Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 158(6): 1281-1292, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25215487

RESUMEN

A dichotomous choice for metazoan cells is between proliferation and differentiation. Measuring tRNA pools in various cell types, we found two distinct subsets, one that is induced in proliferating cells, and repressed otherwise, and another with the opposite signature. Correspondingly, we found that genes serving cell-autonomous functions and genes involved in multicellularity obey distinct codon usage. Proliferation-induced and differentiation-induced tRNAs often carry anticodons that correspond to the codons enriched among the cell-autonomous and the multicellularity genes, respectively. Because mRNAs of cell-autonomous genes are induced in proliferation and cancer in particular, the concomitant induction of their codon-enriched tRNAs suggests coordination between transcription and translation. Histone modifications indeed change similarly in the vicinity of cell-autonomous genes and their corresponding tRNAs, and in multicellularity genes and their tRNAs, suggesting the existence of transcriptional programs coordinating tRNA supply and demand. Hence, we describe the existence of two distinct translation programs that operate during proliferation and differentiation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Biosíntesis de Proteínas , ARN de Transferencia/genética , Anticodón , Línea Celular Tumoral , Transformación Celular Neoplásica , Codón , Histonas/metabolismo , Humanos , Neoplasias/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Transcriptoma
2.
N Engl J Med ; 386(26): 2471-2481, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35767439

RESUMEN

BACKGROUND: Pediatric patients with diffuse intrinsic pontine glioma (DIPG) have a poor prognosis, with a median survival of less than 1 year. Oncolytic viral therapy has been evaluated in patients with pediatric gliomas elsewhere in the brain, but data regarding oncolytic viral therapy in patients with DIPG are lacking. METHODS: We conducted a single-center, dose-escalation study of DNX-2401, an oncolytic adenovirus that selectively replicates in tumor cells, in patients with newly diagnosed DIPG. The patients received a single virus infusion through a catheter placed in the cerebellar peduncle, followed by radiotherapy. The primary objective was to assess the safety and adverse-event profile of DNX-2401. The secondary objectives were to evaluate the effect of DNX-2401 on overall survival and quality of life, to determine the percentage of patients who have an objective response, and to collect tumor-biopsy and peripheral-blood samples for correlative studies of the molecular features of DIPG and antitumor immune responses. RESULTS: A total of 12 patients, 3 to 18 years of age, with newly diagnosed DIPG received 1×1010 (the first 4 patients) or 5×1010 (the subsequent 8 patients) viral particles of DNX-2401, and 11 received subsequent radiotherapy. Adverse events among the patients included headache, nausea, vomiting, and fatigue. Hemiparesis and tetraparesis developed in 1 patient each. Over a median follow-up of 17.8 months (range, 5.9 to 33.5), a reduction in tumor size, as assessed on magnetic resonance imaging, was reported in 9 patients, a partial response in 3 patients, and stable disease in 8 patients. The median survival was 17.8 months. Two patients were alive at the time of preparation of the current report, 1 of whom was free of tumor progression at 38 months. Examination of a tumor sample obtained during autopsy from 1 patient and peripheral-blood studies revealed alteration of the tumor microenvironment and T-cell repertoire. CONCLUSIONS: Intratumoral infusion of oncolytic virus DNX-2401 followed by radiotherapy in pediatric patients with DIPG resulted in changes in T-cell activity and a reduction in or stabilization of tumor size in some patients but was associated with adverse events. (Funded by the European Research Council under the European Union's Horizon 2020 Research and Innovation Program and others; EudraCT number, 2016-001577-33; ClinicalTrials.gov number, NCT03178032.).


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Viroterapia Oncolítica , Virus Oncolíticos , Adenoviridae , Adolescente , Astrocitoma/radioterapia , Astrocitoma/terapia , Neoplasias del Tronco Encefálico/mortalidad , Neoplasias del Tronco Encefálico/patología , Neoplasias del Tronco Encefálico/radioterapia , Neoplasias del Tronco Encefálico/terapia , Niño , Preescolar , Glioma Pontino Intrínseco Difuso/mortalidad , Glioma Pontino Intrínseco Difuso/radioterapia , Glioma Pontino Intrínseco Difuso/terapia , Glioma/radioterapia , Glioma/terapia , Humanos , Infusiones Intralesiones , Viroterapia Oncolítica/efectos adversos , Viroterapia Oncolítica/métodos , Calidad de Vida , Microambiente Tumoral
3.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732225

RESUMEN

Oncolytic viruses (OVs) are characterised by their preference for infecting and replicating in tumour cells either naturally or after genetic modification, resulting in oncolysis. Furthermore, OVs can elicit both local and systemic anticancer immune responses while specifically infecting and lysing tumour cells. These characteristics render them a promising therapeutic approach for paediatric brain tumours (PBTs). PBTs are frequently marked by a cold tumour immune microenvironment (TIME), which suppresses immunotherapies. Recent preclinical and clinical studies have demonstrated the capability of OVs to induce a proinflammatory immune response, thereby modifying the TIME. In-depth insights into the effect of OVs on different cell types in the TIME may therefore provide a compelling basis for using OVs in combination with other immunotherapy modalities. However, certain limitations persist in our understanding of oncolytic viruses' ability to regulate the TIME to enhance anti-tumour activity. These limitations primarily stem from the translational limitations of model systems, the difficulties associated with tracking reliable markers of efficacy throughout the course of treatment and the role of pre-existing viral immunity. In this review, we describe the different alterations observed in the TIME in PBTs due to OV treatment, combination therapies of OVs with different immunotherapies and the hurdles limiting the development of effective OV therapies while suggesting future directions based on existing evidence.


Asunto(s)
Neoplasias Encefálicas , Viroterapia Oncolítica , Virus Oncolíticos , Microambiente Tumoral , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Viroterapia Oncolítica/métodos , Microambiente Tumoral/inmunología , Virus Oncolíticos/fisiología , Virus Oncolíticos/genética , Niño , Inmunoterapia/métodos , Terapia Combinada/métodos , Animales
4.
Br J Cancer ; 127(7): 1193-1200, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35715639

RESUMEN

High-grade gliomas, in particularly diffuse midline glioma, H3K27-altered in children and glioblastoma in adults, are the most lethal brain tumour with a dismal prognosis. Developments in modern medicine are constantly being applied in the search for a cure, although finding the right strategy remains elusive. Circumventing the blood-brain barrier is one of the biggest challenges when it comes to treating brain tumours. The cat and mouse game of finding the Trojan horse to traverse this barrier and deliver therapeutics to the brain has been a long and hard-fought struggle. Research is ongoing to find new and feasible ways to reach specific targets in the brain, with a special focus on inoperable or recurring brain tumours. Many options and combinations of options have been tested to date and continue to be so in the search to find the most effective and least toxic treatment paradigm. Although improvements are often small and slow, some of these strategies have already shown promise, shining a light of hope that finding the cure is feasible. In this review, we discuss recent findings that elucidate promising but atypical strategies for targeting gliomas and the implications that this work has on developing new treatment regimens.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioblastoma/tratamiento farmacológico , Glioma/tratamiento farmacológico , Glioma/patología , Humanos , Recurrencia Local de Neoplasia , Pronóstico
5.
Pediatr Blood Cancer ; 68(9): e29061, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33942498

RESUMEN

INTRODUCTION: Diffuse intrinsic pontine glioma (DIPG) is a rare and aggressive childhood brainstem malignancy with a 2-year survival rate of <10%. This international survey study aims to evaluate the use of complementary and alternative medicine (CAM) in this patient population. METHODS: Parents and physicians of patients with DIPG were asked to participate in a retrospective online survey regarding CAM use during time of illness. RESULTS: Between January and May 2020, 120 parents and 75 physicians contributed to the online survey. Most physicians estimated that <50% of their patients used CAM, whereas 69% of the parents reported using CAM to treat their child during time of illness. Cannabis was the most frequently used form of CAM, followed by vitamins and minerals, melatonin, curcumin, and boswellic acid. CAM was mainly used with the intention of direct antitumor effect. Other motivations were to treat side effects of chemotherapy or to increase comfort of the child. Children diagnosed from 2016 onwards were more likely to use CAM (χ2  = 6.08, p = .014). No significant difference was found between CAM users and nonusers based on ethnicity (χ2  = 4.18, p = .382) or country of residence (χ2  = 9.37, p = .154). Almost 50% of the physicians do not frequently ask their patients about possible CAM use. CONCLUSION: This survey demonstrates that worldwide, a considerable number of patients with DIPG use CAM. Physicians should be more aware of potential CAM use and actively discuss the topic. In addition, more research is needed to gain knowledge about possible anticancer effects of CAM and (positive/negative) interactions with conventional therapies.


Asunto(s)
Neoplasias del Tronco Encefálico , Terapias Complementarias , Glioma Pontino Intrínseco Difuso , Neoplasias del Tronco Encefálico/terapia , Niño , Glioma Pontino Intrínseco Difuso/terapia , Humanos , Sistema de Registros , Estudios Retrospectivos
6.
Drug Resist Updat ; 44: 15-25, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31202081

RESUMEN

Diffuse midline gliomas (DMG) are rapidly fatal tumors of the midbrain in children, characterized by a diffuse growing pattern and high levels of intrinsic resistance to therapy. The location of these tumors, residing behind the blood-brain barrier (BBB), and the limited knowledge about the biology of these tumors, has hindered the development of effective treatment strategies. However, the introduction of diagnostic biopsies and the implementation of autopsy protocols in several large centers world-wide has allowed for a detailed characterization of these rare tumors. This has resulted in the identification of novel therapeutic targets, as well as major advances in understanding the biology of DMG in relation to therapy resistance. We here provide an overview of the cellular pathways and tumor-specific aberrations that have been targeted in preclinical DMG research, and discuss the advantages and limitations of these therapeutic strategies in relation to therapy resistance and BBB-penetration. Therewith, we aim to provide researchers with a framework for successful preclinical therapy development.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glioma/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Proteínas de Neoplasias/genética , Antineoplásicos/uso terapéutico , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Niño , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Glioma/genética , Glioma/metabolismo , Glioma/patología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Mesencéfalo/patología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Transducción de Señal
7.
J Neurooncol ; 141(2): 265, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30484110

RESUMEN

There are two errors and one omission in the original article. Author Gottardo's correct name is Nicholas G. Gottardo, author Hulleman's correct affiliation is no. 3 (VUMC, Amsterdam), and the Acknowledgements should include the following sentence: "We would like to thank Dr Angel Montero Carcaboso (Hospital Sant Joan de Deu, Barcelona, Spain) for generously supplying the HSJD-DIPG007 cells."

8.
J Neurooncol ; 141(2): 253-263, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30446898

RESUMEN

PURPOSE: Diffuse intrinsic pontine glioma is the most aggressive form of high grade glioma in children with no effective therapies. There have been no improvements in survival in part due poor understanding of underlying biology, and lack of representative in vitro and in vivo models. Recently, it has been found feasible to use both biopsy and autopsy tumors to generate cultures and xenograft models. METHODS: To further model development, we evaluated the collective international experience from 8 collaborating centers to develop DIPG pre-clinical models from patient-derived autopsies and biopsies. Univariate and multivariate analysis was performed to determine key factors associated with the success of in vitro and in vivo PDX development. RESULTS: In vitro cultures were successfully established from 57% of samples (84.2% of biopsies and 38.2% of autopsies). Samples transferred in DMEM media were more likely to establish successful culture than those transported in Hibernate A. In vitro cultures were more successful from biopsies (84.2%) compared with autopsies (38.2%) and as monolayer on laminin-coated plates than as neurospheres. Primary cultures successfully established from autopsy samples were more likely to engraft in animal models than cultures established from biopsies (86.7% vs. 47.4%). Collectively, tumor engraftment was more successful when DIPG samples were directly implanted in mice (68%), rather than after culturing (40.7%). CONCLUSION: This multi-center study provides valuable information on the success rate of establishing patient-derived pre-clinical models of DIPG. The results can lead to further optimization of DIPG model development and ultimately assist in the investigation of new therapies for this aggressive pediatric brain tumor.


Asunto(s)
Neoplasias del Tronco Encefálico/fisiopatología , Neoplasias del Tronco Encefálico/terapia , Glioma/fisiopatología , Glioma/terapia , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Neoplasias del Tronco Encefálico/genética , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Glioma/genética , Histonas/genética , Humanos , Ratones , Mutación , Estudios Retrospectivos
9.
Cell Mol Life Sci ; 75(5): 871-887, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29164272

RESUMEN

Pediatric high-grade gliomas (pHGG), including diffuse intrinsic pontine gliomas (DIPG), are the most lethal types of cancer in children. In recent years, it has become evident that these tumors are driven by epigenetic events, mainly mutations involving genes encoding Histone 3, setting them apart from their adult counterparts. These tumors are exceptionally resistant to chemotherapy and respond only temporarily to radiotherapy. Moreover, their delicate location and diffuse growth pattern make complete surgical resection impossible. In many other forms of cancer, chemo- and radioresistance, in combination with a diffuse, invasive phenotype, are associated with a transcriptional program termed the epithelial-to-mesenchymal transition (EMT). Activation of this program allows cancer cells to survive individually, invade surrounding tissues and metastasize. It also enables them to survive exposure to cytotoxic therapy, including chemotherapeutic drugs and radiation. We here suggest that EMT plays an important, yet poorly understood role in the biology and therapy resistance of pHGG and DIPG. This review summarizes the current knowledge on the major signal transduction pathways and transcription factors involved in the epithelial-to-mesenchymal transition in cancer in general and in pediatric HGG and DIPG in particular. Despite the fact that the mesenchymal transition has not yet been specifically studied in pHGG and DIPG, activation of pathways and high levels of transcription factors involved in EMT have been described. We conclude that the mesenchymal transition is likely to be an important element of the biology of pHGG and DIPG and warrants further investigation for the development of novel therapeutics.


Asunto(s)
Neoplasias del Tronco Encefálico/patología , Transición Epitelial-Mesenquimal/fisiología , Glioma/patología , Transducción de Señal/fisiología , Adulto , Neoplasias del Tronco Encefálico/metabolismo , Niño , Glioma/metabolismo , Humanos , Clasificación del Tumor
10.
Lancet Oncol ; 19(8): e419-e428, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30102236

RESUMEN

Paediatric CNS tumours are the most common cause of childhood cancer-related morbidity and mortality, and improvements in their diagnosis and treatment are needed. New genetic and epigenetic information about paediatric CNS tumours is transforming the field dramatically. For most paediatric CNS tumour entities, subgroups with distinct biological characteristics have been identified, and these characteristics are increasingly used to facilitate accurate diagnoses and therapeutic recommendations. Future treatments will be further tailored to specific molecular subtypes of disease, specific tumour predisposition syndromes, and other biological criteria. Successful biomaterial collection is a key requirement for the application of contemporary methodologies for the validation of candidate prognostic factors, the discovery of new biomarkers, the establishment of appropriate preclinical research models for targeted agents, a quicker clinical implementation of precision medicine, and for other therapeutic uses (eg, for immunotherapies). However, deficits in organisational structures and interdisciplinary cooperation are impeding the collection of high-quality biomaterial from CNS tumours in most centres. Practical, legal, and ethical guidelines for consent, storage, material transfer, biobanking, data sharing, and funding should be established by research consortia and local institutions to allow optimal collection of primary and subsequent tumour tissue, body fluids, and normal tissue. Procedures for the collection and storage of biomaterials and related data should be implemented according to the individual and organisational structures of the local institutions.


Asunto(s)
Bancos de Muestras Biológicas/normas , Biomarcadores de Tumor , Neoplasias del Sistema Nervioso Central , Oncología Médica/normas , Investigación Biomédica Traslacional/métodos , Bancos de Muestras Biológicas/ética , Bancos de Muestras Biológicas/organización & administración , Niño , Femenino , Humanos , Masculino , Oncología Médica/organización & administración , Oncología Médica/tendencias , Investigación Biomédica Traslacional/organización & administración , Investigación Biomédica Traslacional/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA