Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(14): 143601, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37862651

RESUMEN

We show that the second-order, two-time correlation functions for phonons and photons emitted from a vibronic molecule in a thermal bath result in bunching and antibunching (a purely quantum effect), respectively. Signatures relating to phonon exchange with the environment are revealed in photon-photon correlations. We demonstrate that cross-correlation functions have a strong dependence on the order of detection giving insight into how phonon dynamics influences the emission of light. This work offers new opportunities to investigate quantum effects in condensed-phase molecular systems.

2.
J Chem Phys ; 156(8): 084103, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35232209

RESUMEN

We elucidate the influence of the system-bath boundary placement within an open quantum system, with emphasis on the two-dimensional electronic spectra, through the application of the hierarchical equations of motion formalism for an exciton system. We apply two different models, the Hamiltonian vibration model (HVM) and bath vibration model (BVM), to a monomer and a homodimer. In the HVM, we specifically include the vibronic states in the Hamiltonian capturing vibronic quenching, whereas in the BVM, all vibrational details are contained within the bath and described by an underdamped spectral density. The resultant spectra are analyzed in terms of energetic peak position and thermodynamic broadening precision in order to evaluate the efficacy of the two models. The HVM produces 2D spectra with accurate peak positional information, while the BVM is well suited to modeling dynamic peak broadening. For the monomer, both models produce equivalent spectra in the limit where additional damping associated with the underdamped vibration in the BVM approaches zero. This is supported by analytical results. However, for the homodimer, the BVM spectra are redshifted with respect to the HVM due to an absence of vibronic quenching in the BVM. The computational efficiency of the two models is also discussed in order to inform us of the most appropriate use of each method.

3.
J Chem Phys ; 151(17): 174112, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703500

RESUMEN

Non-Markovian effects in open quantum systems are central to understanding spectral lineshape. Here, we quantify the non-Markovianity associated with both overdamped and underdamped vibrations in terms of information flow between the bath and the system and compare this with the broadening and ellipticity of two-dimensional spectra. Using the Breuer Laine Piilo (BLP) measure, we link the well-known stochastic models for spectral lineshape with modern quantum information theory. Specifically, we study the effect of non-Markovianity in a system in contact with underdamped vibrations and examine the differences observed on increasing the damping to the overdamped limit. The open quantum system dynamics are evolved using the hierarchical equations of motion, efficiently terminated with a Markovian cutoff, where separate hierarchies are derived for the underdamped and overdamped environments. It is shown that the BLP measure is quantitatively correlated with the ellipticity of two-dimensional spectra and memory effects are more pronounced in underdamped environments, due to the long-lived feedback of information between the system and its bath, compared to overdamped environments. Environmental signatures in spectral lineshapes emerge as a result of information flow from the bath back into the system.

4.
J Chem Theory Comput ; 20(13): 5383-5395, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38889316

RESUMEN

Open quantum systems often operate in the non-Markovian regime where a finite history of a trajectory is intrinsic to its evolution. The degree of non-Markovianity for a trajectory may be measured in terms of the amount of information flowing from the bath back into the system. In this study, we consider how information flows through the auxiliary density operators (ADOs) in the hierarchical equations of motion. We consider three cases for a range of baths, underdamped, intermediate, and overdamped. By understanding how information flows, we are able to determine the relative importance of different ADOs within the hierarchy. We show that ADOs sharing a common Matsubara axis behave similarly, while ADOs on different Matsubara axes behave differently. Using this knowledge, we are able to truncate hierarchies significantly, thus reducing the computation time, while obtaining qualitatively similar results. This is illustrated by comparing 2D electronic spectra for a molecule with an underdamped vibration subsumed into the bath spectral density.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA