Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 36(2): e22157, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35032404

RESUMEN

Congenital hepatic fibrosis (CHF) is a developmental liver disease that is caused by mutations in genes that encode ciliary proteins and is characterized by bile duct dysplasia and portal fibrosis. Recent work has demonstrated that mutations in ANKS6 can cause CHF due to its role in bile duct development. Here, we report a novel ANKS6 mutation, which was identified in an infant presenting with neonatal jaundice due to underlying biliary abnormalities and liver fibrosis. Molecular analysis revealed that ANKS6 liver pathology is associated with the infiltration of inflammatory macrophages to the periportal fibrotic tissue and ductal epithelium. To further investigate the role of macrophages in CHF pathophysiology, we generated a novel liver-specific Anks6 knockout mouse model. The mutant mice develop biliary abnormalities and rapidly progressing periportal fibrosis reminiscent of human CHF. The development of portal fibrosis in Anks6 KO mice coincided with the accumulation of inflammatory monocytes and macrophages in the mutant liver. Gene expression and flow cytometric analysis demonstrated the preponderance of M1- over M2-like macrophages at the onset of fibrosis. A critical role for macrophages in promoting peribiliary fibrosis was demonstrated by depleting the macrophages with clodronate liposomes which effectively reduced inflammatory gene expression and fibrosis, and ameliorated tissue histology and biliary function in Anks6 KO livers. Together, this study demonstrates that macrophages play an important role in the initiation of liver fibrosis in ANKS6-deficient livers and their therapeutic elimination may provide an avenue to mitigate CHF in patients.


Asunto(s)
Proteínas Portadoras/metabolismo , Colestasis/patología , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Animales , Modelos Animales de Enfermedad , Expresión Génica/fisiología , Inflamación/metabolismo , Inflamación/patología , Hígado/patología , Cirrosis Hepática/patología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Monocitos/patología
2.
Kidney Int ; 102(5): 1042-1056, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35931300

RESUMEN

Defective DNA repair pathways contribute to the development of chronic kidney disease (CKD) in humans. However, the molecular mechanisms underlying DNA damage-induced CKD pathogenesis are not well understood. Here, we investigated the role of tubular cell DNA damage in the pathogenesis of CKD using mice in which the DNA repair protein Fan1 was knocked out. The phenotype of these mice is orthologous to the human DNA damage syndrome, karyomegalic interstitial nephritis (KIN). Inactivation of Fan1 in kidney proximal tubule cells sensitized the kidneys to genotoxic and obstructive injury characterized by replication stress and persistent DNA damage response activity. Accumulation of DNA damage in Fan1 tubular cells induced epithelial dedifferentiation and tubular injury. Characteristic to KIN, cells with chronic DNA damage failed to complete mitosis and underwent polyploidization. In vitro and in vivo studies showed that polyploidization was caused by the overexpression of DNA replication factors CDT1 and CDC6 in FAN1 deficient cells. Mechanistically, inhibiting DNA replication with Roscovitine reduced tubular injury, blocked the development of KIN and mitigated kidney function in these Fan1 knockout mice. Thus, our data delineate a mechanistic pathway by which persistent DNA damage in the kidney tubular cells leads to kidney injury and development of CKD. Furthermore, therapeutic modulation of cell cycle activity may provide an opportunity to mitigate the DNA damage response induced CKD progression.


Asunto(s)
Nefritis Intersticial , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , Daño del ADN , Reparación del ADN , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Fibrosis , Riñón/patología , Ratones Noqueados , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Nefritis Intersticial/patología , Insuficiencia Renal Crónica/etiología , Roscovitina
3.
Antioxidants (Basel) ; 12(4)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37107275

RESUMEN

Karyomegalic interstitial nephritis (KIN) is a genetic adult-onset chronic kidney disease (CKD) characterized by genomic instability and mitotic abnormalities in the tubular epithelial cells. KIN is caused by recessive mutations in the FAN1 DNA repair enzyme. However, the endogenous source of DNA damage in FAN1/KIN kidneys has not been identified. Here we show, using FAN1-deficient human renal tubular epithelial cells (hRTECs) and FAN1-null mice as a model of KIN, that FAN1 kidney pathophysiology is triggered by hypersensitivity to endogenous reactive oxygen species (ROS), which cause chronic oxidative and double-strand DNA damage in the kidney tubular epithelial cells, accompanied by an intrinsic failure to repair DNA damage. Furthermore, persistent oxidative stress in FAN1-deficient RTECs and FAN1 kidneys caused mitochondrial deficiencies in oxidative phosphorylation and fatty acid oxidation. The administration of subclinical, low-dose cisplatin increased oxidative stress and aggravated mitochondrial dysfunction in FAN1-deficient kidneys, thereby exacerbating KIN pathophysiology. In contrast, treatment of FAN1 mice with a mitochondria-targeted ROS scavenger, JP4-039, attenuated oxidative stress and accumulation of DNA damage, mitigated tubular injury, and preserved kidney function in cisplatin-treated FAN1-null mice, demonstrating that endogenous oxygen stress is an important source of DNA damage in FAN1-deficient kidneys and a driver of KIN pathogenesis. Our findings indicate that therapeutic modulation of kidney oxidative stress may be a promising avenue to mitigate FAN1/KIN kidney pathophysiology and disease progression in patients.

4.
Genome Announc ; 4(3)2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27365347

RESUMEN

Attis and SoilAssassin are two closely related bacteriophages isolated on Gordonia terrae 3612 from separate soil samples in Pittsburgh, PA. The Attis and SoilAssassin genomes are 47,881 bp and 47,880 bp, respectively, and have 74 predicted protein-coding genes, including toxin-antitoxin systems, but no tRNAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA