Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(3): 101721, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35151685

RESUMEN

Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) regulate the hypoxic induction of >300 genes required for survival and adaptation under oxygen deprivation. Inhibition of HIF-P4H-2 has been shown to be protective in focal cerebral ischemia rodent models, while that of HIF-P4H-1 has no effects and inactivation of HIF-P4H-3 has adverse effects. A transmembrane prolyl 4-hydroxylase (P4H-TM) is highly expressed in the brain and contributes to the regulation of HIF, but the outcome of its inhibition on stroke is yet unknown. To study this, we subjected WT and P4htm-/- mice to permanent middle cerebral artery occlusion (pMCAO). Lack of P4H-TM had no effect on lesion size following pMCAO, but increased inflammatory microgliosis and neutrophil infiltration was observed in the P4htm-/- cortex. Furthermore, both the permeability of blood brain barrier and ultrastructure of cerebral tight junctions were compromised in P4htm-/- mice. At the molecular level, P4H-TM deficiency led to increased expression of proinflammatory genes and robust activation of protein kinases in the cortex, while expression of tight junction proteins and the neuroprotective growth factors erythropoietin and vascular endothelial growth factor was reduced. Our data provide the first evidence that P4H-TM inactivation has no protective effect on infarct size and increases inflammatory microgliosis and neutrophil infiltration in the cortex at early stage after pMCAO. When considering HIF-P4H inhibitors as potential therapeutics in stroke, the current data support that isoenzyme-selective inhibitors that do not target P4H-TM or HIF-P4H-3 would be preferred.


Asunto(s)
Barrera Hematoencefálica , Infarto de la Arteria Cerebral Media , Enfermedades Neuroinflamatorias , Prolil Hidroxilasas , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/enzimología , Barrera Hematoencefálica/metabolismo , Permeabilidad de la Membrana Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Infarto de la Arteria Cerebral Media/enzimología , Infarto de la Arteria Cerebral Media/metabolismo , Ratones , Enfermedades Neuroinflamatorias/enzimología , Enfermedades Neuroinflamatorias/metabolismo , Permeabilidad , Prolil Hidroxilasas/metabolismo , Inhibidores de Prolil-Hidroxilasa/farmacología , Accidente Cerebrovascular/enzimología , Accidente Cerebrovascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Neurobiol Dis ; 170: 105753, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35569719

RESUMEN

Under physiological conditions in vivo astrocytes internalize and degrade neuronal mitochondria in a process called transmitophagy. Mitophagy is widely reported to be impaired in neurodegeneration but it is unknown whether and how transmitophagy is altered in Alzheimer's disease (AD). Here we report that the internalization of neuronal mitochondria is significantly increased in astrocytes isolated from AD mouse brains. We also demonstrate that the degradation of neuronal mitochondria by astrocytes is increased in AD mice at the age of 6 months onwards. Furthermore, we demonstrate for the first time a similar phenomenon between human neurons and AD astrocytes, and in murine hippocampi in vivo. The results suggest the involvement of S100a4 in impaired mitochondrial transfer between neurons and AD astrocytes together with significant increases in the mitophagy regulator and reactive oxygen species in aged AD astrocytes. These findings demonstrate altered neuron-supporting functions of AD astrocytes and provide a starting point for studying the molecular mechanisms of transmitophagy in AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/metabolismo , Ratones , Mitofagia , Neuronas/metabolismo
3.
Hum Mol Genet ; 28(19): 3309-3322, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31294445

RESUMEN

The Finnish-variant late infantile neuronal ceroid lipofuscinosis, also known as CLN5 disease, is caused by mutations in the CLN5 gene. Cln5 is strongly expressed in the developing brain and expression continues into adulthood. CLN5, a protein of unknown function, is implicated in neurodevelopment but detailed investigation is lacking. Using Cln5-/- embryos of various ages and cells harvested from Cln5-/- brains we investigated the hitherto unknown role of Cln5 in the developing brain. Loss of Cln5 results in neuronal differentiation deficits and delays in interneuron development during in utero period. Specifically, the radial thickness of dorsal telencephalon was significantly decreased in Cln5-/- mouse embryos at embryonic day 14.5 (E14.5), and expression of Tuj1, an important neuronal marker during development, was down-regulated. An interneuron marker calbindin and a mitosis marker p-H3 showed down-regulation in ganglionic eminences. Neurite outgrowth was compromised in primary cortical neuronal cultures derived from E16 Cln5-/- embryos compared with WT embryos. We show that the developmental deficits of interneurons may be linked to increased levels of the repressor element 1-silencing transcription factor, which we report to bind to glutamate decarboxylase (Gad1), which encodes GAD67, a rate-limiting enzyme in the production of gamma-aminobutyric acid (GABA). Indeed, adult Cln5-/- mice presented deficits in hippocampal parvalbumin-positive interneurons. Furthermore, adult Cln5-/- mice presented deficits in hippocampal parvalbumin-positive interneurons and showed age-independent cortical hyper excitability as measured by electroencephalogram and auditory-evoked potentials. This study highlights the importance of Cln5 in neurodevelopment and suggests that in contrast to earlier reports, CLN5 disease is likely to develop during embryonic stages.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Glutamato Descarboxilasa/genética , Interneuronas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Lipofuscinosis Ceroideas Neuronales/genética , Animales , Encéfalo/metabolismo , Diferenciación Celular , Línea Celular , Células Cultivadas , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Ratones , Lipofuscinosis Ceroideas Neuronales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Parvalbúminas/metabolismo , Proteínas Represoras/genética , Tubulina (Proteína)/metabolismo
4.
J Neuroinflammation ; 17(1): 194, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32560730

RESUMEN

BACKGROUND: Ischemic stroke is a devastating disease without a cure. The available treatments for ischemic stroke, thrombolysis by tissue plasminogen activator, and thrombectomy are suitable only to a fraction of patients and thus novel therapeutic approaches are urgently needed. The neuroinflammatory responses elicited secondary to the ischemic attack further aggravate the stroke-induced neuronal damage. It has been demonstrated that these responses are regulated at the level of non-coding RNAs, especially miRNAs. METHODS: We utilized lentiviral vectors to overexpress miR-669c in BV2 microglial cells in order to modulate their polarization. To detect whether the modulation of microglial activation by miR-669c provides protection in a mouse model of transient focal ischemic stroke, miR-669c overexpression was driven by a lentiviral vector injected into the striatum prior to induction of ischemic stroke. RESULTS: Here, we demonstrate that miR-669c-3p, a member of chromosome 2 miRNA cluster (C2MC), is induced upon hypoxic and excitotoxic conditions in vitro and in two different in vivo models of stroke. Rather than directly regulating the neuronal survival in vitro, miR-669c is capable of attenuating the microglial proinflammatory activation in vitro and inducing the expression of microglial alternative activation markers arginase 1 (Arg1), chitinase-like 3 (Ym1), and peroxisome proliferator-activated receptor gamma (PPAR-γ). Intracerebral overexpression of miR-669c significantly decreased the ischemia-induced cell death and ameliorated the stroke-induced neurological deficits both at 1 and 3 days post injury (dpi). Albeit miR-669c overexpression failed to alter the overall Iba1 protein immunoreactivity, it significantly elevated Arg1 levels in the ischemic brain and increased colocalization of Arg1 and Iba1. Moreover, miR-669c overexpression under cerebral ischemia influenced several morphological characteristics of Iba1 positive cells. We further demonstrate the myeloid differentiation primary response gene 88 (MyD88) transcript as a direct target for miR-669c-3p in vitro and show reduced levels of MyD88 in miR-669c overexpressing ischemic brains in vivo. CONCLUSIONS: Collectively, our data provide the evidence that miR-669c-3p is protective in a mouse model of ischemic stroke through enhancement of the alternative microglial/macrophage activation and inhibition of MyD88 signaling. Our results accentuate the importance of controlling miRNA-regulated responses for the therapeutic benefit in conditions of stroke and neuroinflammation.


Asunto(s)
Ventrículos Cerebrales/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Activación de Macrófagos/fisiología , Macrófagos/metabolismo , MicroARNs/metabolismo , Microglía/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico/genética , Ratones , MicroARNs/genética , Neuronas/metabolismo , Transducción de Señal/fisiología
5.
Glia ; 67(1): 146-159, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30453390

RESUMEN

Astrocytes are the gatekeepers of neuronal energy supply. In neurodegenerative diseases, bioenergetics demand increases and becomes reliant upon fatty acid oxidation as a source of energy. Defective fatty acid oxidation and mitochondrial dysfunctions correlate with hippocampal neurodegeneration and memory deficits in Alzheimer's disease (AD), but it is unclear whether energy metabolism can be targeted to prevent or treat the disease. Here we show for the first time an impairment in fatty acid oxidation in human astrocytes derived from induced pluripotent stem cells of AD patients. The impairment was corrected by treatment with a synthetic peroxisome proliferator activated receptor delta (PPARß/δ) agonist GW0742 which acts to regulate an array of genes governing cellular metabolism. GW0742 enhanced the expression of CPT1a, the gene encoding for a rate-limiting enzyme of fatty acid oxidation. Similarly, treatment of a mouse model of AD, the APP/PS1-mice, with GW0742 increased the expression of Cpt1a and concomitantly reversed memory deficits in a fear conditioning test. Although the GW0742-treated mice did not show altered astrocytic glial fibrillary acidic protein-immunoreactivity or reduction in amyloid beta (Aß) load, GW0742 treatment increased hippocampal neurogenesis and enhanced neuronal differentiation of neuronal progenitor cells. Furthermore, GW0742 prevented Aß-induced impairment of long-term potentiation in hippocampal slices. Collectively, these data suggest that PPARß/δ-agonism alleviates AD related deficits through increasing fatty acid oxidation in astrocytes and improves cognition in a transgenic mouse model of AD.


Asunto(s)
Astrocitos/metabolismo , Ácidos Grasos/metabolismo , PPAR delta/metabolismo , PPAR-beta/metabolismo , Presenilina-1/metabolismo , Tiazoles/farmacología , Adulto , Animales , Astrocitos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Exones/efectos de los fármacos , Exones/fisiología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Oxidación-Reducción/efectos de los fármacos , PPAR delta/agonistas , PPAR-beta/agonistas , Distribución Aleatoria
6.
Alzheimers Dement ; 15(12): 1568-1575, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31862169

RESUMEN

INTRODUCTION: Blood-brain barrier (BBB) breakdown is an early independent biomarker of human cognitive dysfunction, as found using gadolinium (Gd) as a contrast agent. Whether Gd accumulates in brains of individuals with an age-dependent BBB breakdown and/or mild cognitive impairment remains unclear. METHODS: We analyzed T1-weighted magnetic resonance imaging (MRI) scans from 52 older participants with BBB breakdown in the hippocampus 19-28 months after either cyclic or linear Gd agent. RESULTS: There was no change in T1-weighted signal intensity between the baseline contrast MRI and unenhanced MRI on re-examination in any of the studied 10 brain regions with either Gd agent suggesting undetectable Gd brain retention. DISCUSSION: Gd does not accumulate in brains of older individuals with a BBB breakdown in the hippocampus. Thus, Gd agents can be used without risk of brain retention within a ∼2-year follow-up to study BBB in the aging human brain in relation to cognition and/or other pathologies.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Disfunción Cognitiva/patología , Gadolinio , Hipocampo/patología , Imagen por Resonancia Magnética , Adulto , Anciano , Encéfalo/patología , Medios de Contraste/administración & dosificación , Femenino , Gadolinio/análisis , Gadolinio/uso terapéutico , Humanos , Masculino , Pruebas Neuropsicológicas/estadística & datos numéricos
7.
J Neuroinflammation ; 14(1): 237, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29202856

RESUMEN

BACKGROUND: Ischemic stroke is one of the main causes of death and disability worldwide. It is caused by the cessation of cerebral blood flow resulting in the insufficient delivery of glucose and oxygen to the neural tissue. The inflammatory response initiated by ischemic stroke in order to restore tissue homeostasis in the acute phase of stroke contributes to delayed brain damage. METHODS: By using in vitro models of neuroinflammation and in vivo model of permanent middle cerebral artery occlusion, we demonstrate the neuroprotective and anti-inflammatory effects of sulfosuccinimidyl oleate sodium (SSO). RESULTS: SSO significantly reduced the lipopolysaccharide/interferon-γ-induced production of nitric oxide, interleukin-6 and tumor necrosis factor-α, and the protein levels of inflammatory enzymes including nitric oxide synthase 2, cyclooxygenase-2 (COX-2), and p38 mitogen-activated protein kinase (MAPK) in microglia, without causing cell toxicity. Although SSO failed to directly alleviate glutamate-induced excitotoxicity in murine cortical neurons, it prevented inflammation-induced neuronal death in microglia-neuron co-cultures. Importantly, oral administration of SSO in Balb/c mice subjected to permanent occlusion of the middle cerebral artery reduced microglial activation in the peri-ischemic area and attenuated brain damage. This in vivo neuroprotective effect of SSO was associated with a reduction in the COX-2 and heme oxygenase-1 immunoreactivities. CONCLUSIONS: Our results suggest that SSO is an anti-inflammatory and a possible therapeutic candidate in diseases such as stroke where inflammation is a central hallmark.


Asunto(s)
Inflamación/patología , Fármacos Neuroprotectores/farmacología , Ácidos Oléicos/farmacología , Accidente Cerebrovascular/patología , Animales , Células Cultivadas , Inflamación/etiología , Ratones , Accidente Cerebrovascular/complicaciones
8.
J Neuroinflammation ; 14(1): 215, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29115990

RESUMEN

BACKGROUND: DHCR24, involved in the de novo synthesis of cholesterol and protection of neuronal cells against different stress conditions, has been shown to be selectively downregulated in neurons of the affected brain areas in Alzheimer's disease. METHODS: Here, we investigated whether the overexpression of DHCR24 protects neurons against inflammation-induced neuronal death using co-cultures of mouse embryonic primary cortical neurons and BV2 microglial cells upon acute neuroinflammation. Moreover, the effects of DHCR24 overexpression on dendritic spine density and morphology in cultured mature mouse hippocampal neurons and on the outcome measures of ischemia-induced brain damage in vivo in mice were assessed. RESULTS: Overexpression of DHCR24 reduced the loss of neurons under inflammation elicited by LPS and IFN-γ treatment in co-cultures of mouse neurons and BV2 microglial cells but did not affect the production of neuroinflammatory mediators, total cellular cholesterol levels, or the activity of proteins linked with neuroprotective signaling. Conversely, the levels of post-synaptic cell adhesion protein neuroligin-1 were significantly increased upon the overexpression of DHCR24 in basal growth conditions. Augmentation of DHCR24 also increased the total number of dendritic spines and the proportion of mushroom spines in mature mouse hippocampal neurons. In vivo, overexpression of DHCR24 in striatum reduced the lesion size measured by MRI in a mouse model of transient focal ischemia. CONCLUSIONS: These results suggest that the augmentation of DHCR24 levels provides neuroprotection in acute stress conditions, which lead to neuronal loss in vitro and in vivo.


Asunto(s)
Inflamación/metabolismo , Neuronas/metabolismo , Neuroprotección/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Muerte Celular/fisiología , Técnicas de Cocultivo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Inflamación/patología , Masculino , Ratones , Microglía/metabolismo , Neuronas/patología
11.
Res Sq ; 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37503159

RESUMEN

Air pollution is associated with risks of dementia and accelerated cognitive decline. Rodent air pollution models have shown white matter vulnerability. This study uses diffusion tensor imaging (DTI) to quantify changes to white matter microstructure and tractography in multiple myelinated regions after exposure to diesel exhaust particulate (DEP). Adult C57BL/6 male mice were exposed to re-aerosolized DEP (NIST SRM 2975) at a concentration of 100 ug/m3 for 200 hours. Ex-vivo MRI analysis and fractional anisotropy (FA)-aided white matter tractography were conducted to study the effect of DEP exposure on the brain white matter tracts. Immunohistochemistry was used to assess myelin and axonal structure. DEP exposure for 8 weeks altered myelin composition in multiple regions. Diffusion tensor imaging (DTI) showed decreased FA in the corpus callosum (30%), external capsule (15%), internal capsule (15%), and cingulum (31 %). Separate immunohistochemistry analyses confirmed prior findings. Myelin basic protein (MBP) was decreased (corpus callosum: 28%, external capsule: 29%), and degraded MPB increased (corpus callosum: 32%, external capsule: 53%) in the DEP group. White matter is highly susceptible to chronic DEP exposure. This study demonstrates the utility of DTI as a neuroanatomical tool in the context of air pollution and white matter myelin vulnerability.

12.
J Exp Med ; 219(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34846535

RESUMEN

Subcortical white matter (WM) stroke accounts for 25% of all strokes and is the second leading cause of dementia. Despite such clinical importance, we still do not have an effective treatment for ischemic WM stroke, and the mechanisms of WM postischemic neuroprotection remain elusive. 3K3A-activated protein C (APC) is a signaling-selective analogue of endogenous blood protease APC that is currently in development as a neuroprotectant for ischemic stroke patients. Here, we show that 3K3A-APC protects WM tracts and oligodendrocytes from ischemic injury in the corpus callosum in middle-aged mice by activating protease-activated receptor 1 (PAR1) and PAR3. We show that PAR1 and PAR3 were also required for 3K3A-APC's suppression of post-WM stroke microglia and astrocyte responses and overall improvement in neuropathologic and functional outcomes. Our data provide new insights into the neuroprotective APC pathway in the WM and illustrate 3K3A-APC's potential for treating WM stroke in humans, possibly including multiple WM strokes that result in vascular dementia.


Asunto(s)
Cuerpo Calloso/metabolismo , Isquemia/metabolismo , Oligodendroglía/metabolismo , Proteína C/metabolismo , Sustancia Blanca/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacología , Cuerpo Calloso/efectos de los fármacos , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Fibrinolíticos/metabolismo , Fibrinolíticos/farmacología , Humanos , Isquemia/fisiopatología , Isquemia/prevención & control , Masculino , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Proteína C/farmacología , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/prevención & control
13.
J Exp Med ; 219(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36040482

RESUMEN

Apolipoprotein E4 (APOE4), the main susceptibility gene for Alzheimer's disease, leads to blood-brain barrier (BBB) breakdown in humans and mice. Remarkably, BBB dysfunction predicts cognitive decline and precedes synaptic deficits in APOE4 human carriers. How APOE4 affects BBB and synaptic function at a molecular level, however, remains elusive. Using single-nucleus RNA-sequencing and phosphoproteome and proteome analysis, we show that APOE4 compared with APOE3 leads to an early disruption of the BBB transcriptome in 2-3-mo-old APOE4 knock-in mice, followed by dysregulation in protein signaling networks controlling cell junctions, cytoskeleton, clathrin-mediated transport, and translation in brain endothelium, as well as transcription and RNA splicing suggestive of DNA damage in pericytes. Changes in BBB signaling mechanisms paralleled an early, progressive BBB breakdown and loss of pericytes, which preceded postsynaptic interactome disruption and behavioral deficits that developed 2-5 mo later. Thus, dysregulated signaling mechanisms in endothelium and pericytes in APOE4 mice reflect a molecular signature of a progressive BBB failure preceding changes in synaptic function and behavior.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Barrera Hematoencefálica/metabolismo , Humanos , Ratones , Ratones Transgénicos , Pericitos
14.
Front Immunol ; 12: 785519, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868068

RESUMEN

Cerebrovascular pathologies are commonly associated with dementia. Because air pollution increases arterial disease in humans and rodent models, we hypothesized that air pollution would also contribute to brain vascular dysfunction. We examined the effects of exposing mice to nanoparticulate matter (nPM; aerodynamic diameter ≤200 nm) from urban traffic and interactions with cerebral hypoperfusion. C57BL/6 mice were exposed to filtered air or nPM with and without bilateral carotid artery stenosis (BCAS) and analyzed by multiparametric MRI and histochemistry. Exposure to nPM alone did not alter regional cerebral blood flow (CBF) or blood brain barrier (BBB) integrity. However, nPM worsened the white matter hypoperfusion (decreased CBF on DSC-MRI) and exacerbated the BBB permeability (extravascular IgG deposits) resulting from BCAS. White matter MRI diffusion metrics were abnormal in mice subjected to cerebral hypoperfusion and worsened by combined nPM+BCAS. Axonal density was reduced equally in the BCAS cohorts regardless of nPM status, whereas nPM exposure caused demyelination in the white matter with or without cerebral hypoperfusion. In summary, air pollution nPM exacerbates cerebrovascular pathology and demyelination in the setting of cerebral hypoperfusion, suggesting that air pollution exposure can augment underlying cerebrovascular contributions to cognitive loss and dementia in susceptible elderly populations.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Estenosis Carotídea/complicaciones , Disfunción Cognitiva/diagnóstico , Enfermedades Desmielinizantes/diagnóstico , Material Particulado/efectos adversos , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Circulación Cerebrovascular/efectos de los fármacos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Enfermedades Desmielinizantes/etiología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Microglía/efectos de los fármacos , Microglía/patología , Índice de Severidad de la Enfermedad , Emisiones de Vehículos , Sustancia Blanca/irrigación sanguínea , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/patología
15.
J Exp Med ; 218(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33533918

RESUMEN

The low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic and cell signaling transmembrane protein. Endothelial LRP1 clears proteinaceous toxins at the blood-brain barrier (BBB), regulates angiogenesis, and is increasingly reduced in Alzheimer's disease associated with BBB breakdown and neurodegeneration. Whether loss of endothelial LRP1 plays a direct causative role in BBB breakdown and neurodegenerative changes remains elusive. Here, we show that LRP1 inactivation from the mouse endothelium results in progressive BBB breakdown, followed by neuron loss and cognitive deficits, which is reversible by endothelial-specific LRP1 gene therapy. LRP1 endothelial knockout led to a self-autonomous activation of the cyclophilin A-matrix metalloproteinase-9 pathway in the endothelium, causing loss of tight junctions underlying structural BBB impairment. Cyclophilin A inhibition in mice with endothelial-specific LRP1 knockout restored BBB integrity and reversed and prevented neuronal loss and behavioral deficits. Thus, endothelial LRP1 protects against neurodegeneration by inhibiting cyclophilin A, which has implications for the pathophysiology and treatment of neurodegeneration linked to vascular dysfunction.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Barrera Hematoencefálica/metabolismo , Ciclofilina A/metabolismo , Células Endoteliales/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Transducción de Señal/genética , Enfermedad de Alzheimer/terapia , Animales , Células Cultivadas , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Ciclofilina A/antagonistas & inhibidores , Ciclosporina/farmacología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Técnicas de Inactivación de Genes , Terapia Genética/métodos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Environ Health Perspect ; 129(8): 87006, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34424052

RESUMEN

BACKGROUND: Exposure to ambient air pollution particulate matter (PM) is associated with increased risk of dementia and accelerated cognitive loss. Vascular contributions to cognitive impairment are well recognized. Chronic cerebral hypoperfusion (CCH) promotes neuroinflammation and blood-brain barrier weakening, which may augment neurotoxic effects of PM. OBJECTIVES: This study examined interactions of nanoscale particulate matter (nPM; fine particulate matter with aerodynamic diameter ≤200 nm) and CCH secondary to bilateral carotid artery stenosis (BCAS) in a murine model to produce white matter injury. Based on other air pollution interactions, we predicted synergies of nPM with BCAS. METHODS: nPM was collected using a particle sampler near a Los Angeles, California, freeway. Mice were exposed to 10 wk of reaerosolized nPM or filtered air (FA) for 150 h. CCH was induced by BCAS surgery. Mice (C57BL/6J males) were randomized to four exposure paradigms: a) FA, b) nPM, c) FA + BCAS, and d) nPM + BCAS. Behavioral outcomes, white matter injury, glial cell activation, inflammation, and oxidative stress were assessed. RESULTS: The joint nPM + BCAS group exhibited synergistic effects on white matter injury (2.3× the additive nPM and FA + BCAS scores) with greater loss of corpus callosum volume on T2 magnetic resonance imaging (MRI) (30% smaller than FA group). Histochemical analyses suggested potential microglial-specific inflammatory responses with synergistic effects on corpus callosum C5 immunofluorescent density and whole brain nitrate concentrations (2.1× and 3.9× the additive nPM and FA + BCAS effects, respectively) in the joint exposure group. Transcriptomic responses (RNA-Seq) showed greater impact of nPM + BCAS than individual additive effects, consistent with changes in proinflammatory pathways. Although nPM exposure alone did not alter working memory, the nPM + BCAS cohort demonstrated impaired working memory when compared to the FA + BCAS group. DISCUSSION: Our data suggest that nPM and CCH contribute to white matter injury in a synergistic manner in a mouse model. Adverse neurological effects may be aggravated in a susceptible population exposed to air pollution. https://doi.org/10.1289/EHP8792.


Asunto(s)
Contaminación del Aire , Sustancia Blanca , Contaminación del Aire/efectos adversos , Animales , Circulación Cerebrovascular , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Material Particulado/toxicidad
17.
Nat Aging ; 1(6): 506-520, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-35291561

RESUMEN

Apolipoprotein E4 (APOE4), the main susceptibility gene for Alzheimer's disease (AD), leads to vascular dysfunction, amyloid-ß pathology, neurodegeneration and dementia. How these different pathologies contribute to advanced-stage AD remains unclear. Using aged APOE knock-in mice crossed with 5xFAD mice, we show that, compared to APOE3, APOE4 accelerates blood-brain barrier (BBB) breakdown, loss of cerebral blood flow, neuronal loss and behavioral deficits independently of amyloid-ß. BBB breakdown was associated with activation of the cyclophilin A-matrix metalloproteinase-9 BBB-degrading pathway in pericytes. Suppression of this pathway improved BBB integrity and prevented further neuronal loss and behavioral deficits in APOE4;5FAD mice while having no effect on amyloid-ß pathology. Thus, APOE4 accelerates advanced-stage BBB breakdown and neurodegeneration in Alzheimer's mice via the cyclophilin A pathway in pericytes independently of amyloid-ß, which has implication for the pathogenesis and treatment of vascular and neurodegenerative disorder in AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Ratones , Animales , Apolipoproteína E4/genética , Enfermedad de Alzheimer/genética , Ciclofilina A/genética , Péptidos beta-Amiloides/metabolismo
18.
Sci Rep ; 11(1): 3518, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568697

RESUMEN

Lipid peroxidation-initiated ferroptosis is an iron-dependent mechanism of programmed cell death taking place in neurological diseases. Here we show that a condensed benzo[b]thiazine derivative small molecule with an arylthiazine backbone (ADA-409-052) inhibits tert-Butyl hydroperoxide (TBHP)-induced lipid peroxidation (LP) and protects against ferroptotic cell death triggered by glutathione (GSH) depletion or glutathione peroxidase 4 (GPx4) inhibition in neuronal cell lines. In addition, ADA-409-052 suppresses pro-inflammatory activation of BV2 microglia and protects N2a neuronal cells from cell death induced by pro-inflammatory RAW 264.7 macrophages. Moreover, ADA-409-052 efficiently reduces infarct volume, edema and expression of pro-inflammatory genes in a mouse model of thromboembolic stroke. Targeting ferroptosis may be a promising therapeutic strategy in neurological diseases involving severe neuronal death and neuroinflammation.


Asunto(s)
Muerte Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/fisiología , Ferroptosis/fisiología , Glutatión/metabolismo , Hierro/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuroprotección/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/farmacología
19.
Transl Stroke Res ; 12(1): 15-30, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32936435

RESUMEN

Cerebral small vessel disease (SVD) is a major health burden, yet the pathophysiology remains poorly understood with no effective treatment. Since much of SVD develops silently and insidiously, non-invasive neuroimaging such as MRI is fundamental to detecting and understanding SVD in humans. Several relevant SVD rodent models are established for which MRI can monitor in vivo changes over time prior to histological examination. Here, we critically review the MRI methods pertaining to salient rodent models and evaluate synergies with human SVD MRI methods. We found few relevant publications, but argue there is considerable scope for greater use of MRI in rodent models, and opportunities for harmonisation of the rodent-human methods to increase the translational potential of models to understand SVD in humans. We summarise current MR techniques used in SVD research, provide recommendations and examples and highlight practicalities for use of MRI SVD imaging protocols in pre-selected, relevant rodent models.


Asunto(s)
Trastornos Cerebrovasculares/diagnóstico por imagen , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética/métodos , Microvasos/diagnóstico por imagen , Investigación Biomédica Traslacional/métodos , Animales , Humanos , Roedores
20.
Cell Death Discov ; 6: 18, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32257390

RESUMEN

CLN5 disease is a rare form of late-infantile neuronal ceroid lipofuscinosis (NCL) caused by mutations in the CLN5 gene that encodes a protein whose primary function and physiological roles remains unresolved. Emerging lines of evidence point to mitochondrial dysfunction in the onset and progression of several forms of NCL, offering new insights into putative biomarkers and shared biological processes. In this work, we employed cellular and murine models of the disease, in an effort to clarify disease pathways associated with CLN5 depletion. A mitochondria-focused quantitative proteomics approach followed by functional validations using cell biology and immunofluorescence assays revealed an impairment of mitochondrial functions in different CLN5 KO cell models and in Cln5 - /- cerebral cortex, which well correlated with disease progression. A visible impairment of autophagy machinery coupled with alterations of key parameters of mitophagy activation process functionally linked CLN5 protein to the process of neuronal injury. The functional link between impaired cellular respiration and activation of mitophagy pathways in the human CLN5 disease condition was corroborated by translating organelle-specific proteome findings to CLN5 patients' fibroblasts. Our study highlights the involvement of CLN5 in activation of mitophagy and mitochondrial homeostasis offering new insights into alternative strategies towards the CLN5 disease treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA