Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Immunity ; 54(9): 2117-2132.e7, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525340

RESUMEN

The nature of the anti-tumor immune response changes as primary tumors progress and metastasize. We investigated the role of resident memory (Trm) and circulating memory (Tcirm) cells in anti-tumor responses at metastatic locations using a mouse model of melanoma-associated vitiligo. We found that the transcriptional characteristics of tumor-specific CD8+ T cells were defined by the tissue of occupancy. Parabiosis revealed that tumor-specific Trm and Tcirm compartments persisted throughout visceral organs, but Trm cells dominated lymph nodes (LNs). Single-cell RNA-sequencing profiles of Trm cells in LN and skin were distinct, and T cell clonotypes that occupied both tissues were overwhelmingly maintained as Trm in LNs. Whereas Tcirm cells prevented melanoma growth in the lungs, Trm afforded long-lived protection against melanoma seeding in LNs. Expanded Trm populations were also present in melanoma-involved LNs from patients, and their transcriptional signature predicted better survival. Thus, tumor-specific Trm cells persist in LNs, restricting metastatic cancer.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Ganglios Linfáticos/inmunología , Melanoma Experimental/inmunología , Melanoma/inmunología , Neoplasias Cutáneas/inmunología , Animales , Humanos , Ratones , Vitíligo , Melanoma Cutáneo Maligno
2.
Trends Immunol ; 42(12): 1057-1059, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772619

RESUMEN

Di Pilato et al. demonstrate that CXCR6 positions TCF-1- transitory CD8+ cytotoxic lymphocytes (CTLs) with perivascular CCR7+ dendritic cells (DCs) within the tumor stroma to receive IL-15 survival signals. The requirement for CXCR6 and its strong prediction of overall patient survival highlight the importance of continued CTL-DC interactions in sustaining tumor immunity.


Asunto(s)
Neoplasias , Linfocitos T Citotóxicos , Linfocitos T CD8-positivos , Células Dendríticas , Humanos , Neoplasias/terapia , Transducción de Señal
3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34507993

RESUMEN

Interleukin 6 (IL-6) is known to regulate the CD4 T cell function by inducing gene expression of a number of cytokines through activation of Stat3 transcription factor. Here, we reveal that IL-6 strengthens the mechanics of CD4 T cells. The presence of IL-6 during activation of mouse and human CD4 T cells enhances their motility (random walk and exploratory spread), resulting in an increase in travel distance and higher velocity. This is an intrinsic effect of IL-6 on CD4 T-cell fitness that involves an increase in mitochondrial Ca2+ Although Stat3 transcriptional activity is dispensable for this process, IL-6 uses mitochondrial Stat3 to enhance mitochondrial Ca2+-mediated motility of CD4 T cells. Thus, through a noncanonical pathway, IL-6 can improve competitive fitness of CD4 T cells by facilitating cell motility. These results could lead to alternative therapeutic strategies for inflammatory diseases in which IL-6 plays a pathogenic role.


Asunto(s)
Movimiento Celular/fisiología , Interleucina-6/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Linfocitos T CD4-Positivos/metabolismo , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Citocinas/metabolismo , Femenino , Activación de Linfocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Factor de Transcripción STAT3/fisiología , Transducción de Señal/efectos de los fármacos
4.
J Immunol ; 206(1): 89-100, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33229443

RESUMEN

Foxo1 is an essential transcription factor required for the survival and differentiation of memory CD8 T cells, yet it is unclear whether these Foxo1-dependent functions are inherently coupled. To address this question, we examined the effects of different Foxo1 posttranslational modifications. Phosphorylation of Foxo1 by Akt kinases at three distinct residues is well characterized to inhibit Foxo1 transcriptional activity. However, the effect of Foxo1 phosphorylation within its DNA-binding domain at serine 209 by Mst1 kinase is not fully understood. In this study, we show that an S209A phospho-null Foxo1 exhibited Akt-dependent nuclear trafficking in mouse CD8 T cells and augmented the expression of canonical Foxo1 target genes such as Il7r and Sell In contrast, an S209D phosphomimetic Foxo1 (SD-Foxo1) was largely excluded from the nucleus of CD8 T cells and failed to transactivate these genes. RNA sequencing analysis revealed that SD-Foxo1 was associated with a distinct Foxo1-dependent transcriptional profile, including genes mediating CD8 effector function and cell survival. Despite defective transactivation of canonical target genes, SD-Foxo1 promoted IL-15-mediated CD8 T cell survival in vitro and survival of short-lived effector cells in vivo in response to Listeria monocytogenes infection. However, SD-Foxo1 actively repressed CD127 expression and failed to generate memory precursors and long-lived memory T cells. Together, these data indicate that S209 is a critical residue for the regulation of Foxo1 subcellular localization and for balancing CD8 T cell differentiation and survival.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Proteína Forkhead Box O1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Sitios de Unión/genética , Biomimética , Diferenciación Celular , Supervivencia Celular , Proteína Forkhead Box O1/genética , Redes Reguladoras de Genes , Células HEK293 , Humanos , Memoria Inmunológica , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Transgénicos , Mutación/genética , Fosforilación , Unión Proteica , Serina/genética
5.
Cancer Immunol Immunother ; 71(1): 165-176, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34046711

RESUMEN

B7H6, a stress-induced ligand which binds to the NK cell receptor NKp30, has recently emerged as a promising candidate for immunotherapy due to its tumor-specific expression on a broad array of human tumors. NKp30 can function as a chimeric antigen receptor (CAR) extracellular domain but exhibits weak binding with a fast on and off rate to B7H6 compared to the TZ47 anti-B7H6 single-chain variable fragment (scFv). Here, directed evolution using yeast display was employed to isolate novel NKp30 variants that bind to B7H6 with higher affinity compared to the native receptor but retain its fast association and dissociation profile. Two variants, CC3 and CC5, were selected for further characterization and were expressed as soluble Fc-fusion proteins and CARs containing CD28 and CD3ς intracellular domains. We observed that Fc-fusion protein forms of NKp30 and its variants were better able to bind tumor cells expressing low levels of B7H6 than TZ47, and that the novel variants generally exhibited improved in vitro tumor cell killing relative to NKp30. Interestingly, CAR T cells expressing the engineered variants produced unique cytokine signatures in response to multiple tumor types expressing B7H6 compared to both NKp30 and TZ47. These findings suggest that natural CAR receptors can be fine-tuned to produce more desirable signaling outputs while maintaining evolutionary advantages in ligand recognition relative to scFvs.


Asunto(s)
Antígenos B7/química , Receptor 3 Gatillante de la Citotoxidad Natural/química , Receptores Quiméricos de Antígenos/química , Animales , Antígenos CD28/química , Complejo CD3/química , Línea Celular Tumoral , Separación Celular , Citocinas/metabolismo , Citometría de Flujo , Perfilación de la Expresión Génica , Biblioteca de Genes , Variación Genética , Células HEK293 , Humanos , Inmunoterapia , Cinética , Ligandos , Ratones , Mutación , Conformación Proteica , Anticuerpos de Cadena Única/química
6.
J Immunol ; 205(12): 3372-3382, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33188072

RESUMEN

Persistent infection with gammaherpesviruses (γHV) can cause lymphomagenesis in immunocompromised patients. Murine γHV-68 (MHV-68) is an important tool for understanding immune factors contributing to γHV control; however, modeling control of γHV-associated lymphomagenesis has been challenging. Current model systems require very long incubation times or severe immune suppression, and tumor penetrance is low. In this report, we describe the generation of a B cell lymphoma on the C57BL/6 background, which is driven by the Myc oncogene and expresses an immunodominant CD8 T cell epitope from MHV-68. We determined MHV-68-specific CD8 T cells in latently infected mice use either IFN-γ or perforin/granzyme to control γHV-associated lymphoma, but perforin/granzyme is a more potent effector mechanism for lymphoma control than IFN-γ. Consistent with previous reports, CD4-depleted mice lost control of virus replication in persistently infected mice. However, control of lymphoma remained intact in the absence of CD4 T cells. Collectively, these data show the mechanisms of T cell control of B cell lymphoma in γHV-infected mice overlap with those necessary for control of virus replication, but there are also important differences. This study establishes a tool for further dissecting immune surveillance against, and optimizing adoptive T cell therapies for, γHV-associated lymphomas.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Memoria Inmunológica , Linfoma de Células B/inmunología , Virus de la Hepatitis Murina/inmunología , Proteínas de Neoplasias/inmunología , Animales , Epítopos de Linfocito T/genética , Femenino , Linfoma de Células B/genética , Linfoma de Células B/patología , Ratones , Ratones Transgénicos , Virus de la Hepatitis Murina/genética , Proteínas de Neoplasias/genética
7.
Nat Immunol ; 10(8): 848-56, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19597499

RESUMEN

Themis (thymocyte-expressed molecule involved in selection), a member of a family of proteins with unknown functions, is highly conserved among vertebrates. Here we found that Themis had high expression in thymocytes between the pre-T cell antigen receptor (pre-TCR) and positive-selection checkpoints and low expression in mature T cells. Themis-deficient thymocytes showed defective positive selection, which resulted in fewer mature thymocytes. Negative selection was also impaired in Themis-deficient mice. A greater percentage of Themis-deficient T cells had CD4(+)CD25(+)Foxp3(+) regulatory and CD62L(lo)CD44(hi) memory phenotypes than did wild-type T cells. In support of the idea that Themis is involved in TCR signaling, this protein was phosphorylated quickly after TCR stimulation and was needed for optimal TCR-driven calcium mobilization and activation of the kinase Erk.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Supervivencia Celular/fisiología , Células Cultivadas , Clonación Molecular , Femenino , Citometría de Flujo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Proteínas/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/fisiología
8.
J Immunol ; 199(11): 3849-3857, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29070673

RESUMEN

This study identifies a novel mechanism linking IL-17A with colon tissue repair and tumor development. Abrogation of IL-17A signaling in mice attenuated tissue repair of dextran sulfate sodium (DSS)-induced damage in colon epithelium and markedly reduced tumor development in an azoxymethane/DSS model of colitis-associated cancer. A novel IL-17A target gene, PLET1 (a progenitor cell marker involved in wound healing), was highly induced in DSS-treated colon tissues and tumors in an IL-17RC-dependent manner. PLET1 expression was induced in LGR5+ colon epithelial cells after DSS treatment. LGR5+PLET1+ marks a highly proliferative cell population with enhanced expression of IL-17A target genes. PLET1 deficiency impaired tissue repair of DSS-induced damage in colon epithelium and reduced tumor formation in an azoxymethane/DSS model of colitis-associated cancer. Our results suggest that IL-17A-induced PLET1 expression contributes to tissue repair and colon tumorigenesis.


Asunto(s)
Colitis/inmunología , Colon/metabolismo , Neoplasias del Colon/inmunología , Células Epiteliales/inmunología , Interleucina-17/metabolismo , Proteínas Gestacionales/metabolismo , Animales , Azoximetano , Carcinogénesis , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Colitis/inducido químicamente , Colon/patología , Neoplasias del Colon/inducido químicamente , Sulfato de Dextran , Regulación Neoplásica de la Expresión Génica , Interleucina-17/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Gestacionales/genética , Receptores de Interleucina/genética , Cicatrización de Heridas
9.
J Immunol ; 197(5): 1683-91, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27465533

RESUMEN

Exploring the mechanisms controlling lymphocyte trafficking is essential for understanding the function of the immune system and the pathophysiology of immunodeficiencies. The mammalian Ste20-like kinase 1 (Mst1) has been identified as a critical signaling mediator of T cell migration, and loss of Mst1 results in immunodeficiency disease. Although Mst1 is known to support T cell migration through induction of cell polarization and lamellipodial formation, the downstream effectors of Mst1 are incompletely defined. Mice deficient for the actin-bundling protein L-plastin (LPL) have phenotypes similar to mice lacking Mst1, including decreased T cell polarization, lamellipodial formation, and cell migration. We therefore asked whether LPL functions downstream of Mst1. The regulatory N-terminal domain of LPL contains a consensus Mst1 phosphorylation site at Thr(89) We found that Mst1 can phosphorylate LPL in vitro and that Mst1 can interact with LPL in cells. Removal of the Mst1 phosphorylation site by mutating Thr(89) to Ala impaired localization of LPL to the actin-rich lamellipodia of T cells. Expression of the T89A LPL mutant failed to restore migration of LPL-deficient T cells in vitro. Furthermore, expression of T89A LPL in LPL-deficient hematopoietic cells, using bone marrow chimeras, failed to rescue the phenotype of decreased thymic egress. These results identify LPL as a key effector of Mst1 and establish a novel mechanism linking a signaling intermediate to an actin-binding protein critical to T cell migration.


Asunto(s)
Movimiento Celular , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Animales , Proteínas del Citoesqueleto , Citometría de Flujo , Activación de Linfocitos , Linfocitos/inmunología , Ratones , Proteínas de Microfilamentos , Fosfoproteínas/deficiencia , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Seudópodos/inmunología , Seudópodos/fisiología
10.
Proc Natl Acad Sci U S A ; 112(21): 6682-7, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25964334

RESUMEN

V-domain immunoglobulin suppressor of T-cell activation (VISTA) is a negative immune-checkpoint protein that suppresses T-cell responses. To determine whether VISTA synergizes with another immune-checkpoint, programmed death 1 (PD-1), this study characterizes the immune responses in VISTA-deficient, PD-1-deficient (KO) mice and VISTA/PD-1 double KO mice. Chronic inflammation and spontaneous activation of T cells were observed in both single KO mice, demonstrating their nonredundancy. However, the VISTA/PD-1 double KO mice exhibited significantly higher levels of these phenotypes than the single KO mice. When bred onto the 2D2 T-cell receptor transgenic mice, which are predisposed to development of inflammatory autoimmune disease in the CNS, the level of disease penetrance was significantly enhanced in the double KO mice compared with in the single KO mice. Consistently, the magnitude of T-cell response toward foreign antigens was synergistically higher in the VISTA/PD-1 double KO mice. A combinatorial blockade using monoclonal antibodies specific for VISTA and PD-L1 achieved optimal tumor-clearing therapeutic efficacy. In conclusion, our study demonstrates the nonredundant role of VISTA that is distinct from the PD-1/PD-L1 pathway in controlling T-cell activation. These findings provide the rationale to concurrently target VISTA and PD-1 pathways for treating T-cell-regulated diseases such as cancer.


Asunto(s)
Proteínas de la Membrana/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Antígenos/administración & dosificación , Antígeno B7-H1/deficiencia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Femenino , Tolerancia Inmunológica , Ligandos , Activación de Linfocitos , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neoplasias Experimentales/inmunología , Receptor de Muerte Celular Programada 1/deficiencia , Receptor de Muerte Celular Programada 1/genética
11.
J Virol ; 88(1): 538-46, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24173234

RESUMEN

Viruses have long been studied not only for their pathology and associated disease but also as model systems for understanding cellular and immunological processes. Rodent herpesvirus Peru (RHVP) is a recently characterized rhadinovirus related to murine gammaherpesvirus 68 (MHV68) and Kaposi's sarcoma-associated herpesvirus (KSHV) that establishes acute and latent infection in laboratory mice. RHVP encodes numerous unique proteins that we hypothesize might facilitate host immune evasion during infection. We report here that open reading frame (ORF) R17 encodes a high-affinity chemokine binding protein that broadly recognizes human and murine CC and C chemokines. The interaction of R17 with chemokines is generally characterized by rapid association kinetics, and in the case of CCL3, CCL4, CCL5, CCL24, and XCL1, extremely stable complexes are formed. Functionally, R17 potently inhibited CCL2-driven chemotaxis of the human monocytic cell line THP-1, CCL3-driven chemotaxis of peripheral blood mononuclear cells, and CCL2-mediated calcium flux. Our studies also reveal that R17 binds to glycosaminoglycans (GAGs) in a process dependent upon two BBXB motifs and that chemokine and GAG binding can occur simultaneously at distinct sites. Collectively, these studies suggest that R17 may play a role in RHVP immune evasion through the targeted sabotage of chemokine-mediated immune surveillance.


Asunto(s)
Receptores de Quimiocina/genética , Rhadinovirus/genética , Animales , Calcio/metabolismo , Quimiocinas/metabolismo , Quimiotaxis de Leucocito , Células HEK293 , Humanos , Ratones , Sistemas de Lectura Abierta , Receptores de Quimiocina/metabolismo , Resonancia por Plasmón de Superficie
12.
Blood ; 121(2): 286-97, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23175687

RESUMEN

Natural killer (NK) cells have important functions in cancer immunosurveillance, BM allograft rejection, fighting infections, tissue homeostasis, and reproduction. NK cell-based therapies are promising treatments for blood cancers. Overcoming their currently limited efficacy requires a better understanding of the molecular mechanisms controlling NK cell development and dampening their effector functions. NK cells recognize the loss of self-antigens or up-regulation of stress-induced ligands on pathogen-infected or tumor cells through invariant NK cell receptors (NKRs), and then kill such stressed cells. Two second-messenger pathways downstream of NKRs are required for NK cell maturation and effector responses: PIP(3) generation by PI3K and generation of diacylglycerol and IP(3) by phospholipase-Cγ (PLCγ). In the present study, we identify a novel role for the phosphorylated IP(3) metabolite inositol (1,3,4,5)tetrakisphosphate (IP(4)) in NK cells. IP(4) promotes NK cell terminal differentiation and acquisition of a mature NKR repertoire. However, in mature NK cells, IP(4) limits NKR-induced IFNγ secretion, granule exocytosis, and target-cell killing, in part by inhibiting the PIP(3) effector-kinase Akt. This identifies IP(4) as an important novel regulator of NK cell development and function and expands our understanding of the therapeutically important mechanisms dampening NK cell responses. Our results further suggest that PI3K regulation by soluble IP(4) is a broadly important signaling paradigm.


Asunto(s)
Fosfatos de Inositol/inmunología , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Transducción de Señal/inmunología , Animales , Fosfatos de Inositol/metabolismo , Células Asesinas Naturales/metabolismo , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Citoplasmáticos y Nucleares/inmunología , Receptores Citoplasmáticos y Nucleares/metabolismo
13.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585810

RESUMEN

Generating balanced populations of CD8 effector and memory T cells is necessary for immediate and durable immunity to infections and cancer. Yet, a definitive understanding of CD8 differentiation remains unclear. We used CARLIN, a processive lineage recording mouse model with single-cell RNA-seq and TCR-seq to track endogenous antigen-specific CD8 T cells during acute viral infection. We identified a diverse repertoire of expanded T-cell clones represented by seven transcriptional states. TCR enrichment analysis revealed differential memory- or effector-fate biases within clonal populations. Shared Vb segments and amino acid motifs were found within biased categories despite high TCR diversity. Using single-cell CARLIN barcode-seq we tracked multi-generational clones and found that unlike unbiased or memory-biased clones, which stably retain their fate profiles, effector-biased clones could adopt memory- or effector-bias within subclones. Collectively, our study demonstrates that a heterogenous T-cell repertoire specific for a shared antigen is composed of clones with distinct TCR-intrinsic fate-biases.

14.
Adv Radiat Oncol ; 9(6): 101492, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38711960

RESUMEN

Purpose: Ultra High Dose-Rate (UHDR) radiation has been reported to spare normal tissue, compared with Conventional Dose-Rate (CDR) radiation. However, important work remains to be done to improve the reproducibility of the FLASH effect. A better understanding of the biologic factors that modulate the FLASH effect may shed light on the mechanism of FLASH sparing. Here, we evaluated whether sex and/or the use of 100% oxygen as a carrier gas during irradiation contribute to the variability of the FLASH effect. Methods and Materials: C57BL/6 mice (24 male, 24 female) were anesthetized using isoflurane mixed with either room air or 100% oxygen. Subsequently, the mice received 27 Gy of either 9 MeV electron UHDR or CDR to a 1.6 cm2 diameter area of the right leg skin using the Mobetron linear accelerator. The primary postradiation endpoint was time to full thickness skin ulceration. In a separate cohort of mice (4 male, 4 female), skin oxygenation was measured using PdG4 Oxyphor under identical anesthesia conditions. Results: Neither supplemental oxygen nor sex affected time to ulceration in CDR irradiated mice. In the UHDR group, skin damage occured earlier in male and female mice that received 100% oxygen compared room air and female mice ulcerated sooner than male mice. However, there was no significant difference in time to ulceration between male and female UHDR mice that received room air. Oxygen measurements showed that tissue oxygenation was significantly higher when using 100% oxygen as the anesthesia carrier gas than when using room air, and female mice showed higher levels of tissue oxygenation than male mice under 100% oxygen. Conclusions: The skin FLASH sparing effect is significantly reduced when using oxygen during anesthesia rather than room air. FLASH sparing was also reduced in female mice compared to male mice. Both tissue oxygenation and sex are likely sources of variability in UHDR studies. These results suggest an oxygen-based mechanism for FLASH, as well as a key role for sex in the FLASH skin sparing effect.

15.
bioRxiv ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36824707

RESUMEN

Motivation: Doublets are usually considered an unwanted artifact of single-cell RNA-sequencing (scRNA-seq) and are only identified in datasets for the sake of removal. However, if cells have a juxtacrine attachment to one another in situ and maintain this association through an scRNA-seq processing pipeline that only partially dissociates the tissue, these doublets can provide meaningful biological information regarding the interactions and cell processes occurring in the analyzed tissue. This is especially true for cases such as the immune compartment of the tumor microenvironment, where the frequency and type of immune cell juxtacrine interactions can be a prognostic indicator. Results: We developed Cell type-specific Interaction Analysis using Doublets in scRNA-seq (CIcADA) as a pipeline for identifying and analyzing biological doublets in scRNA-seq data. CIcADA identifies putative doublets using multi-label cell type scores and characterizes interaction dynamics through a comparison against synthetic doublets of the same cell type composition. In performing CIcADA on several scRNA-seq tumor datasets, we found that the identified doublets were consistently upregulating expression of immune response genes. Contact: Courtney.T.Schiebout.GR@Dartmouth.edu , Hildreth.R.Frost@Dartmouth.edu.

16.
Front Bioeng Biotechnol ; 11: 1101122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051270

RESUMEN

Chimeric antigen receptors (CAR) are generated by linking extracellular antigen recognition domains with one or more intracellular signaling domains derived from the T-cell receptor complex or various co-stimulatory receptors. The choice and relative positioning of signaling domains help to determine chimeric antigen receptors T-cell activity and fate in vivo. While prior studies have focused on optimizing signaling power through combinatorial investigation of native intracellular signaling domains in modular fashion, few have investigated the prospect of sequence engineering within domains. Here, we sought to develop a novel in situ screening method that could permit deployment of directed evolution approaches to identify intracellular domain variants that drive selective induction of transcription factors. To accomplish this goal, we evaluated a screening approach based on the activation of a human NF-κB and NFAT reporter T-cell line for the isolation of mutations that directly impact T cell activation in vitro. As a proof-of-concept, a model library of chimeric antigen receptors signaling domain variants was constructed and used to demonstrate the ability to discern amongst chimeric antigen receptors containing different co-stimulatory domains. A rare, higher-signaling variant with frequency as low as 1 in 1000 could be identified in a high throughput setting. Collectively, this work highlights both prospects and limitations of novel mammalian display methods for chimeric antigen receptors signaling domain discovery and points to potential strategies for future chimeric antigen receptors development.

17.
Curr Opin Immunol ; 83: 102338, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37229984

RESUMEN

Tissue-resident memory (Trm) cells have recently emerged as essential components of the immune response to cancer. Here, we highlight new studies that demonstrate how CD8+ Trm cells are ideally suited to accumulate in tumors and associated tissues, to recognize a wide range of tumor antigens (Ags), and to persist as durable memory. We discuss compelling evidence that Trm cells maintain potent recall function and serve as principal mediators of immune checkpoint blockade (ICB) therapeutic efficacy in patients. Finally, we propose that Trm and circulating memory T-cell compartments together form a formidable barrier against metastatic cancer. These studies affirm Trm cells as potent, durable, and necessary mediators of cancer immunity.


Asunto(s)
Células T de Memoria , Neoplasias , Humanos , Memoria Inmunológica , Linfocitos T CD8-positivos
18.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961549

RESUMEN

Introduction: Ultra-high dose-rate (UHDR) radiation has been reported to spare normal tissue compared to conventional dose-rate (CDR) radiation. However, reproducibility of the FLASH effect remains challenging due to varying dose ranges, radiation beam structure, and in-vivo endpoints. A better understanding of these inconsistencies may shed light on the mechanism of FLASH sparing. Here, we evaluate whether sex and/or use of 100% oxygen as carrier gas during irradiation contribute to the variability of the FLASH effect. Methods: C57BL/6 mice (24 male, 24 female) were anesthetized using isoflurane mixed with either room air or 100% oxygen. Subsequently, the mice received 27 Gy of either 9 MeV electron UHDR or CDR to a 1.6 cm2 diameter area of the right leg skin using the Mobetron linear accelerator. The primary post-radiation endpoint was time to full thickness skin ulceration. In a separate cohort of mice (4 male, 4 female) skin oxygenation was measured using PdG4 Oxyphor under identical anesthesia conditions. Results: In the UHDR group, time to ulceration was significantly shorter in mice that received 100% oxygen compared to room air, and amongst them female mice ulcerated sooner compared to males. However, no significant difference was observed between male and female UHDR mice that received room air. Oxygen measurements showed significantly higher tissue oxygenation using 100% oxygen as the anesthesia carrier gas compared to room air, and female mice showed higher levels of tissue oxygenation compared to males under 100% oxygen. Conclusion: The FLASH sparing effect is significantly reduced using oxygen during anesthesia compared to room air. The FLASH sparing was significantly lower in female mice compared to males. Both tissue oxygenation and sex are likely sources of variability in UHDR studies. These results suggest an oxygen-based mechanism for FLASH, as well as a key role for sex in the FLASH skin sparing effect.

19.
Cancer Immunol Res ; 10(8): 962-977, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35696724

RESUMEN

Chimeric-antigen receptor (CAR) T-cell therapy has shown remarkable efficacy against hematologic tumors. Yet, CAR T-cell therapy has had little success against solid tumors due to obstacles presented by the tumor microenvironment (TME) of these cancers. Here, we show that CAR T cells armored with the engineered IL-2 superkine Super2 and IL-33 were able to promote tumor control as a single-agent therapy. IFNγ and perforin were dispensable for the effects of Super2- and IL-33-armored CAR T cells. Super2 and IL-33 synergized to shift leukocyte proportions in the TME and to recruit and activate a broad repertoire of endogenous innate and adaptive immune cells including tumor-specific T cells. However, depletion of CD8+ T cells or NK cells did not disrupt tumor control, suggesting that broad immune activation compensated for loss of individual cell subsets. Thus, we have shown that Super2 and IL-33 CAR T cells can promote antitumor immunity in multiple solid tumor models and can potentially overcome antigen loss, highlighting the potential of this universal CAR T-cell platform for the treatment of solid tumors.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Inmunoterapia Adoptiva , Interleucina-2 , Interleucina-33
20.
Eur J Immunol ; 40(11): 3226-34, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20865788

RESUMEN

The scaffold protein kinase suppressor of Ras 1 (KSR1) is critical for efficient activation of ERK in a number of cell types. Consistent with this, we observed a defect in ERK activation in thymocytes that lack KSR1. Interestingly, we found that the defect was much greater after PMA stimulation than by CD3 activation. Since ERK activation is believed to be important for thymocyte development, we analyzed thymocyte selection in KSR1-deficient (KSR1(-/-) ) mice. We found that positive selection in two different TCR transgenic models, HY and AND, was normal. On the other hand, negative selection in the HY model was slightly impaired in KSR1(-/-) mice. However, a defect in negative selection was not apparent in the AND TCR model system or in an endogenous superantigen-mediated model of negative selection. These results suggest that, despite a requirement for KSR1 for full ERK activation in thymocytes, full and efficient ERK activation is not essential for the majority of thymocyte selection events.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/inmunología , Modelos Inmunológicos , Proteínas Quinasas/inmunología , Timo/inmunología , Animales , Complejo CD3/genética , Complejo CD3/inmunología , Complejo CD3/metabolismo , Carcinógenos/farmacología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Activación Enzimática/inmunología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Ratones Noqueados , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Timo/citología , Timo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA