Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 146(22)2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31754007

RESUMEN

The embryonic development of the pineal organ, a neuroendocrine gland on top of the diencephalon, remains enigmatic. Classic fate-mapping studies suggested that pineal progenitors originate from the lateral border of the anterior neural plate. We show here, using gene expression and fate mapping/lineage tracing in zebrafish, that pineal progenitors originate, at least in part, from the non-neural ectoderm. Gene expression in chick indicates that this non-neural origin of pineal progenitors is conserved in amniotes. Genetic repression of placodal, but not neural crest, cell fate results in pineal hypoplasia in zebrafish, while mis-expression of transcription factors known to specify placodal identity during gastrulation promotes the formation of ectopic pineal progenitors. We also demonstrate that fibroblast growth factors (FGFs) position the pineal progenitor domain within the non-neural border by repressing pineal fate and that the Otx transcription factors promote pinealogenesis by inhibiting this FGF activity. The non-neural origin of the pineal organ reveals an underlying similarity in the formation of the pineal and pituitary glands, and suggests that all CNS neuroendocrine organs may require a non-neural contribution to form neurosecretory cells.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Glándula Pineal/citología , Glándula Pineal/embriología , Transducción de Señal , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Linaje de la Célula , Embrión de Pollo , Ectodermo/citología , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Cresta Neural/citología , Placa Neural/citología , Neuroglía/citología , Neuronas/citología , Sistemas Neurosecretores/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo
2.
Gene Expr Patterns ; 7(3): 289-96, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17045851

RESUMEN

The drg11 gene is a member of the vertebrate aristaless-related gene family and encodes a paired homeodomain transcription factor. Its expression is largely restricted to PNS neurons subserving somatosensory functions and their CNS targets in rodents. The phenotype of drg11 null mice suggests that it is crucial for the proper development in the embryo of nociceptive circuits. To allow functional studies in the zebrafish, a simple vertebrate model organism, we have cloned the homologous gene and studied its expression throughout embryonic development. drg11 transcripts are first detected at neurula stage in the developing trigeminal ganglion, where it persists throughout development. This is followed by transient expression in spinal cord mechanosensory Rohon-Beard neurons shortly before axogenesis. Expression is later evident in neuronal populations of the dorsal spinal cord and in the dorsal root ganglia. In the developing brain, drg11 expression is mainly restricted to sensory neuron populations of the midbrain and hindbrain, in cranial sensory ganglia and in the habenula. Unlike rodents, however, trochlear motor neurons transiently express drg11. Our results suggest that drg11 expression in the developing zebrafish is, in common with its mammalian homologous gene, predominantly localised to neurons in sensory processing areas of the embryonic nervous system and is both spatially and temporally regulated.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neuronas Aferentes/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Sistema Nervioso Central , Clonación Molecular , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Ganglios Sensoriales/embriología , Ganglios Sensoriales/metabolismo , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Alineación de Secuencia , Médula Espinal/embriología , Médula Espinal/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Gene Expr Patterns ; 3(6): 743-5, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14643682

RESUMEN

We compare the expression patterns in Ciona intestinalis of three members of the Pax gene family, CiPax3/7, CiPax6 and Cipax2/5/8. All three genes are expressed in restricted patterns in the developing central nervous system. At the tailbud stage, CiPax3/7 is present in three patches in the brain and along the posterior neural tube, CiPax6 throughout the anterior brain and along the posterior neural tube and CiPax2/5/8 in a restricted region of the posterior brain. Double in situ hybridisations were used to identify areas of overlap between the expression of different genes. This showed that CiPax3/7 overlaps with the boundaries of CiPax6 expression in the anterior brain, and with CiPax2/5/8 in the posterior brain. The overlap between CiPax3/7 and CiPax2/5/8 is unlike that described in the ascidian Halocynthia rorezti.


Asunto(s)
Sistema Nervioso Central/embriología , Sistema Nervioso Central/crecimiento & desarrollo , Ciona intestinalis/embriología , Ciona intestinalis/crecimiento & desarrollo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Ciona intestinalis/metabolismo , Proteínas del Ojo , Expresión Génica , Proteínas de Homeodominio/genética , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box , Proteínas Represoras , Factores de Transcripción/genética
4.
Nat Neurosci ; 13(11): 1380-7, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20935645

RESUMEN

To better understand hereditary spastic paraplegia (HSP), we characterized the function of atlastin, a protein that is frequently involved in juvenile forms of HSP, by analyzing loss- and gain-of-function phenotypes in the developing zebrafish. We found that knockdown of the gene for atlastin (atl1) caused a severe decrease in larval mobility that was preceded by abnormal architecture of spinal motor axons and was associated with a substantial upregulation of the bone morphogenetic protein (BMP) signaling pathway. Overexpression analyses confirmed that atlastin inhibits BMP signaling. In primary cultures of zebrafish spinal neurons, Atlastin partially colocalized with type I BMP receptors in late endosomes distributed along neurites, which suggests that atlastin may regulate BMP receptor trafficking. Finally, genetic or pharmacological inhibition of BMP signaling was sufficient to rescue the loss of mobility and spinal motor axon defects of atl1 morphants, emphasizing the importance of fine-tuning the balance of BMP signaling for vertebrate motor axon architecture and stability.


Asunto(s)
Axones/fisiología , Proteínas Morfogenéticas Óseas/metabolismo , Movimiento Celular/fisiología , Neuronas Motoras/citología , Transducción de Señal/fisiología , Médula Espinal/citología , Animales , Animales Modificados Genéticamente , Conducta Animal , Proteínas Morfogenéticas Óseas/genética , Células Cultivadas , Embrión no Mamífero , Endosomas/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Glicoproteínas/genética , Proteínas Fluorescentes Verdes/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Larva , ARN Mensajero/fisiología , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tubulina (Proteína)/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Dev Biol ; 282(2): 494-508, 2005 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15950613

RESUMEN

Cranial sensory placodes are focused areas of the head ectoderm of vertebrates that contribute to the development of the cranial sense organs and their associated ganglia. Placodes have long been considered a key character of vertebrates, and their evolution is proposed to have been essential for the evolution of an active predatory lifestyle by early vertebrates. Despite their importance for understanding vertebrate origins, the evolutionary origin of placodes has remained obscure. Here, we use a panel of molecular markers from the Six, Eya, Pax, Dach, FoxI, COE and POUIV gene families to examine the tunicate Ciona intestinalis for evidence of structures homologous to vertebrate placodes. Our results identify two domains of Ciona ectoderm that are marked by the genetic cascade that regulates vertebrate placode formation. The first is just anterior to the brain, and we suggest this territory is equivalent to the olfactory/adenohypophyseal placodes of vertebrates. The second is a bilateral domain adjacent to the posterior brain and includes cells fated to form the atrium and atrial siphon of adult Ciona. We show this bares most similarity to placodes fated to form the vertebrate acoustico-lateralis system. We interpret these data as support for the hypothesis that sensory placodes did not arise de novo in vertebrates, but evolved from pre-existing specialised areas of ectoderm that contributed to sensory organs in the common ancestor of vertebrates and tunicates.


Asunto(s)
Evolución Biológica , Ciona intestinalis/embriología , Ectodermo/fisiología , Embrión no Mamífero/metabolismo , Genes/genética , Sistema Nervioso/embriología , Animales , Biomarcadores/metabolismo , Ciona intestinalis/metabolismo , Análisis por Conglomerados , Embrión no Mamífero/ultraestructura , Perfilación de la Expresión Génica , Hibridación in Situ , Microscopía Electrónica , Filogenia , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA