-ash cenospheres (FACs) were successfully prepared via a facile one-pot alcoholysis method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectrometer (XPS) and UV-visible diffuse reflectance spectroscopy (DRS). The results indicate that pH value plays a critical role in BiOBr/BiOI loading. Based on the photodegradation tests under visible light irradiation (blue LED irradiation), the photocatalytic property of BiOBr/BiOI/FACs photocatalysts obtained under alkaline conditions is superior to that prepared under neutral or acidic conditions, and higher than those of BiOB/FACs and BiOI//FACs. The improved photocatalytic performance of BiOBr/BiOI/FACs can be attributed to more BiOBr/BiOI loaded on the surface of FACs and the efficient photogenerated electron-hole separation.


Asunto(s)
Bismuto/química , Ceniza del Carbón/química , Catálisis , Microscopía Electrónica de Rastreo , Procesos Fotoquímicos , Espectroscopía de Fotoelectrones
11.
Artículo en Inglés | MEDLINE | ID: mdl-25901851

RESUMEN

Response surface methodology (RSM) was used to optimize the operating conditions of an anaerobic-anoxic-oxic (A(2)/O) process by maximizing the removal efficiency of tetracycline (TC). Solid retention time (SRT), hydraulic retention time (HRT) and initial TC concentration (CTC, in) were selected as independent variables for incorporation in the Box-Behnken design. The results showed SRT and CTC, in were more significant parameters than HRT for the removal efficiency of TC. TC could be completely removed under the optimal conditions of an SRT of 15.5 days, an HRT of 9.9 h and a CTC, in of 283.3 µg L(-1). TC removal efficiencies of 99% and 96% were attained for synthetic and real wastewater, respectively, under the optimal conditions. This indicated the constructed model was validated and reliable for optimizing the A(2)/O process for TC removal.


Asunto(s)
Antibacterianos/química , Tetraciclina/análisis , Tetraciclina/química , Aguas Residuales/química , Contaminantes del Agua/química , Purificación del Agua/métodos , Antibacterianos/análisis , Biodegradación Ambiental , Modelos Químicos , Aguas Residuales/análisis , Contaminantes del Agua/análisis
12.
Artículo en Inglés | MEDLINE | ID: mdl-24766595

RESUMEN

The reactor performance and microbial community composition of sequencing batch reactor (SBR) under aerobic and anoxic conditions were investigated in this study. The experimental results showed high chemical oxygen demand (COD) removal efficiency. The tetracycline (TC) removal efficiencies were not obviously affected by aerobic and anoxic conditions, and were 64-97 and 60-87%, respectively. Aerobic condition was observed to be more suitable for decreasing tetracycline-resistant bacteria (TRB) than anoxic condition in synthetic and real wastewater. Denaturing gradient gel electrophoresis (DGGE) and clone library analysis revealed that Chlorobaculumthiosulfatiphilum was the dominant species in the tested SBR systems. TC significantly influenced the relative numbers of TRB- and TC-resistant genes, and the microbial community diversity changed with the addition of 250 µg L(-1) of TC. The genes of tetA and tetC, tetM and tetS, tetA and tetM, tetS and tetA showed significant correlation with each other (P < 0.05).


Asunto(s)
Antibacterianos/metabolismo , Bacterias/metabolismo , Tetraciclina/metabolismo , Aerobiosis , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Reactores Biológicos/microbiología , Electroforesis en Gel de Gradiente Desnaturalizante , Farmacorresistencia Bacteriana , Tetraciclina/farmacología , Eliminación de Residuos Líquidos/métodos
13.
J Hazard Mater ; 463: 132868, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-37944231

RESUMEN

Peracetic acid (PAA) disinfection is an emerging wastewater disinfection process. Its advantages include excellent pathogen inactivation performance and little generation of toxic and harmful disinfection byproducts. The objective of this review is to comprehensively analyze the experimental data and scientific information related to PAA-based disinfection processes. Kinetic models and modeling frameworks are discussed to provide effective tools to assess pathogen inactivation efficacy. Then, the efficacy of PAA-based disinfection processes for pathogen inactivation is summarized, and the inactivation mechanisms involved in disinfection and the interactions of PAA with conventional disinfection processes are elaborated. Subsequently, the risk of pathogen regrowth after PAA-based disinfection process is clearly discussed. Finally, to address ecological risks related to PAA-based disinfection, its impact on the spread of antibiotic-resistant bacteria and the transfer of antibiotic resistance genes (ARGs) is also assessed. Among advanced PAA-based disinfection processes, ultraviolet/PAA is promising not only because it has practical application value but also because pathogen regrowth can be inhibited and ARGs transfer risk can be significantly reduced via this process. This review presents valuable and comprehensive information to provide an in-depth understanding of PAA as an alternative wastewater disinfection technology.


Asunto(s)
Desinfectantes , Purificación del Agua , Ácido Peracético/farmacología , Desinfección , Aguas Residuales , Bacterias/genética , Antibacterianos , Desinfectantes/farmacología
14.
Sci Total Environ ; 948: 175000, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053539

RESUMEN

It is well known that microplastics can act as vectors of pollutants in the environment and are widely spread in freshwater and marine environments. PFAS (perfluoroalkyl and polyfluoroalkyl substances) can remain in the aqueous environment for long periods due to their wide application and good stability. The coexistence of microplastics and PFAS in the aqueous environment creates conditions for their interaction and combined toxicity. Studies on adsorption experiments between them and combined toxicity have been documented in the literature but have not been critically summarized and reviewed. Therefore, in this review, we focused on the interaction mechanisms, influencing factors, and combined toxicity between microplastics and PFAS. It was found that surface complexation may be a new interaction mechanism between microplastics and PFAS. In addition, aged microplastics reduce the adsorption of PFAS due to the presence of oxygenated groups on the surface compared to virgin microplastics. Attached biofilms can increase the adsorption capacity and create conditions for biodegradation. And, the interaction of microplastics and PFAS affects their spatial and temporal distribution in the environment. This review can provide insights into the fate of microplastics and PFAS in the global aquatic environment, fill knowledge gaps on the interactions between microplastics and PFAS, and provide a basic reference for assessing their combined toxicity.

15.
Chemosphere ; 363: 142850, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032728

RESUMEN

This study investigated the combined effects of rockwool, a novel seedling substrate, and tricyclazole (TCA) on the bioavailability of TCA to Eisenia fetida. The single addition of rockwool and TCA alone to the soil inhibited the growth of E. fetida. A high concentration (300 mg·L-1) of TCA significantly decreased the biomass of E. fetida. The addition of 20-mesh rockwool reduced this effect on earthworm biomass by decreasing the soil TCA through adsorption, effectively mitigating TCA bioaccumulation in earthworms. A mechanistic analysis showed that the Mg-O functional group on the rockwool surface combined with the CC functional group in TCA to generate Mg-O-C, and the adsorption process was dominated by chemisorption. Toxicology experiments demonstrated that malondialdehyde and cellulase could be used as biomarkers of inhibitory effects of combined rockwool and TCA in soil on E. fetida. Macrogenomic analyses revealed that small particle sizes and high concentrations of rockwool caused co-stress effects on earthworms when TCA was present. When the particle size of rockwool increased, the toxic effect of TCA on earthworms instead decreased at higher rockwool concentrations. Therefore, in practical agricultural production, the particle size of rockwool can be controlled to realize the adsorption of TCA and reduce the toxic effects of TCA and rockwool on earthworms.

16.
Bioresour Technol ; 395: 130378, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281546

RESUMEN

A novel manganese cobalt metal-organic framework based carbon nanofiber electrode (MnCo/CNF) was prepared and used as microbial fuel cell (MFC) anode. Pyrite was introduced into the anode chamber (MnCoPy_MFC). Synergistic function between pyrite and MnCo/CNF facilitated the pollutants removal and energy generation in MnCoPy_MFC. MnCoPy_MFC showed the highest chemical oxygen demand removal efficiency (82 ± 1%) and the highest coulombic efficiency (35 ± 1%). MnCoPy_MFC achieved both efficient electricity generation (maximum voltage: 658 mV; maximum power density: 3.2 W/m3) and total antimony (Sb) removal efficiency (99%). The application of MnCo/CNF significantly enhanced the biocatalytic efficiency of MnCoPy_MFC, attributed to its large surface area and abundant porous structure that provided ample attachment sites for electroactive microorganisms. This study revealed the synergistic interaction between pyrite and MnCo/CNF anode, which provided a new strategy for the application of composite anode MFC in heavy metal removal and energy recovery.


Asunto(s)
Fuentes de Energía Bioeléctrica , Hierro , Nanofibras , Compuestos de Nitrosourea , Sulfuros , Carbono , Manganeso , Antimonio , Cobalto , Fuentes de Energía Bioeléctrica/microbiología , Electricidad , Electrodos , Bacterias/química
17.
Sci Total Environ ; 927: 172113, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580110

RESUMEN

Antimony (Sb) and sulfate are two common pollutants in Sb mine drainage and Sb-containing textile wastewater. In this paper, it was found that iron­carbon (Fe/C) enhanced Sb(V) removal from sulfate-rich wastewater by anaerobic granular sludge (AnGS). Sulfate inhibited Sb(V) removal (S + Sb, k = 0.101), while Fe/C alleviated the inhibition and increased Sb(V) removal rate by 2.3 times (Fe/C + S + Sb, k = 0.236). Fe/C could promote the removal of Sb(III), and Sb(III) content decreased significantly after 8 h. Meanwhile, Fe/C enhanced the removal of sulfate. The 3D-EEM spectrum of supernatant in Fe/C + S + Sb group (at 24 h) showed that Fe/C stimulated the production of soluble microbial products (SMP) in wastewater. SMP alleviated the inhibition of sulfate, promoting AnGS to reduce Sb(V). Sb(V) could be reduced to Sb(III) both by AnGS and sulfides produced from sulfate reduction. Further analysis of extracellular polymeric substances (EPS) and AnGS showed that Fe/C increased the adsorbed Sb(V) in EPS and the c-type cytochrome content in AnGS, which may be beneficial for Sb(V) removal. Sb(V) reduction in Fe/C + S + Sb group may be related to the genus Acinetobacter, while in Sb group, several bacteria may be involved in Sb(V) reduction, such as Acinetobacter, Pseudomonas and Corynebacterium. This study provided insights into Fe/C-enhanced Sb(V) removal from sulfate-rich wastewater.


Asunto(s)
Antimonio , Hierro , Aguas del Alcantarillado , Sulfatos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Antimonio/análisis , Anaerobiosis , Carbono
18.
Chemosphere ; 333: 138983, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37207899

RESUMEN

Forward osmosis (FO) technology is regarded as an alternative to wastewater treatment due to its high permeate flux, excellent solute selectivity and low fouling tendency. In this study, two novel aquaporin based biomimetic membranes (ABMs) were used for comparison in short-term experiments to investigate the impact of membrane surface properties on greywater treatment. The impact of feed solution (FS) temperature on the filtration performance and membrane fouling behavior of ABM was further analyzed in the sequential batch experiments. Results indicated that the membranes with rough surface morphology and low zeta potential (absolute value) facilitated the adsorption of linear alklybezene sulfonates (LAS), thus improving the water flux and the rejection of Ca2+ and Mg2+. The increase in FS temperature enhanced the diffusion of organic matter and the water flux. In addition, sequential batch experiments showed that the membrane fouling layer was mainly in the form of organic and inorganic composite fouling, which was mitigated at FS temperature of 40 °C. Microbial community analysis revealed that the increase in FS temperature affected the diversity of microbial communities. More heterotrophic nitrifying bacteria were enriched in the fouling layer at FS 40 °C than at FS 20 °C. This study provides a novel strategy for employing ABM FO in greywater treatment and reuse.


Asunto(s)
Biomimética , Purificación del Agua , Membranas Artificiales , Ósmosis , Purificación del Agua/métodos , Agua
19.
Environ Sci Pollut Res Int ; 30(40): 92495-92506, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37491487

RESUMEN

Reverse osmosis (RO) alone has low water recovery efficiency because of membrane fouling and limited operating pressure. In this study, a combined reverse osmosis-forward osmosis (RO-FO) process was used for the first time to improve the water recovery efficiency of secondary effluent in printing and dyeing wastewater. The effects of operating pressure and pH on water recovery and removal efficiency of RO-FO were investigated. The results showed that the optimum conditions were an operating pressure of 1.5 MPa and a feed solution pH of 9.0. Under optimal operating conditions, most of the organic and inorganic substances in the wastewater can be removed, and the rejection of total organic carbon (TOC), Sb, Ca, and K were 98.7, 99.3, 97.0, and 92.7%, respectively. Fluorescence excitation-emission matrices coupled with parallel factor (EEM-PARAFAC) analysis indicated that two components (tryptophan and tyrosine) in the influent were effectively rejected by the hybrid process. The maximum water recovery (Rw, max) could reach 95%, which was higher than the current single RO process (75%). This research provided a feasible strategy to effectively recover water from printing and dyeing wastewater.


Asunto(s)
Aguas Residuales , Purificación del Agua , Agua , Colorantes , Ósmosis , Purificación del Agua/métodos , Membranas Artificiales , Impresión Tridimensional
20.
Chemosphere ; 332: 138889, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37164193

RESUMEN

Numerous studies have demonstrated that electrokinetic-permeable reactive barrier (EK-PRB) can be used for the remediation of heavy metal contaminated soils, and their remediation efficiency is mainly determined by the filler material selected. By growing MIL-101(Fe) in situ on hollow loofah fiber (HLF), a novel material entitled HLF@MIL-101(Fe) was developed. The morphological characteristics and loading conditions were investigated, the adsorption characteristics were analyzed, and finally the synthesized composite material was applied to treat antimony-contaminated soil with EK-PRB as the reaction medium. The results show that MIL-101(Fe) is stably loaded on HLF. The adsorption capacity of Sb(III) can reach up to 82.31 mg g-1, and the adsorption is in accordance with the quasi-secondary kinetic model, which indicates that chemisorption is dominant. The isothermal adsorption model indicates that the adsorption form of HLF@MIL-101(Fe) is mainly monolayer adsorption with more uniform adsorption binding energy. In the EK-PRB experiment, when ethylenediaminetetraacetic acid (EDTA) is used as the cathodic electrolyte, it can effectively enhance the electromigration and electroosmotic effects, and the overall remediation efficiency of the soil is increased by 38.12% compared with the citric acid (CA) group. These demonstrate the feasibility of HLF@MIL-101(Fe) in collaboration with EK-PRB in the treatment of antimony-contaminated soil.


Asunto(s)
Restauración y Remediación Ambiental , Contaminantes del Suelo , Antimonio , Biomasa , Electroquímica/métodos , Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA