Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994560

RESUMEN

In mammals, RNA interference (RNAi) was historically studied as a cytoplasmic event; however, in the last decade, a growing number of reports convincingly show the nuclear localization of the Argonaute (AGO) proteins. Nevertheless, the extent of nuclear RNAi and its implication in biological mechanisms remain to be elucidated. We found that reduced Lamin A levels significantly induce nuclear influx of AGO2 in SHSY5Y neuroblastoma and A375 melanoma cancer cell lines, which normally have no nuclear AGO2. Lamin A KO manifested a more pronounced effect in SHSY5Y cells compared to A375 cells, evident by changes in cell morphology, increased cell proliferation, and oncogenic miRNA expression. Moreover, AGO fPAR-CLIP in Lamin A KO SHSY5Y cells revealed significantly reduced RNAi activity. Further exploration of the nuclear AGO interactome by mass spectrometry identified FAM120A, an RNA-binding protein and known interactor of AGO2. Subsequent FAM120A fPAR-CLIP, revealed that FAM120A co-binds AGO targets and that this competition reduces the RNAi activity. Therefore, loss of Lamin A triggers nuclear AGO2 translocation, FAM120A mediated RNAi impairment, and upregulation of oncogenic miRNAs, facilitating cancer cell proliferation.

2.
Bioconjug Chem ; 30(10): 2647-2663, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31518105

RESUMEN

G-Quadruplex DNA has been recognized as a highly appealing target for the development of new selective chemotherapeutics, which could result in markedly reduced toxicity toward normal cells. In particular, the cyanine dyes that bind selectively to G-quadruplex structures without targeting duplex DNA have attracted attention due to their high amenability to structural modifications that allows fine-tuning of their biomolecular interactions. We have previously reported pentamethine and symmetric trimethine cyanines designed to effectively bind G-quadruplexes through end stacking interactions. Herein, we are reporting a second generation of drug candidates, the asymmetric trimethine cyanines. These have been synthesized and evaluated for their quadruplex binding properties. Incorporating a benz[c,d]indolenine heterocyclic unit increased overall quadruplex binding, and elongating the alkyl length increases the quadruplex-to-duplex binding specificity.


Asunto(s)
Alquinos/química , Alquinos/farmacología , G-Cuádruplex/efectos de los fármacos , Secuencia de Bases , ADN/química , ADN/genética , Diseño de Fármacos , Indoles/química , Modelos Moleculares
3.
Curr Protoc ; 4(5): e1042, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767195

RESUMEN

Biochemical fractionation is a technique used to isolate and separate distinct cellular compartments, critical for dissecting cellular mechanisms and molecular pathways. Herein we outline a biochemical fraction methodology for isolation of ultra-pure nuclei and cytoplasm. This protocol utilizes hypotonic lysis buffer to suspend cells, coupled with a calibrated centrifugation strategy, for enhanced separation of cytoplasm from the nuclear fraction. Subsequent purification steps ensure the integrity of the isolated nuclear fraction. Overall, this method facilitates accurate protein localization, essential for functional studies, demonstrating its efficacy in separating cellular compartments. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Biochemical fractionation Support Protocol 1: Protein quantification using Bradford assay Support Protocol 2: SDS/PAGE and Western blotting.


Asunto(s)
Fraccionamiento Celular , Núcleo Celular , Citoplasma , Citoplasma/metabolismo , Citoplasma/química , Núcleo Celular/metabolismo , Núcleo Celular/química , Fraccionamiento Celular/métodos , Humanos , Electroforesis en Gel de Poliacrilamida , Western Blotting
4.
Molecules ; 18(11): 13588-607, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24192912

RESUMEN

A variety of cyanines provide versatile and sensitive agents acting as DNA stains and sensors and have been structurally modified to bind in the DNA minor groove in a sequence dependent manner. Similarly, we are developing a new set of cyanines that have been designed to achieve highly selective binding to DNA G-quadruplexes with much weaker binding to DNA duplexes. A systematic set of structurally analogous trimethine cyanines has been synthesized and evaluated for quadruplex targeting. The results reveal that elevated quadruplex binding and specificity are highly sensitive to the polymethine chain length, heterocyclic structure and intrinsic charge of the compound. Biophysical experiments show that the compounds display significant selectivity for quadruplex binding with a higher preference for parallel stranded quadruplexes, such as cMYC. NMR studies revealed the primary binding through an end-stacking mode and SPR studies showed the strongest compounds have primary KD values below 100 nM that are nearly 100-fold weaker for duplexes. The high selectivity of these newly designed trimethine cyanines for quadruplexes as well as their ability to discriminate between different quadruplexes are extremely promising features to develop them as novel probes for targeting quadruplexes in vivo.


Asunto(s)
Carbocianinas/química , G-Cuádruplex , Espectroscopía de Resonancia Magnética , Resonancia por Plasmón de Superficie , Telómero/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA