RESUMEN
Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Proteínas de Plantas , Gossypium/genética , Gossypium/parasitología , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Animales , Giberelinas/metabolismo , Gosipol/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Mariposas Nocturnas/fisiología , Larva/crecimiento & desarrolloRESUMEN
KEY MESSAGE: The transcriptomic, phenotypic and metabolomic analysis of transgenic plants overexpressing GhMPK31 in upland cotton revealed the regulation of H2O2 burst and the synthesis of defensive metabolites by GhMPK31. Mitogen-activated protein kinases (MAPKs) are a crucial class of protein kinases, which play an essential role in various biological processes in plants. Upland cotton (G. hirsutum) is the most widely cultivated cotton species with high economic value. To gain a better understanding of the role of the MAPK gene family, we conducted a comprehensive analysis of the MAPK gene family in cotton. In this study, a total of 55 GhMPK genes were identified from the whole genome of G. hirsutum. Through an investigation of the expression patterns under diverse stress conditions, we discovered that the majority of GhMPK family members demonstrated robust responses to abiotic stress, pathogen stress and pest stress. Furthermore, the overexpression of GhMPK31 in cotton leaves led to a hypersensitive response (HR)-like cell death phenotype and impaired the defense capability of cotton against herbivorous insects. Transcriptome and metabolomics data analysis showed that overexpression of GhMPK31 enhanced the expression of H2O2-related genes and reduced the accumulation of defensive related metabolites. The direct evidence of GhMPK31 interacting with GhRBOHB (H2O2-generating protein) were found by Y2H, BiFC, and LCI. Therefore, we propose that the increase of H2O2 content caused by overexpression of GhMPK31 resulted in HR-like cell death in cotton leaves while reducing the accumulation of defensive metabolites, ultimately leading to a decrease in the defense ability of cotton against herbivorous insects. This study provides valuable insights into the function of MAPK genes in plant resistance to herbivorous insects.
Asunto(s)
Gossypium , Peróxido de Hidrógeno , Gossypium/metabolismo , Peróxido de Hidrógeno/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , FilogeniaRESUMEN
BACKGROUND: Advances in molecular imaging strategies have had an effect on precise diagnosis and treatment. Research has been intensified to develop more effective and versatile radiopharmaceuticals to uplift diagnostic efficiency and, consequently, the treatment. PURPOSE: To label the flutamide (FLUT) coupled with diethylenetriamine pentaacetate (DTPA) with technetium-99â m (99mTc) and to evaluate its binding efficiency with rhabdomyosarcoma (RMS) cancer cells. MATERIAL AND METHODS: Radiolabeling of FLUT with 185â MBq freshly eluted 99mTcO4-1 was carried out via DTPA bifunctional chelating agent using stannous chloride reducing agent at pH 5. The labeled compound was assessed for its purity using chromatography analysis, stability in saline and blood serum, AND charge using paper electrophoresis. Normal biodistribution was studied using a mouse model, while binding affinity with RMS cancer cells was studied using an internalization assay. The in vivo accumulation of RMS cancer cells in a rabbit model was monitored using a SPECT gamma camera. RESULTS: Radiolabeling reaction displayed a pharmaceutical yield of 97% and a stability assay showed >95% intact radiopharmaceutical up to 6â h in saline and blood serum. In vitro internalization studies showed the potential of [99mTc]DTPA-FLUT to enter into cancer cells. This biodistribution study showed rapid blood clearance and minimum uptake by body organs, and scintigraphy displayed the [99mTc]DTPA-FLUT uptake by lesion, induced by RMS cancer cell lines in rabbit. CONCLUSION: Stable, newly developed [99mTc]DTPA-FLUT seeks its way to internalize into RMS cancer cells, indicating it could be a potential candidate for the diagnosis of RMS cancer.
Asunto(s)
Flutamida , Radiofármacos , Pentetato de Tecnecio Tc 99m , Animales , Ratones , Conejos , Radiofármacos/farmacocinética , Distribución Tisular , Pentetato de Tecnecio Tc 99m/farmacocinética , Flutamida/farmacocinética , Rabdomiosarcoma/diagnóstico por imagen , Modelos Animales de Enfermedad , Línea Celular Tumoral , Tomografía Computarizada de Emisión de Fotón Único/métodosRESUMEN
OBJECTIVE AND SIGNIFICANCE: Reducing the dimensions, when other additives are present, shows potential as a method to improve the dissolution and solubility of biopharmaceutical classification system class II drugs that have poor solubility. In this investigation, the process involved grinding naproxen with nicotinamide with the aim of improving solubility and the rate of dissolution. METHODS: Naproxen was subjected to co-milling with urea, dimethylurea, and nicotinamide using a planetary ball mill for a duration of 90 min, maintaining a 1:1 molar ratio for the excipients (screening studies). The co-milled combinations, naproxen in its pure milled form, and a physical mixture were subjected to analysis using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), and solubility assessment. The mixture displaying the highest solubility (naproxen-nicotinamide) was chosen for further investigation, involving testing for intrinsic dissolution rate (IDR) and Fourier-transform infrared spectroscopy (FTIR) after co-milling for both 90 and 480 min. RESULTS AND CONCLUSION: The co-milled combination, denoted as S-3b and consisting of the most substantial ratio of nicotinamide to naproxen at 1:3, subjected to 480 min of milling, exhibited a remarkable 45-fold increase in solubility and a 9-fold increase in IDR. XRPD analysis of the co-milled samples demonstrated no amorphization, while SEM images portrayed the aggregates of naproxen with nicotinamide. FTIR outcomes negate the presence of any chemical interactions between the components. The co-milled sample exhibiting the highest solubility and IDR was used to create a tablet, which was then subjected to comprehensive evaluation for standard attributes. The results revealed improved compressibility and dissolution properties.
Asunto(s)
Naproxeno , Niacinamida , Solubilidad , Comprimidos , Difracción de Rayos X , Naproxeno/química , Niacinamida/química , Difracción de Rayos X/métodos , Excipientes/química , Química Farmacéutica/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Composición de Medicamentos/métodos , Microscopía Electrónica de Rastreo/métodosRESUMEN
Plants cannot avoid environmental challenges and are constantly threatened by diverse biotic and abiotic stresses. However, plants have developed a unique immune system to defend themselves against the invasion of various pathogens. Melatonin, N-acetyl-5-methoxytryptamine has positive physiological effects in plants that are involved in disease resistance. The processes underlying melatonin-induced pathogen resistance in plants are still unknown. The current study explores how melatonin regulates the plant-disease interaction in maize. The results showed that 400 µM melatonin strongly reduced the disease lesion on maize stalks by 1.5 cm and corn by 4.0 cm caused by Fusarium graminearum PH-1. Furthermore, after treatment with melatonin, the plant defense enzymes like SOD significantly increased, while POD and APX significantly decreased compared to the control. In addition, melatonin can also improve maize's innate immunity, which is mediated by melatonin treatments through the salicylic acid signaling pathway, and up-regulate the defense-associated expression of PR1, LOX1, OXR, serPIN, and WIPI genes in maize. Melatonin not only inhibits the disease in the maize stalks and corn, but also down-regulates the deoxynivalenol (DON) production-related expression of genes Tri1, Tri4, Tri5, and Tri6 in maize. Overall, this study sheds new light on the mechanisms by which melatonin regulates antioxidant enzymes and defense-related genes involved in plant immunity to effectively suppress plant diseases.
Asunto(s)
Fusarium , Melatonina , Melatonina/farmacología , Zea mays/metabolismo , Virulencia , Plantas , Enfermedades de las PlantasRESUMEN
Fruits along with vegetables are crucial for a balanced diet. These not only have delicious flavors but are also reported to decrease the risk of contracting various chronic diseases. Fruit by-products are produced in huge quantity during industrial processing and constitute a serious issue because they may pose a harmful risk to the environment. The proposal of employing fruit by-products, particularly fruit peels, has gradually attained popularity because scientists found that in many instances peels displayed better biological and pharmacological applications than other sections of the fruit. The aim of this review is to highlight the importance of fruit peel extracts and natural products obtained in food industries along with their other potential biological applications.
RESUMEN
Breast cancer is known as the most devastating cancer in the global female community and is considered as one of the severe health care burdens in both developed and developing countries. In many cases, breast cancer has shown resistance to chemotherapy, radiotherapy and hormonal therapy. Keeping in view these limitations, there is an urgent need to develop safe, readily available and effective breast anticancer treatments. Therefore, the scientists are keen in the extraction of plant-based phytochemicals (organosulfur compounds, betalains, capsaicinoids, terpenes, terpenoids, polyphenols, and flavonoids) and using them as breast anticancer agents. Results of numerous epidemiological investigations have revealed the promising role of phytochemicals in the prevention and treatment of breast cancer. The diverse classes of plant bioactive metabolites regulate different metabolic and molecular processes, which can delay the proliferation of cancers. These phytochemicals possess chemo-preventive properties as they down-regulate the expression of estrogen receptor-α, inhibit the proliferation of cancer cells, and cause cell cycle arrest by inducing apoptotic conditions in tumor cells. This review article discusses the potent role of various plant-based phytochemicals as potential therapeutic agents in the treatment or prevention of breast cancer along with the proposed mechanisms of action.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Antineoplásicos/farmacología , Betalaínas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/prevención & control , Femenino , Flavonoides/farmacología , Flavonoides/uso terapéutico , Humanos , Fitoquímicos/químicaRESUMEN
Plants are vulnerable to a number of abiotic and biotic stresses that cause a substantial decrease in the production of plants. Plants respond to different environmental stresses by experiencing a series of molecular and physiological changes coordinated by various phytohormones. The use of phytohormones to alleviate stresses has recently achieved increasing interest. Brassinosteroids (BRs) are a group of polyhydroxylated steroidal phytohormones that are required for the development, growth, and productivity of plants. These hormones are involved in regulating the division, elongation, and differentiation of numerous cell types throughout the entire plant life cycle. BR studies have drawn the interest of plant scientists over the last few decades due to their flexible ability to mitigate different environmental stresses. BRs have been shown in numerous studies to have a positive impact on plant responses to various biotic and abiotic stresses. BR receptors detect the BR at the cell surface, triggering a series of phosphorylation events that activate the central transcription factor (TF) Brassinazole-resistant 1 (BZR1), which regulates the transcription of BR-responsive genes in the nucleus. This review discusses the discovery, occurrence, and chemical structure of BRs in plants. Furthermore, their role in the growth and development of plants, and against various stresses, is discussed. Finally, BR signaling in plants is discussed.
Asunto(s)
Brasinoesteroides/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta , Estrés FisiológicoRESUMEN
Agarose (AG) is a naturally occurring biocompatible marine seaweed extract that is converted to hydrocolloid gel in hot water with notable gel strength. Currently, its mucoadhesion properties have not been fully explored. Therefore, the main aim of this study was to evaluate the mucoadhesive potential of AG binary dispersions in combination with Carbopol 934P (CP) as mucoadhesive gel preparations. The gels fabricated via homogenization were evaluated for ex vivo mucoadhesion, swelling index (SI), dissolution and stability studies. The mucoadhesive properties of AG were concentration dependent and it was improved by the addition of CP. Maximum mucoadhesive strength (MS) (27.03 g), mucoadhesive flow time (FT) (192.2 min), mucoadhesive time in volunteers (MT) (203.2 min) and SI (23.6% at 4 h) were observed with formulation F9. The mucoadhesive time investigated in volunteers (MT) was influenced by AG concentration and was greater than corresponding FT values. Formulations containing 0.3%, w/v AG (F3 and F9) were able to sustain the release (~99%) for both drugs till 3 h. The optimized formulation (F9) did not evoke any inflammation, irritation or pain in the buccal cavity of healthy volunteers and was also stable up to 6 months. Therefore, AG could be considered a natural and potential polymer with profound mucoadhesive properties to deliver drugs through the mucosal route.
Asunto(s)
Mucosa Bucal , Polímeros , Humanos , Sefarosa , Geles , AguaRESUMEN
Sumatriptan succinate and prochlorperazine maleate are a clinically proven combination for treating migraine and associated nausea and vomiting. Classical oral dosage forms are not frequently workable in migraine because of the associated nausea/vomiting, and no effective fixed dose combination is available. Thus, the aim of the study was to optimize a combined sumatriptan-prochlorperazine orodispersible film for rapid release of drugs. Orodispersible films were prepared by solvent casting method using varied amounts of polyvinyl alcohol and glycerol as film former and plasticizer, respectively, along with fixed levels of other ingredients employing central composite design. The optimum film (VF) demonstrated disintegration and total dispersion times as 21 s and 2.3 min, respectively. Tensile strength and Young's modulus were 8.86 ± 0.37 MPa and 24.15 ± 0.07 MPa, respectively. The in vitro T80% of both drugs from the ODF was achieved within 4 min. The film was palatable and disintegrated in 2 min in buccal cavity of human volunteers. Permeation study through goat mucosa demonstrated 100% permeation of both drugs within 15 min. X-Ray diffraction and differential scanning calorimetry supported drugs being amorphous and Fourier transform infrared demonstrated drug-excipient compatibility in optimized film. A judicious combination of sumatriptan succinate and prochlorperazine maleate could be prepared in orodispersible films for the possible relief of migraine.
Asunto(s)
Trastornos Migrañosos , Sumatriptán , Excipientes/química , Humanos , Náusea , Proclorperazina , VómitosRESUMEN
The study aimed at simultaneous quantification of sumatriptan succinate (SUM) and prochlorperazine maleate (PCP) in an orodispersible film using two validated spectroscopic methods viz. simultaneous equation (Method I) and the Q-absorption ratio (Method II). The Method I involved measurement of absorbances at λmax of both drugs while in Method II, absorbances were measured at isosbestic wavelength and λmax of one of the two components. Method validation were accomplished as per the ICH guidelines. A 1:1 mixture of the drugs and an orodispersible film (ODF) containing these drugs were assayed by both methods. The absorbance data of SUM and PCP in both methods were linear at respective wavelengths with correlation coefficient values >0.995. Both methods were precise as % RSD in repeatability, interday and intraday precision was less than 2. The estimation of SUM and PCP from the film dosage form by method I was104.74% and 98.34% and by method II was 103.45% and 98.85%, respectively, with a standard deviation <2. The study concluded that both the methods were simple, reliable and robust and can be applied successfully for the simultaneous quantification of SUM and PCP in mixture and orodispersible film dosage form.
Asunto(s)
Antieméticos/química , Proclorperazina/química , Espectrofotometría Ultravioleta , Sumatriptán/química , Vasoconstrictores/química , Administración Oral , Antieméticos/administración & dosificación , Membranas Artificiales , Proclorperazina/administración & dosificación , Sumatriptán/administración & dosificación , Propiedades de Superficie , Vasoconstrictores/administración & dosificaciónRESUMEN
Lansoprazole (LPZ) show poor bioavailability because of first pass effect and absorption factors. The floating delivery systems could reduce fluctuations in plasma drug concentration through maintaining desirable plasma drug concentration. The objective of present study was to enhance bioavailability despite first pass effect through continuous availability of drug from floating system. Gum tragacanth (GT) and itaconic acid (IA) based floating hydrogels (FH) were synthesized. Parameters optimized were; microwave radiation exposure time, pH, GT:IA ratio and concentration of the glutaraldehyde. Optimized FH were evaluated for entrapment efficiency (% EE), in-vitro release, FTIR, SEM, and in- vitro and in-vivo floating study. Finally, pharmacokinetic was evaluated in ulcer-induced SD rats. Grafting percentage, swelling ratio and %EE of LPZ was 115%, Ì´250% and 90%, respectively. Microwave radiation exposure time, pH of reaction medium, GT:IA ratios and cross linker concentration were 2 min, pH 5, ratios 2:1 and 0.02%, respectively. The optimized FH showed acceptable floating behavior. The X-ray images revealed that hydrogels remained floated over gastric contents up to 24 hours. The in-vitro release and pharmacokinetics revealed availability of LPZ upto to 24h in-vitro and in ulcer-induced SD rats, respectively. The present hydrogels based floating system of lansoprazole is capable to extend the gastric residence time upto 24 hours.
Asunto(s)
Lansoprazol/química , Lansoprazol/farmacocinética , Inhibidores de la Bomba de Protones/química , Inhibidores de la Bomba de Protones/farmacocinética , Animales , Área Bajo la Curva , Preparaciones de Acción Retardada , Semivida , Lansoprazol/administración & dosificación , Inhibidores de la Bomba de Protones/administración & dosificación , Ratas , Ratas Sprague-DawleyRESUMEN
Inflammation is involved in initiation and progression of aortic stenosis (AS). However, the role of the complement system, a crucial component of innate immunity in AS, is unclear. We hypothesized that circulating levels of complement factor B (FB), an important component of the alternative pathway, are upregulated and could predict outcome in patients with severe symptomatic AS. Therefore, plasma levels of FB, Bb, and terminal complement complex were analyzed in three cohorts of patients with severe symptomatic AS and mild-to-moderate or severe asymptomatic AS (population 1, n = 123; population 2, n = 436; population 3, n = 61) and in healthy controls by enzyme immunoassays. Compared with controls, symptomatic AS patients had significantly elevated levels of FB (2.9- and 2.8-fold increase in population 1 and 2, respectively). FB levels in symptomatic and asymptomatic AS patients were comparable (population 2 and 3), and in asymptomatic patients FB correlated inversely with valve area. FB levels in population 1 and 2 correlated with terminal complement complex levels and measures of systemic inflammation (i.e., CRP), cardiac function (i.e., NT-proBNP), and cardiac necrosis (i.e., Troponin T). High FB levels were significantly associated with mortality also after adjusting for clinical and biochemical covariates (hazard ratio 1.37; p = 0.028, population 2). Plasma levels of the Bb fragment showed a similar pattern in relation to mortality. We concluded that elevated levels of FB and Bb are associated with adverse outcome in patients with symptomatic AS. Increased levels of FB in asymptomatic patients suggest the involvement of FB from the early phase of the disease.
Asunto(s)
Estenosis de la Válvula Aórtica/inmunología , Estenosis de la Válvula Aórtica/mortalidad , Factor B del Complemento/inmunología , Anciano , Anciano de 80 o más Años , Estenosis de la Válvula Aórtica/sangre , Proteína C-Reactiva/inmunología , Proteína C-Reactiva/metabolismo , Factor B del Complemento/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Péptido Natriurético Encefálico/sangre , Péptido Natriurético Encefálico/inmunología , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/inmunología , Índice de Severidad de la Enfermedad , Troponina T/sangre , Troponina T/inmunologíaRESUMEN
INTRODUCTION: Sexual development in females and males are routinely measured according to the Tanner Stages. Sparse data exist on the timing of pubertal milestones in Pakistan. To fill this gap, the age of attainment of pubertal milestones and their relationship with nutritional status was explored among children and adolescents living in the rural district of Matiari, Pakistan. METHODS: Anthropometry, nutrition biomarkers and Tanner Stage were assessed among girls aged 9.0-14.9 years (n = 723) and boys aged 10.0-15.9 years (n = 662) who were free from known disease in the rural District of Matiari, Pakistan. Median age was calculated for all Tanner Stages and menarche. Multivariable linear regressions were undertaken to determine covariates associated with the timing (age) of pubertal milestones. RESULTS: Among participants living in this rural community, the median age of puberty onset for girls was 11.9 years (95%CI:10.9; 12.5) and boys was 12.3 years (95%CI:11.5; 12.9). Age at first menarche was 12.9 years (95%CI:12.1; 13.3). Undernutrition was widespread among adolescents in this community. Thirty-seven percent of females and 27.0% of males were stunted while 20.5% of females and 31.3% of males were thin. Only 8% (n = 58) of females and 12% (n = 78) of males were free from any nutrient deficiency with most adolescents having two or three nutrient deficiencies. CONCLUSIONS: Undernutrition (stunting or thinness) was associated with relatively older ages for early puberty stages but not puberty completion. This may decrease the duration of the pubertal growth spurt and curtail potential catch-up growth that may occur during puberty. Efforts to decrease nutrient deficiencies, stunting and thinness beyond childhood should be made in rural Pakistan.
Asunto(s)
Desnutrición , Población Rural , Adolescente , Anciano , Niño , Femenino , Humanos , Masculino , Desnutrición/epidemiología , Menarquia , Persona de Mediana Edad , Estado Nutricional , Pakistán/epidemiología , PubertadRESUMEN
OBJECTIVE: The present study was aimed to prepare and characterize new cocrystals of lornoxicam (LORX), a BCS class II drug employing 1,3-dimethyl urea (DMU) as a coformer to improve physicochemical, pharmaceutical, and pharmacokinetic performance. METHODS: A screening study was conducted by employing three techniques viz. neat grinding, liquid-assisted grinding (LAG), and solvent evaporation (SE) using different drug-coformer molar ratios (1:1, 1:2, and 1:3). Samples were characterized by DSC, PXRD, ATR-FTIR, SEM, intrinsic dissolution rate (IDR) studies, compressional studies, and pharmacokinetic studies. In vitro dissolution and stability studies (25 °C/60%RH and 40 °C/75%RH for three months) were carried out for cocrystal tablets. RESULTS: LAG and SE were found successful in ratio 1:3 and IDR showed approximately 28- and 19-fold increase, respectively in 0.1 N HCl (pH 1.2) and buffer (pH 7.4) as compared to pure LORX. The cocrystal exhibited good tabletability and was â¼2.5 times that of LORX at 6000 Psi. Dissolution profiles of tablets of cocrystal increased (56% and 100% at pH 1.2 and 7.4, respectively in contrast to those of physical mixture (PhyMix) (â¼35% and â¼10%) and pure LORX (â¼17% and â¼7%) within 60 min. The Cmax and AUC0-∞ for the selected cocrystal were significantly increased (p < 0.05) which was 2.4 and 2.5 times, respectively, that of LORX in a single dose oral pharmacokinetic study executed in rabbits. Tablets of cocrystal were found stable at both conditions. CONCLUSION: The study indicates that cocrystallization with DMU can concomitantly improve tabletability, dissolution rate, and in vivo performance of dissolution limited drug LORX.
Asunto(s)
Piroxicam , Animales , Cristalización , Piroxicam/análogos & derivados , Conejos , Solubilidad , ComprimidosRESUMEN
The conventional dosage forms (tablets, capsules) of ibuprofen have less potential in the suppression of pain and inflammation due to their slow dissolution rates and lower bioavailability. The aim of this study was to fabricate fibrous solid dispersion of ibuprofen for improved dissolution rate and quick therapeutic action. Drug-loaded microfibers were fabricated using centrifugal melt spinning (CMS) technique from the physical mixture of sucrose, ibuprofen and a hydrophilic polymer, PVP. These fibers were characterized by SEM, PXRD, DSC, and FTIR spectroscopy. The selected formulation was also pressed into tablets by direct compression method followed by its in vitro and in vivo characterization. The production yield of fibers was 75 ± 2% with an average diameter of 15 ± 5 µm. The drug loading efficiency (DLE) was 85 ± 5%. The tablets dissolved rapidly (<40 s). In vitro dissolution studies have shown >85% of ibuprofen dissolved from tablet within first 2 min which was â¼5 times quicker than drug alone. Dissolution efficiency has improved from 0.63 of ibuprofen to 0.95 of that in fibers with â¼7 times reduction in mean dissolution time. PXRD, and DSC have shown the amorphous state of ibuprofen in the formulation and FTIR spectra demonstrated no interaction of drug with excipients. In vivo anti-inflammatory studies using rabbits revealed a significant (p < 0.05) reduction in paw volume (mm) in the groups treated with fibrous formulation. This study concludes that microfibers produced by centrifugal melt spinning have improved dissolution rates and bioavailability of ibuprofen. Incorporation of polymer in the formulations improves the production yield and drug loading efficiency of microfibers.
Asunto(s)
Ibuprofeno , Polímeros , Animales , Rastreo Diferencial de Calorimetría , Ibuprofeno/química , Inflamación/tratamiento farmacológico , Conejos , Ratas , Solubilidad , ComprimidosRESUMEN
Organic materials development, especially in terms of nonlinear optical (NLO) performance, has become progressively more significant owing to their rising and promising applications in potential photonic devices. Organic moieties such as carbazole and quinoline play a vital role in charge transfer applications in optoelectronics. This study reports and characterizes the donor-acceptor-donor-π-acceptor (D-A-D-π-A) configured novel designed compounds, namely, Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1. We further analyze the structure-property relationship between the quinoline-carbazole compounds for which density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were performed at the B3LYP/6-311G(d,p) level to obtain the optimized geometries, natural bonding orbital (NBO), NLO analysis, electronic properties, and absorption spectra of all mentioned compounds. The computed values of λmax, 364, 360, and 361 nm for Q3, Q4, and Q5 show good agreement of their experimental values: 349, 347, and 323 nm, respectively. The designed compounds (Q3D1-Q5D1) exhibited a smaller energy gap with a maximum redshift than the reference molecules (Q3-Q5), which govern their promising NLO behavior. The NBO evaluation revealed that the extended hyperconjugation stabilizes these systems and caused a promising NLO response. The dipole polarizabilities and hyperpolarizability (ß) values of Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1 exceed those of the reference Q3, Q4, and Q5 molecules. These data suggest that the NLO active compounds, Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1, may find their place in future hi-tech optical devices.
RESUMEN
Poor physicomechanical properties and limited aqueous solubility restrict the bioavailability of aceclofenac when given orally. To improve its above properties, aceclofenac (ACE) was cocrystallized with dimethyl urea (DMU) in 1:2 molar ratio by dry and solvent assisted grinding. The cocrystals were characterized by ATR-FTIR, DSC, and PXRD, and their surface morphology was studied by SEM. There was enhancement in intrinsic dissolution rate (IDR) (~eight- and ~fivefold in cocrystals prepared by solvent assisted grinding (SAG) and solid state grinding (SSG), respectively, in 0.1 N HCl, pH 1.2) and similarly (~3.42-fold and ~1.20-fold in phosphate buffer, pH 7.4) as compared to pure drug. Additionally, mechanical properties were assessed by tabletability curves. The tensile strength of ACE was < 1 MPa in contrast to the cocrystal tensile strength (3.5 MPa) which was ~1.98 times higher at 6000 psi. The tablet formulation of cocrystal by direct compression displayed enhanced dissolution profile (~36% in 0.1 N HCl, pH 1.2, and ~100% in phosphate buffer, pH 7.4) in comparison to physical mixture (~ 30% and ~ 80%) and ACE (~18% and ~50%) after 60 min, respectively. Stability studies of cocrystal tablets for 3 months indicated a stable formulation. Pharmacokinetic studies were performed by using rabbit model. The AUC0-∞ (37.87±1.3 µgh/ml) and Cmax (6.94±2.94 µg/ml) of the selected cocrystal C1 prepared by SAG were significantly enhanced (p < 0.05) and were ~3.43 and ~1.63-fold higher than that of ACE. In conclusion, new cocrystal of ACE-DMU was successfully prepared with improved tabletability, in vitro and in vivo properties.
Asunto(s)
Diclofenaco/análogos & derivados , Animales , Cristalización , Diclofenaco/química , Diclofenaco/farmacocinética , Liberación de Fármacos , Estabilidad de Medicamentos , Femenino , Masculino , Conejos , Comprimidos/química , Urea/químicaRESUMEN
The limited solubility of clarithromycin (CAM), coupled with low bioavailability and rapid elimination, are major shortcomings, needed to be addressed to achieve optimum therapeutic goals. Therefore, sustained-release (SR) tablets containing solid dispersion (SD) granules of CAM were prepared in this study. Initially, SD granules of CAM were prepared by hot melt extrusion (HME) technique using Kollidon VA64 as a hydrophilic carrier. The saturation solubility of SD showed almost 4.5-fold increase as compared to pure CAM in pH 6.8 medium. In vitro drug dissolution data indicated a substantial increase in the dissolution of SD as compared to that of pure CAM. The thermal stability of drug, carrier, and SD at elevated HME temperatures was evident from the results of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Powder X-ray diffraction (PXRD) data and scanning electron microscope (SEM) images revealed a decrease in the crystallinity and the uniform dispersion of drug, respectively. Moreover, Fourier transformed infrared spectroscopy (FT-IR) data confirmed the formation of hydrogen bond between the carbonyl group of drug and the hydroxyl group of carrier. SD loaded sustained-release (SD-SR) matrix tablets were prepared with hydrophobic polymers (Eudragit RS100 and Eudragit RL100). The pH-independent swelling and permeability of both polymers were responsible for the sustained drug release from SD-SR tablets. Pharmacokinetic (PK) studies suggested a 3.4-fold increase in the relative bioavailability of SD-SR tablets as compared to that of pure CAM.
Asunto(s)
Claritromicina , Portadores de Fármacos , Rastreo Diferencial de Calorimetría , Preparaciones de Acción Retardada , Composición de Medicamentos , Concentración de Iones de Hidrógeno , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , ComprimidosRESUMEN
This study aimed to fabricate and characterize polymeric microneedle patches for rapid and non-invasive administration of enoxaparin across skin layers. The patches comprising of PVA, sorbitol and enoxaparin sodium were prepared by employing micromolding technique. Formulated patches were characterized physicochemically by folding endurance, dimensional analysis and swelling study, morphologically by optical and scanning electron microscopy and thermally by thermogravimetric analysis. Moreover, performance efficiency of prepared polymeric device was analyzed by in-vitro drug release study and piercing ability. Prepared patches showed appropriate dimensions and folding endurance (i.e., ~1100) indicating satisfactory integrity of polymeric device. Patches exhibited appropriately distanced needles with pointed tips in optical and scanning electron microscopy analysis. Thermogravimetric analysis proved thermal stability of formulation ingredients and prepared patches. Swelling percentage was >110 % suggesting that prepared formulation would allow penetration of physiological fluids in its polymeric network. Maximum (~89%) drug was released within ~2 hours during in-vitro release study. In-vitro piercing ability experiments suggested that prepared patches successfully breached skin barrier stratum corneum. It is concluded that prepared microneedle device can serve as a potential alternative of currently employed invasive parenteral route for rapid and efficient administration of enoxaparin sodium in the systemic circulation.