Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(25): 7616-7622, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38815153

RESUMEN

Engineering the building blocks in metal-organic materials is an effective strategy for tuning their dynamical properties and can affect their response to external guest molecules. Tailoring the interaction and diffusion of molecules into these structures is highly important, particularly for applications related to gas separation. Herein, we report a vanadium-based hybrid ultramicroporous material, VOFFIVE-1-Ni, with temperature-dependent dynamical properties and a strong affinity to effectively capture and separate carbon dioxide (CO2) from methane (CH4). VOFFIVE-1-Ni exhibits a CO2 uptake of 12.08 wt % (2.75 mmol g-1), a negligible CH4 uptake at 293 K (0.5 bar), and an excellent CO2-over-CH4 uptake ratio of 2280, far exceeding that of similar materials. The material also exhibits a favorable CO2 enthalpy of adsorption below -50 kJ mol-1, as well as fast CO2 adsorption rates (90% uptake reached within 20 s) that render the hydrolytically stable VOFFIVE-1-Ni a promising sorbent for applications such as biogas upgrading.

2.
J Am Chem Soc ; 146(14): 9811-9818, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38531024

RESUMEN

Perfluorooctanoic acid (PFOA) is an environmental contaminant ubiquitous in water resources, which as a xenobiotic and carcinogenic agent, severely endangers human health. The development of techniques for its efficient removal is therefore highly sought after. Herein, we demonstrate an unprecedented zirconium-based MOF (PCN-999) possessing Zr6 and biformate-bridged (Zr6)2 clusters simultaneously, which exhibits an exceptional PFOA uptake of 1089 mg/g (2.63 mmol/g), representing a ca. 50% increase over the previous record for MOFs. Single-crystal X-ray diffraction studies and computational analysis revealed that the (Zr6)2 clusters offer additional open coordination sites for hosting PFOA. The coordinated PFOAs further enhance the interaction between coordinated and free PFOAs for physical adsorption, boosting the adsorption capacity to an unparalleled high standard. Our findings represent a major step forward in the fundamental understanding of the MOF-based PFOA removal mechanism, paving the way toward the rational design of next-generation adsorbents for per- and polyfluoroalkyl substance (PFAS) removal.

3.
Nat Mater ; 22(5): 636-643, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37037962

RESUMEN

Covalent organic frameworks (COFs) are emerging crystalline porous polymers, showing great potential for applications but lacking gas-triggered flexibility. Atropisomerism was experimentally discovered in 1922 but has rarely been found in crystals with infinite framework structures. Here we report atropisomerism in COF single crystals. The obtained COF atropisomers, namely COF-320 and COF-320-A, have identical chemical and interpenetrated structures but differ in the spatial arrangement of repeating units. In contrast to the rigid COF-320 structure, its atropisomer (COF-320-A) exhibits unconventional gas sorption behaviours with one or more sorption steps in isotherms at different temperatures. Single-crystal structures determined from continuous rotation electron diffraction and in situ powder X-ray diffraction demonstrate that these adsorption steps originate from internal pore expansion with or without changing the crystal space group. COF-320-A recognizes different gases by expanding its internal pores continuously (crystal-to-amorphous transition) or discontinuously (crystal-to-crystal transition) or having mixed transition styles, distinguishing COF-320-A from existing soft/flexible porous crystals. These findings extend atropisomerism from molecules to crystals and propel COFs into the covalently linked soft porous crystal regime, further advancing applications of soft porous crystals in gas sorption, separation and storage.

4.
J Environ Manage ; 362: 121253, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38823294

RESUMEN

Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate investment risks, and promote green development. In this study, firstly, the IVMD and ICEEMDAN are used to decompose carbon price quadratically; secondly, the Dispersion entropy is used to identify the sequence frequency, and then the SOA-LSSVM model and TCN model are used to predict the high-frequency and low-frequency sequences, respectively; finally, the prediction results are integrated by SOA-GRU. As a result, the hybrid IVMD-ICEEMDAN-SOALSSVM/TCN-SOAGRU model was constructed. This framework consistently performs best under two carbon markets, the CEEX Guangzhou and the EU ETS, compared with 21 comparative models, with MAPEs of 0.42% and 0.83%, respectively. The main contributions are as follows: (1) A novel IVMD-ICEEMDAN secondary decomposition method is proposed, which improves the problem of poorly determining the value of the decomposition modal number K in the traditional VMD method and improves the efficiency of the carbon price sequence decomposition. (2) A hybrid forecasting model of LSSVM and TCN is proposed, effectively capturing the features of different sequences. (3) Optimization for LSSVM and GRU using SOA improves the stability and adaptability of the model. The article provides governments, enterprises, and investors with novel and effective carbon price forecasting tool.


Asunto(s)
Carbono , Predicción , Modelos Teóricos , Comercio
5.
Angew Chem Int Ed Engl ; : e202408453, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941108

RESUMEN

Layer-stacking behaviors are crucial for two-dimensional covalent organic frameworks (2D COFs) to define their pore structure, physicochemical properties, and functional output. So far, fine control over the stacking mode without complex procedures remains a grand challenge. Herein, we proposed a "key-cylinder lock mimic" strategy to synthesize 2D COFs with a tunable layer-stacking mode by taking advantage of ionic liquids (ILs). The staggered (AB) stacking (unlocked) COFs were exclusively obtained by incorporating ILs of symmetric polarity and matching molecular size; otherwise, commonly reported eclipsed (AA) stacking (locked) COFs were observed instead. Mechanistic study revealed that AB stacking was induced by a confined interlocking effect (CIE) brought by anions and bulky cations of the ILs inside pores ("key" and "cylinder", respectively). Excitingly, this strategy can speed up production rate of crystalline powders (e.g., COF-TAPT-Tf@BmimTf2N in merely 30 minutes) under mild reaction conditions. This work highlights the enabling role of ILs to tailor the layer stacking of 2D COFs and promotes further exploration of their stacking mode-dependant applications.

6.
Angew Chem Int Ed Engl ; 63(7): e202313034, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38097503

RESUMEN

Oxygen reduction reaction (ORR) is of critical significance in the advancement of fuel cells and zinc-air batteries. The iron-nitrogen (Fe-Nx ) sites exhibited exceptional reactivity towards ORR. However, the task of designing and controlling the local structure of Fe species for high ORR activity and stability remains a challenge. Herein, we have achieved successful immobilization of Fe species onto the highly curved surface of S, N co-doped carbonaceous nanosprings (denoted as FeNS/Fe3 C@CNS). The induction of this twisted configuration within FeNS/Fe3 C@CNS arose from the assembly of chiral templates. For electrocatalytic ORR tests, FeNS/Fe3 C@CNS exhibits a half-wave potential (E1/2 ) of 0.91 V in alkaline medium and a E1/2 of 0.78 V in acidic medium. The Fe single atoms and Fe3 C nanoparticles are coexistent and play as active centers within FeNS/Fe3 C@CNS. The highly curved surface, coupled with S substitution in the coordination layer, served to reduce the energy barrier for ORR, thereby enhancing the intrinsic catalytic activity of the Fe single-atom sites. We also assembled a wearable flexible Zn-air battery using FeNS/Fe3 C@CNS as electrocatalysts. This work provides new insights into the construction of highly curved surfaces within carbon materials, offering high electrocatalytic efficacy and remarkable performance for flexible energy conversion devices.

7.
J Am Chem Soc ; 145(43): 23630-23638, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37852932

RESUMEN

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as a new class of crystalline layered conducting materials that hold significant promise for applications in electronics and spintronics. However, current 2D c-MOFs are mainly made from organic planar ligands, whereas layered 2D c-MOFs constructed by curved or twisted ligands featuring novel orbital structures and electronic states remain less developed. Herein, we report a Cu-catecholate wavy 2D c-MOF (Cu3(HFcHBC)2) based on a fluorinated core-twisted contorted hexahydroxy-hexa-cata-hexabenzocoronene (HFcHBC) ligand. We show that the resulting film is composed of rod-like single crystals with lengths up to ∼4 µm. The crystal structure is resolved by high-resolution transmission electron microscopy (HRTEM) and continuous rotation electron diffraction (cRED), indicating a wavy honeycomb lattice with AA-eclipsed stacking. Cu3(HFcHBC)2 is predicted to be metallic based on theoretical calculation, while the crystalline film sample with numerous grain boundaries apparently exhibits semiconducting behavior at the macroscopic scale, characterized by obvious thermally activated conductivity. Temperature-dependent electrical conductivity measurements on the isolated single-crystal devices indeed demonstrate the metallic nature of Cu3(HFcHBC)2, with a very weak thermally activated transport behavior and a room-temperature conductivity of 5.2 S cm-1. Furthermore, the 2D c-MOFs can be utilized as potential electrode materials for energy storage, which display decent capacity (163.3 F g-1) and excellent cyclability in an aqueous 5 M LiCl electrolyte. Our work demonstrates that wavy 2D c-MOF using contorted ligands are capable of intrinsic metallic transport, marking the emergence of new conductive MOFs for electronic and energy applications.

8.
Nat Mater ; 21(6): 673-680, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35210585

RESUMEN

The oxygen evolution reaction is central to making chemicals and energy carriers using electrons. Combining the great tunability of enzymatic systems with known oxide-based catalysts can create breakthrough opportunities to achieve both high activity and stability. Here we report a series of metal hydroxide-organic frameworks (MHOFs) synthesized by transforming layered hydroxides into two-dimensional sheets crosslinked using aromatic carboxylate linkers. MHOFs act as a tunable catalytic platform for the oxygen evolution reaction, where the π-π interactions between adjacent stacked linkers dictate stability, while the nature of transition metals in the hydroxides modulates catalytic activity. Substituting Ni-based MHOFs with acidic cations or electron-withdrawing linkers enhances oxygen evolution reaction activity by over three orders of magnitude per metal site, with Fe substitution achieving a mass activity of 80 A [Formula: see text] at 0.3 V overpotential for 20 h. Density functional theory calculations correlate the enhanced oxygen evolution reaction activity with the MHOF-based modulation of Ni redox and the optimized binding of oxygenated intermediates.


Asunto(s)
Estructuras Metalorgánicas , Oxígeno , Catálisis , Hidróxidos
9.
Angew Chem Int Ed Engl ; 62(25): e202300186, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-36862366

RESUMEN

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) are emerging as a unique class of electronic materials. However, 2D c-MOFs with band gaps in the Vis-NIR and high charge carrier mobility are rare. Most of the reported conducting 2D c-MOFs are metallic (i.e. gapless), which largely limits their use in logic devices. Herein, we design a phenanthrotriphenylene-based, D2h -symmetric π-extended ligand (OHPTP), and synthesize the first rhombic 2D c-MOF single crystals (Cu2 (OHPTP)). The continuous rotation electron diffraction (cRED) analysis unveils the orthorhombic crystal structure at the atomic level with a unique slipped AA stacking. The Cu2 (OHPTP) is a p-type semiconductor with an indirect band gap of ≈0.50 eV and exhibits high electrical conductivity of 0.10 S cm-1 and high charge carrier mobility of ≈10.0 cm2  V-1 s-1 . Theoretical calculations underline the predominant role of the out-of-plane charge transport in this semiquinone-based 2D c-MOF.


Asunto(s)
Estructuras Metalorgánicas , Conductividad Eléctrica , Electrónica , Electrones , Cetonas
10.
J Am Chem Soc ; 144(33): 15165-15174, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35950776

RESUMEN

In the study of framework materials, probing interactions between frameworks and organic molecules is one of the most important tasks, which offers us a fundamental understanding of host-guest interactions in gas sorption, separation, catalysis, and framework structure formation. Single-crystal X-ray diffraction (SCXRD) is a conventional method to locate organic species and study such interactions. However, SCXRD demands large crystals whose quality is often vulnerable to, e.g., cracking on the crystals by introducing organic molecules, and this is a major challenge to use SCXRD for structural analysis. With the development of three-dimensional electron diffraction (3D ED), single-crystal structural analysis can be performed on very tiny crystals with sizes on the nanometer scale. Here, we analyze two framework materials, SU-8 and SU-68, with organic molecules inside their inorganic crystal structures. By applying 3D ED, with fast data collection and an ultralow electron dose (0.8-2.6 e- Å-2), we demonstrate for the first time that each nonhydrogen atom from the organic molecules can be ab initio located from structure solution, and they are shown as distinct and well-separated peaks in the difference electrostatic potential maps showing high accuracy and reliability. As a result, two different spatial configurations are identified for the same guest molecule in SU-8. We find that the organic molecules interact with the framework through strong hydrogen bonding, which is the key to immobilizing them at well-defined positions. In addition, we demonstrate that host-guest systems can be studied at room temperature. Providing high accuracy and reliability, we believe that 3D ED can be used as a powerful tool to study host-guest interactions, especially for nanocrystals.

11.
Small ; 18(4): e2102902, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35083855

RESUMEN

Lithium-oxygen batteries are among the most attractive alternatives for future electrified transportation. However, their practical application is hindered by many obstacles. Due to the insulating nature of Li2 O2 product and the slow kinetics of reactions, attaining sustainable low charge overpotentials at high rates becomes a challenge resulting in the battery's early failure and low round trip efficiency. Herein, outstanding characteristics are discovered of a conductive metal organic framework (c-MOF) that promotes the growth of nanocrystalline Li2 O2 with amorphous regions. This provides a platform for the continuous growth of Li2 O2 units away from framework, enabling a fast discharge at high current rates. Moreover, the Li2 O2 structure works in synergy with the redox mediator (RM). The conductivity of the amorphous regions of the Li2 O2 allows the RM to act directly on the Li2 O2 surface instead of catalyst edges and then transport through the electrolyte to the Li2 O2 surface. This direct charge transfer enables a small charge potential of <3.7 V under high current densities (1-2 A g-1 ) sustained for a long cycle life (100-300 cycles) for large capacities (1000-2000 mAh g-1 ). These results open a new direction for utilizing c-MOFs towards advanced energy storage systems.

12.
Chemistry ; 28(63): e202202170, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36066438

RESUMEN

Stable extra-large-pore zeolites are desirable for industrial purposes due to their ability to accommodate bulky reactants and diffusion through channels. Although there are several extra-large pore zeolites reported, stable ones are rare. Thus, their stabilization is a feasible strategy for industrial applications. Here, an extra-large-pore zeolite EWT with boron substitution is presented, and the resulting zeolite B-RZM-3 increased the thermal stability from 600 °C in its silica form to 850 °C. The crystal structure, determined by combining continuous rotation electron diffraction (cRED) and powder X-ray diffraction (PXRD), shows that B atoms preferentially substitute the interrupted (HO)T(OT)3 (Q3 ) sites and are partially converted into 3-coordination to relax framework deformation upon heating. After Al-reinsertion post-treatment, Al-B-RZM-3 shows higher ethylbenzene selectivity and ethylene conversion rate per mol acid site than commercial ZSM-5 and Beta zeolite in benzene alkylation reaction. Synthesizing extra-large-pore zeolite in borosilicate form is a potential approach to stabilize interrupted zeolites for commercial applications.

13.
Chemistry ; 28(55): e202201281, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35802315

RESUMEN

DUT-8(Ni) metal-organic framework (MOF) belongs to the family of flexible pillared layer materials. The desolvated framework can be obtained in the open pore form (op) or in the closed pore form (cp), depending on the crystal size regime. In the present work, we report on the behaviour of desolvated DUT-8(Ni) at elevated temperatures. For both, op and cp variants, heating causes a structural transition, leading to a new, crystalline compound, containing two interpenetrated networks. The state of the framework before transition (op vs. cp) influences the transition temperature: the small particles of the op phase transform at significantly lower temperature in comparison to the macroparticles of the cp phase, transforming close to the decomposition temperature. The new compound, confined closed pore phase (ccp), was characterized by powder X-ray diffraction and spectroscopic techniques, such as IR, EXAFS, and positron annihilation lifetime spectroscopy (PALS). Thermal effects of structural transitions were studied using differential scanning calorimetry (DSC), showing an overall exothermic effect of the process, involving bond breaking and reformation. Theoretical calculations reveal the energetics, driving the observed temperature induced phase transition.

14.
J Vis ; 22(6): 6, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35536722

RESUMEN

Objects that pass light through are considered transparent, and we generally expect that the light coming out will match the color of the object. However, when the object is placed on a colored surface, the light coming back to our eyes becomes a composite of surface, illumination, and transparency properties. Despite that, we can often perceive separate overlaid and overlaying layers differing in colors. How neurons separate the information to extract the transparent layer remains unknown, but the physical characteristics of transparent filters generate geometrical and color features in retinal images, which could provide cues for separating layers. We estimated the relative importance of such cues in a perceptual scale for transparency, using stimuli in which X- or T-junctions, different relative motions, and consistent or inconsistent colors cooperated or competed in forced-preference psychophysics experiments. Maximum-likelihood Thurstone scaling revealed that motion increased transparency for X-junctions, but decreased transparency for T-junctions by creating the percept of an opaque patch. However, if the motion of a filter uncovered a dynamically changing but stationary pattern, sharing a common fate with the surround but forming T-junctions, the probability of seeing transparency was almost as high as for moving X-junctions, despite the stimulus being physically improbable. In addition, geometric cues overrode color inconsistency to a great degree. Finally, a linear model of transparency perception as a function of relative motions between filter, overlay, and surround layers, contour continuation, and color consistency, quantified a hierarchy of latent influences on when the filter is seen as a separate transparent layer.


Asunto(s)
Percepción de Forma , Percepción de Movimiento , Color , Percepción de Color/fisiología , Señales (Psicología) , Percepción de Forma/fisiología , Humanos , Estimulación Luminosa , Psicofísica , Visión Ocular
15.
J Am Chem Soc ; 143(43): 17947-17952, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34695352

RESUMEN

Flexible metal-organic frameworks (MOFs) are known for their vast functional diversities and variable pore architectures. Dynamic motions or perturbations are among the highly desired flexibilities, which are key to guest diffusion processes. Therefore, probing such motions, especially at an atomic level, is crucial for revealing the unique properties and identifying the applications of MOFs. Nuclear magnetic resonance (NMR) and single-crystal X-ray diffraction (SCXRD) are the most important techniques to characterize molecular motions but require pure samples or large single crystals (>5 × 5 × 5 µm3), which are often inaccessible for MOF synthesis. Recent developments of three-dimensional electron diffraction (3D ED) have pushed the limits of single-crystal structural analysis. Accurate atomic information can be obtained by 3D ED from nanometer- and submicrometer-sized crystals and samples containing multiple phases. Here, we report the study of molecular motions by using the 3D ED method in MIL-140C and UiO-67, which are obtained as nanosized crystals coexisting in a mixture. In addition to an ab initio determination of their framework structures, we discovered that motions of the linker molecules could be revealed by observing the thermal ellipsoid models and analyzing the atomic anisotropic displacement parameters (ADPs) at room temperature (298 K) and cryogenic temperature (98 K). Interestingly, despite the same type of linker molecule occupying two symmetry-independent positions in MIL-140C, we observed significantly larger motions for the isolated linkers in comparison to those reinforced by π-π stacking. With an accuracy comparable to that of SCXRD, we show for the first time that 3D ED can be a powerful tool to investigate dynamics at an atomic level, which is particularly beneficial for nanocrystalline materials and/or phase mixtures.

16.
J Am Chem Soc ; 143(31): 12129-12137, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34340311

RESUMEN

Zirconium-based metal-organic frameworks (Zr-MOFs) have aroused enormous interest owing to their superior stability, flexible structures, and intriguing functions. Precise control over their crystalline structures, including topological structures, porosity, composition, and conformation, constitutes an important challenge to realize the tailor-made functionalization. In this work, we developed a new Zr-MOF (PCN-625) with a csq topological net, which is similar to that of the well-known PCN-222 and NU-1000. However, the significant difference lies in the conformation of porphyrin rings, which are vertical to the pore surfaces rather than in parallel. The resulting PCN-625 exhibits two types of one-dimensional channels with concrete diameters of 2.03 and 0.43 nm. Furthermore, the vertical porphyrins together with shrunken pore sizes could limit the accessibility of substrates to active centers in the framework. On the basis of the structural characteristics, PCN-625(Fe) can be utilized as an efficient heterogeneous catalyst for the size-selective [4 + 2] hetero-Diels-Alder cycloaddition reaction. Due to its high chemical stability, this catalyst can be repeatedly used over six times. This work demonstrates that Zr-MOFs can serve as tailor-made scaffolds with enhanced flexibility for target-oriented functions.

17.
J Am Chem Soc ; 143(17): 6333-6338, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33900747

RESUMEN

Catalysts for photochemical reactions underlie many foundations in our lives, from natural light harvesting to modern energy storage and conversion, including processes such as water photolysis by TiO2. Recently, metal-organic frameworks (MOFs) have attracted large interest within the chemical research community, as their structural variety and tunability yield advantages in designing photocatalysts to address energy and environmental challenges. Here, we report a series of novel multivariate metal-organic frameworks (MTV-MOFs), denoted as MTV-MIL-100. They are constructed by linking aromatic carboxylates and AB2OX3 bimetallic clusters, which have ordered atomic arrangements. Synthesized through a solvent-assisted approach, these ordered and multivariate metal clusters offer an opportunity to enhance and fine-tune the electronic structures of the crystalline materials. Moreover, mass transport is improved by taking advantage of the high porosity of the MOF structure. Combining these key advantages, MTV-MIL-100(Ti,Co) exhibits a high photoactivity with a turnover frequency of 113.7 molH2 gcat.-1 min-1, a quantum efficiency of 4.25%, and a space time yield of 4.96 × 10-5 in the photocatalytic hydrolysis of ammonia borane. Bridging the fields of perovskites and MOFs, this work provides a novel platform for the design of highly active photocatalysts.

18.
Faraday Discuss ; 225: 118-132, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33118574

RESUMEN

Many framework materials such as metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are synthesized as polycrystalline powders, which are too small for structure determination by single crystal X-ray diffraction (SCXRD). Here, we show that a three-dimensional (3D) electron diffraction method, namely continuous rotation electron diffraction (cRED), can be used for ab initio structure determination of such materials. As an example, we present the complete structural analysis of a biocomposite, denoted BSA@ZIF-CO3-1, in which Bovine Serum Albumin (BSA) was encapsulated in a zeolitic imidazolate framework (ZIF). Low electron dose was combined with ultrafast cRED data collection to minimize electron beam damage to the sample. We demonstrate that the atomic structure obtained by cRED is as reliable and accurate as that obtained by single crystal X-ray diffraction. The high accuracy and fast data collection open new opportunities for investigation of cooperative phenomena in framework structures at the atomic level.

19.
Faraday Discuss ; 231(0): 66-80, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34227643

RESUMEN

Three-dimensional electron diffraction (3DED) has been proven as an effective and accurate method for structure determination of nano-sized crystals. In the past decade, the crystal structures of various new complex metal-organic frameworks (MOFs) have been revealed by 3DED, which has been the key to understand their properties. However, due to the design of transmission electron microscopes (TEMs), one drawback of 3DED experiments is the limited tilt range of goniometers, which often leads to incomplete 3DED data, particularly when the crystal symmetry is low. This drawback can be overcome by high throughput data collection using continuous rotation electron diffraction (cRED), where data from a large number of crystals can be collected and merged. Here, we investigate the effects of improving completeness on structural analysis of MOFs. We use ZIF-EC1, a zeolitic imidazolate framework (ZIF), as an example. ZIF-EC1 crystallizes in a monoclinic system with a plate-like morphology. cRED data of ZIF-EC1 with different completeness and resolution were analyzed. The data completeness increased to 92.0% by merging ten datasets. Although the structures could be solved from individual datasets with a completeness as low as 44.5% and refined to a high precision (better than 0.04 Å), we demonstrate that a high data completeness could improve the structural model, especially on the electrostatic potential map. We further discuss the strategy adopted during data merging. We also show that ZIF-EC1 doped with cobalt can act as an efficient electrocatalyst for oxygen reduction reactions.

20.
Angew Chem Int Ed Engl ; 60(20): 11391-11397, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33682282

RESUMEN

Metal-organic frameworks (MOFs) are known for their versatile combination of inorganic building units and organic linkers, which offers immense opportunities in a wide range of applications. However, many MOFs are typically synthesized as multiphasic polycrystalline powders, which are challenging for studies by X-ray diffraction. Therefore, developing new structural characterization techniques is highly desired in order to accelerate discoveries of new materials. Here, we report a high-throughput approach for structural analysis of MOF nano- and sub-microcrystals by three-dimensional electron diffraction (3DED). A new zeolitic-imidazolate framework (ZIF), denoted ZIF-EC1, was first discovered in a trace amount during the study of a known ZIF-CO3 -1 material by 3DED. The structures of both ZIFs were solved and refined using 3DED data. ZIF-EC1 has a dense 3D framework structure, which is built by linking mono- and bi-nuclear Zn clusters and 2-methylimidazolates (mIm- ). With a composition of Zn3 (mIm)5 (OH), ZIF-EC1 exhibits high N and Zn densities. We show that the N-doped carbon material derived from ZIF-EC1 is a promising electrocatalyst for oxygen reduction reaction (ORR). The discovery of this new MOF and its conversion to an efficient electrocatalyst highlights the power of 3DED in developing new materials and their applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA