Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Semin Immunol ; 29: 2-13, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28736160

RESUMEN

Macrophage presence and phenotype are critical determinants of the healing response following injury. Downregulation of the pro-inflammatory macrophage phenotype has been associated with the therapeutic use of bioscaffolds composed of extracellular matrix (ECM), but phenotypic characterization of macrophages has typically been limited to small number of non-specific cell surface markers or expressed proteins. The present study determined the response of both primary murine bone marrow derived macrophages (BMDM) and a transformed human mononuclear cell line (THP-1 cells) to degradation products of two different, commonly used ECM bioscaffolds; urinary bladder matrix (UBM-ECM) and small intestinal submucosa (SIS-ECM). Quantified cell responses included gene expression, protein expression, commonly used cell surface markers, and functional assays. Results showed that the phenotype elicited by ECM exposure (MECM) is distinct from both the classically activated IFNγ+LPS phenotype and the alternatively activated IL-4 phenotype. Furthermore, the BMDM and THP-1 macrophages responded differently to identical stimuli, and UBM-ECM and SIS-ECM bioscaffolds induced similar, yet distinct phenotypic profiles. The results of this study not only characterized an MECM phenotype that has anti-inflammatory traits but also showed the risks and challenges of making conclusions about the role of macrophage mediated events without consideration of the source of macrophages and the limitations of individual cell markers.


Asunto(s)
Biomimética , Matriz Extracelular/metabolismo , Macrófagos/fisiología , Andamios del Tejido , Animales , Materiales Biocompatibles/metabolismo , Células de la Médula Ósea/fisiología , Diferenciación Celular , Matriz Extracelular/inmunología , Humanos , Mamíferos , Fenotipo , Cicatrización de Heridas
2.
Am J Physiol Lung Cell Mol Physiol ; 316(2): L321-L333, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30461288

RESUMEN

Bpifa1 (BPI fold-containing group A member 1) is an airway host-protective protein with immunomodulatory properties that binds to LPS and is regulated by infectious and inflammatory signals. Differential expression of Bpifa1 has been widely reported in lung disease, yet the biological significance of this observation is unclear. We sought to understand the role of Bpifa1 fluctuations in modulating lung inflammation. We treated wild-type (WT) and Bpifa1-/- mice with intranasal LPS and performed immunological and transcriptomic analyses of lung tissue to determine the immune effects of Bpifa1 deficiency. We show that neutrophil (polymorphonuclear cells, PMNs) lung recruitment and transmigration to the airways in response to LPS is impaired in Bpifa1-/- mice. Transcriptomic analysis revealed a signature of 379 genes that differentiated Bpifa1-/- from WT mice. During acute lung inflammation, the most downregulated genes in Bpifa1-/- mice were Cxcl9 and Cxcl10. Bpifa1-/- mice had lower bronchoalveolar lavage concentrations of C-X-C motif chemokine ligand 10 (Cxcl10) and Cxcl9, interferon-inducible PMN chemokines. This was consistent with lower expression of IFNγ, IFNλ, downstream IFN-stimulated genes, and IFN-regulatory factors, which are important for the innate immune response. Administration of Cxcl10 before LPS treatment restored the inflammatory response in Bpifa1-/- mice. Our results identify a novel role for Bpifa1 in the regulation of Cxcl10-mediated PMN recruitment to the lungs via IFNγ and -λ signaling during acute inflammation.


Asunto(s)
Glicoproteínas/efectos de los fármacos , Glicoproteínas/genética , Inflamación/tratamiento farmacológico , Infiltración Neutrófila/efectos de los fármacos , Fosfoproteínas/efectos de los fármacos , Fosfoproteínas/genética , Enfermedad Aguda , Animales , Lipopolisacáridos/farmacología , Pulmón/efectos de los fármacos , Ratones Endogámicos C57BL , Infiltración Neutrófila/fisiología
3.
Am J Physiol Lung Cell Mol Physiol ; 313(1): L92-L103, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28385811

RESUMEN

Although different preclinical models have demonstrated a favorable role for bone marrow-derived mesenchymal stem cells (B-MSC) in preventing fibrosis, this protective effect is not observed with late administration of these cells, when fibrotic changes are consolidated. We sought to investigate whether the late administration of B-MSCs overexpressing microRNAs (miRNAs) let-7d (antifibrotic) or miR-154 (profibrotic) could alter lung fibrosis in a murine bleomycin model. Using lentiviral vectors, we transduced miRNAs (let-7d or miR-154) or a control sequence into human B-MSCs. Overexpression of let-7d or miR-154 was associated with changes in the mesenchymal properties of B-MSCs and in their cytokine expression. Modified B-MSCs were intravenously administered to mice at day 7 after bleomycin instillation, and the mice were euthanized at day 14 Bleomycin-injured animals that were treated with let-7d cells were found to recover quicker from the initial weight loss compared with the other treatment groups. Interestingly, animals treated with miR-154 cells had the lowest survival rate. Although a slight reduction in collagen mRNA levels was observed in lung tissue from let-7d mice, no significant differences were observed in Ashcroft score and OH-proline. However, the distinctive expression in cytokines and CD45-positive cells in the lung suggests that the differential effects observed in both miRNA mice groups were related to an effect on the immunomodulation function. Our results establish the use of miRNA-modified mesenchymal stem cells as a potential future research in lung fibrosis.


Asunto(s)
Lesión Pulmonar/metabolismo , Lesión Pulmonar/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Transducción Genética , Animales , Biomarcadores/metabolismo , Bleomicina , Células de la Médula Ósea/citología , Colágeno/genética , Colágeno/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Supervivencia , Transfección , Pérdida de Peso
4.
Am J Respir Crit Care Med ; 194(8): 948-960, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27104832

RESUMEN

RATIONALE: Despite shared environmental exposures, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease are usually studied in isolation, and the presence of shared molecular mechanisms is unknown. OBJECTIVES: We applied an integrative genomic approach to identify convergent transcriptomic pathways in emphysema and IPF. METHODS: We defined the transcriptional repertoire of chronic obstructive pulmonary disease, IPF, or normal histology lungs using RNA-seq (n = 87). MEASUREMENTS AND MAIN RESULTS: Genes increased in both emphysema and IPF relative to control were enriched for the p53/hypoxia pathway, a finding confirmed in an independent cohort using both gene expression arrays and the nCounter Analysis System (n = 193). Immunohistochemistry confirmed overexpression of HIF1A, MDM2, and NFKBIB members of this pathway in tissues from patients with emphysema or IPF. Using reads aligned across splice junctions, we determined that alternative splicing of p53/hypoxia pathway-associated molecules NUMB and PDGFA occurred more frequently in IPF or emphysema compared with control and validated these findings by quantitative polymerase chain reaction and the nCounter Analysis System on an independent sample set (n = 193). Finally, by integrating parallel microRNA and mRNA-Seq data on the same samples, we identified MIR96 as a key novel regulatory hub in the p53/hypoxia gene-expression network and confirmed that modulation of MIR96 in vitro recapitulates the disease-associated gene-expression network. CONCLUSIONS: Our results suggest convergent transcriptional regulatory hubs in diseases as varied phenotypically as chronic obstructive pulmonary disease and IPF and suggest that these hubs may represent shared key responses of the lung to environmental stresses.


Asunto(s)
Redes Reguladoras de Genes/genética , Fibrosis Pulmonar Idiopática/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Adulto , Enfisema/genética , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas I-kappa B/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo
5.
Am J Respir Crit Care Med ; 189(7): 787-98, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24559482

RESUMEN

RATIONALE: Aging is characterized by functional impairment and reduced capacity to respond appropriately to environmental stimuli and injury. With age, there is an increase in the incidence and severity of chronic and acute lung diseases. However, the relationship between age and the lung's reduced ability to repair is far from established and necessitates further research in the field. OBJECTIVES: Little is currently known about age-related phenomena in mesenchymal stem cells (MSCs). On account of their ability to protect the endothelium and the alveolar epithelium through multiple paracrine mechanisms, we looked for adverse effects that aging might cause in MSC biology. Such age-related changes might partly account for the increased susceptibility of the aging lung to injury. MEASUREMENTS AND MAIN RESULTS: We demonstrated that old mice have more inflammation in response to acute lung injury. To investigate the causes, we compared the global gene expression of aged and young bone marrow-derived MSCs (B-MSCs). Our results revealed that the expression levels of inflammatory response genes depended on the age of the B-MSCs. We demonstrated that the age-dependent decrease in expression of several cytokine and chemokine receptors is important for the migration and activation of B-MSCs. Finally, we showed by adoptive transfer of aged B-MSCs to young endotoxemic mice that aged cells lacked the antiinflammatory protective effect of their young counterparts. CONCLUSIONS: Taken together, the decreased expression of cytokine and chemokine receptors in aged B-MSCs compromises their protective role by perturbing the potential of B-MSCs to become activated and mobilize to the site of injury.


Asunto(s)
Lesión Pulmonar Aguda/fisiopatología , Envejecimiento/fisiología , Movimiento Celular/fisiología , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Madre Mesenquimatosas/fisiología , Lesión Pulmonar Aguda/metabolismo , Animales , Biomarcadores/metabolismo , Células de la Médula Ósea/fisiología , Quimiocinas/genética , Citocinas/genética , Regulación hacia Abajo , Femenino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cicatrización de Heridas/fisiología
6.
Am J Physiol Lung Cell Mol Physiol ; 306(6): L534-42, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24441869

RESUMEN

MicroRNAs are small noncoding RNAs that inhibit protein expression. We have previously shown that the inhibition of the microRNA let-7d in epithelial cells caused changes consistent with epithelial-to-mesenchymal transition (EMT) both in vitro and in vivo. The aim of this study was to determine whether the introduction of let-7d into fibroblasts alters their mesenchymal properties. Transfection of primary fibroblasts with let-7d caused a decrease in expression of the mesenchymal markers α-smooth muscle actin, N-cadherin, fibroblast-specific protein-1, and fibronectin, as well as an increase in the epithelial markers tight junction protein-1 and keratin 19. Phenotypic changes were also present, including a delay in wound healing, reduced motility, and proliferation of fibroblasts following transfection. In addition, we examined the effects of transfection on fibroblast responsiveness to TGF-ß, an important factor in many fibrotic processes such as lung fibrosis and found that let-7d transfection significantly attenuated high-mobility group-A2 protein induction by TGF-ß. Our results indicate that administration of the epithelial microRNA let-7d can significantly alter the phenotype of primary fibroblasts.


Asunto(s)
Transición Epitelial-Mesenquimal , Fibroblastos/citología , Pulmón/metabolismo , MicroARNs/genética , Miofibroblastos/metabolismo , Fibrosis Pulmonar/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Actinas/metabolismo , Cadherinas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Movimiento Celular/genética , Proliferación Celular , Células Cultivadas , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Proteína HMGA2/metabolismo , Proteína HMGB2/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Queratina-19/metabolismo , Pulmón/citología , Alveolos Pulmonares/metabolismo , Fibrosis Pulmonar/genética , Proteína de Unión al Calcio S100A4 , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección , Cicatrización de Heridas/genética , Proteína de la Zonula Occludens-1/metabolismo
7.
PLoS Comput Biol ; 8(12): e1002830, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284279

RESUMEN

MicroRNAs (miRNAs) are post-transcriptional regulators that bind to their target mRNAs through base complementarity. Predicting miRNA targets is a challenging task and various studies showed that existing algorithms suffer from high number of false predictions and low to moderate overlap in their predictions. Until recently, very few algorithms considered the dynamic nature of the interactions, including the effect of less specific interactions, the miRNA expression level, and the effect of combinatorial miRNA binding. Addressing these issues can result in a more accurate miRNA:mRNA modeling with many applications, including efficient miRNA-related SNP evaluation. We present a novel thermodynamic model based on the Fermi-Dirac equation that incorporates miRNA expression in the prediction of target occupancy and we show that it improves the performance of two popular single miRNA target finders. Modeling combinatorial miRNA targeting is a natural extension of this model. Two other algorithms show improved prediction efficiency when combinatorial binding models were considered. ComiR (Combinatorial miRNA targeting), a novel algorithm we developed, incorporates the improved predictions of the four target finders into a single probabilistic score using ensemble learning. Combining target scores of multiple miRNAs using ComiR improves predictions over the naïve method for target combination. ComiR scoring scheme can be used for identification of SNPs affecting miRNA binding. As proof of principle, ComiR identified rs17737058 as disruptive to the miR-488-5p:NCOA1 interaction, which we confirmed in vitro. We also found rs17737058 to be significantly associated with decreased bone mineral density (BMD) in two independent cohorts indicating that the miR-488-5p/NCOA1 regulatory axis is likely critical in maintaining BMD in women. With increasing availability of comprehensive high-throughput datasets from patients ComiR is expected to become an essential tool for miRNA-related studies.


Asunto(s)
Densidad Ósea/genética , MicroARNs/genética , Modelos Teóricos , Polimorfismo de Nucleótido Simple , Algoritmos , Animales , Drosophila/genética , Humanos
8.
ACS Biomater Sci Eng ; 7(3): 1088-1099, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33528242

RESUMEN

Escherichiacoli has become the prominent cause of nosocomial pneumonia in recent years. In the meantime, some strains of E. coli have developed resistance to commonly used antibacterial drugs. The urinary bladder matrix (UBM) is a biologically derived scaffold material that has been used to promote site-appropriate tissue remodeling in a variety of body systems, partially through the modulation of the innate immune response. In this study, we seek to determine UBM efficacy in preventing bacterial pneumonia in mouse lungs using the Gram-negative bacterial strain E. coli. Our results show that the UBM prevented bacterial biofilm formation in both abiotic and biotic conditions through experimentation on polystyrene plates and culture on the apical surface of differentiated airway epithelial cells. Intratracheal treatment with UBM led to host protection from E. coli-induced respiratory infection in a murine pneumonia model. Transcriptomic analysis revealed the involvement of the enhanced host immune response in UBM-treated mice. Additionally, UBM-treated macrophages had an increased iNOS expression and enhanced phagocytosis activity. Therefore, the protection against E. coli-induced infection and the antibacterial function observed by UBM is potentially through both the anti-biofilm activity and enhanced host immunity following UBM treatment. Taken together, our results support further investigation of UBM as an alternative treatment to attenuate bacterial-induced respiratory infection.


Asunto(s)
Infecciones por Escherichia coli , Neumonía , Animales , Escherichia coli , Infecciones por Escherichia coli/tratamiento farmacológico , Inmunidad Innata , Ratones , Neumonía/tratamiento farmacológico , Vejiga Urinaria
9.
Sci Adv ; 7(16)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33863719

RESUMEN

The avascular nature of cornea tissue limits its regenerative potential, which may lead to incomplete healing and formation of scars when damaged. Here, we applied micro- and ultrafine porcine urinary bladder matrix (UBM) particulate to promote type 2 immune responses in cornea wounds. Results demonstrated that UBM particulate substantially reduced corneal haze formation as compared to the saline-treated group. Flow cytometry and gene expression analysis showed that UBM particulate suppressed the differentiation of corneal stromal cells into α-smooth muscle actin-positive (αSMA+) myofibroblasts. UBM treatments up-regulated interleukin-4 (IL-4) produced primarily by eosinophils in the wounded corneas and CD4+ T cells in draining lymph nodes, suggesting a cross-talk between local and peripheral immunity. Gata1-/- mice lacking eosinophils did not respond to UBM treatment and had impaired wound healing. In summary, stimulating type 2 immune responses in the wounded cornea can promote proregenerative environments that lead to improved wound healing for vision restoration.


Asunto(s)
Lesiones de la Cornea , Vejiga Urinaria , Animales , Córnea/patología , Lesiones de la Cornea/patología , Matriz Extracelular/metabolismo , Ratones , Porcinos , Vejiga Urinaria/metabolismo , Cicatrización de Heridas/fisiología
10.
J Immunol Regen Med ; 132021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34027260

RESUMEN

INTRODUCTION: Macrophages are capable of extreme plasticity and their activation state has been strongly associated with solid tumor growth progression and regression. Although the macrophage response to extracellular matrix (ECM) isolated from normal tissue is reasonably well understood, there is a relative dearth of information regarding their response to ECM isolated from chronically inflamed tissues, pre-neoplastic tissues, and neoplastic tissues. Esophageal adenocarcinoma (EAC) is a type of neoplasia driven by chronic inflammation in the distal esophagus, and the length of the esophagus provides the opportunity to investigate macrophage behavior in the presence of ECM isolated from a range of disease states within the same organ. METHODS: Normal, metaplastic, and neoplastic ECM hydrogels were prepared from decellularized EAC tissue. The hydrogels were evaluated for their nanofibrous structure (SEM), biochemical profile (targeted and global proteomics), and direct effect upon macrophage (THP-1 cell) activation state (qPCR, ELISA, immunolabeling) and indirect effect upon epithelial cell (Het-1A) migration (Boyden chamber). RESULTS: Nanofibrous ECM hydrogels from the three tissue types could be formed, and normal and neoplastic ECM showed distinctive protein profiles by targeted and global mass spectroscopy. ECM proteins functionally related to cancer and tumorigenesis were identified in the neoplastic esophageal ECM including collagen alpha-1(VIII) chain (COL8A1), lumican, and elastin. Metaplastic and neoplastic esophageal ECM induce distinctive effects upon THP-1 macrophage signaling compared to normal esophageal ECM. These effects include activation of pro-inflammatory IFNγ and TNFα gene expression and anti-inflammatory IL1RN gene expression. Most notably, neoplastic ECM robustly increased macrophage TNFα protein expression. The secretome of macrophages pre-treated with metaplastic and neoplastic ECM increases the migration of normal esophageal epithelial cells, similar behavior to that shown by tumor cells. Metaplastic ECM shows similar but less pronounced effects than neoplastic ECM suggesting the abnormal signals also exist within the pre-cancerous state. CONCLUSION: A progressively diseased ECM, as exists within the esophagus exposed to chronic gastric reflux, can provide insights into novel biomarkers of early disease and identify potential therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA