RESUMEN
Nucleic acids are powerful triggers of innate immunity and can adopt the Z-conformation, an unusual left-handed double helix. Here, we studied the biological function(s) of Z-RNA recognition by the adenosine deaminase ADAR1, mutations in which cause Aicardi-Goutières syndrome. Adar1mZα/mZα mice, bearing two point mutations in the Z-nucleic acid binding (Zα) domain that abolish Z-RNA binding, displayed spontaneous induction of type I interferons (IFNs) in multiple organs, including in the lung, where both stromal and hematopoietic cells showed IFN-stimulated gene (ISG) induction. Lung neutrophils expressed ISGs induced by the transcription factor IRF3, indicating an initiating role for neutrophils in this IFN response. The IFN response in Adar1mZα/mZα mice required the adaptor MAVS, implicating cytosolic RNA sensing. Adenosine-to-inosine changes were enriched in transposable elements and revealed a specific requirement of ADAR1's Zα domain in editing of a subset of RNAs. Thus, endogenous RNAs in Z-conformation have immunostimulatory potential curtailed by ADAR1, with relevance to autoinflammatory disease in humans.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Adenosina Desaminasa/genética , Interferón Tipo I/inmunología , ARN Bicatenario/genética , Adenosina/genética , Adenosina/metabolismo , Animales , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Inosina/genética , Inosina/metabolismo , Interferón Tipo I/genética , Ratones , Mutación , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/inmunología , Edición de ARN/genética , ARN Bicatenario/metabolismoRESUMEN
BACKGROUND: Within a year of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, vaccines inducing a robust humoral and cellular immune response were implemented worldwide. However, emergence of novel variants and waning vaccine-induced immunity led to implementation of additional vaccine boosters. METHODS: This prospective study evaluated the temporal profile of cellular and serological responses in a cohort of 639 SARS-CoV-2-vaccinated participants, of whom a large proportion experienced a SARS-CoV-2 infection. All participants were infection naïve at the time of their first vaccine dose. Proportions of SARS-CoV-2 spike-specific T cells were determined after each vaccine dose using the activation-induced marker assay, while levels of circulating SARS-CoV-2 antibodies were determined by the Meso Scale serology assay. RESULTS: We found a significant increase in SARS-CoV-2 spike-specific CD4+ and CD8+ T-cell responses following the third dose of a SARS-CoV-2 messenger RNA vaccine as well as enhanced CD8+ T-cell responses after the fourth dose. Furthermore, increased age was associated with a poorer response. Finally, we observed that SARS-CoV-2 infection boosts both the cellular and humoral immune response, relative to vaccine-induced immunity alone. CONCLUSIONS: Our findings highlight the boosting effect on T-cell immunity of repeated vaccine administration. The combination of multiple vaccine doses and SARS-CoV-2 infections maintains population T-cell immunity, although with reduced levels in the elderly.
Asunto(s)
Anticuerpos Antivirales , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Masculino , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Estudios Prospectivos , Femenino , Persona de Mediana Edad , Adulto , Linfocitos T CD8-positivos/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Estudios Longitudinales , Linfocitos T CD4-Positivos/inmunología , Inmunidad Celular , Anciano , Vacunación , Inmunización Secundaria , Linfocitos T/inmunología , Adulto JovenRESUMEN
BACKGROUND: SARS-CoV-2 remains a world-wide health issue. SARS-CoV-2-specific immunity is induced upon both infection and vaccination. However, defining the long-term immune trajectory, especially after infection, is limited. In this study, we aimed to further the understanding of long-term SARS-CoV-2-specific immune response after infection. RESULTS: We conducted a longitudinal cohort study among 93 SARS-CoV-2 recovered individuals. Immune responses were continuously monitored for up to 20 months after infection. The humoral responses were quantified by Spike- and Nucleocapsid-specific IgG levels. T cell responses to Spike- and non-Spike epitopes were examined using both intercellular cytokine staining (ICS) assay and Activation-Induced marker (AIM) assay with quantification of antigen-specific IFNγ production. During the 20 months follow-up period, Nucleocapsid-specific antibody levels and non-Spike-specific CD4 + and CD8 + T cell frequencies decreased in the blood. However, a majority of participants maintained a durable immune responses 20 months after infection: 59% of the participants were seropositive for Nucleocapsid-specific IgG, and more than 70% had persisting non-Spike-specific T cells. The Spike-specific response initially decreased but as participants were vaccinated against COVID-19, Spike-specific IgG levels and T cell frequencies were boosted reaching similar or higher levels compared to 1 month post-infection. The trajectory of infection-induced SARS-CoV-2-specific immunity decreases, but for the majority of participants it persists beyond 20 months. The T cell response displays a greater durability. Vaccination boosts Spike-specific immune responses to similar or higher levels as seen after primary infection. CONCLUSIONS: For most participants, the response persists 20 months after infection, and the cellular response appears to be more long-lived compared to the circulating antibody levels. Vaccination boosts the S-specific response but does not affect the non-S-specific response. Together, these findings support the understanding of immune contraction, and with studies showing the immune levels required for protection, adds to the knowledge of durability of protection against future SARS-CoV-2.
Asunto(s)
COVID-19 , Humanos , Estudios Longitudinales , SARS-CoV-2 , Inmunidad Celular , Inmunoglobulina G , Anticuerpos Antivirales , Inmunidad Humoral , VacunaciónRESUMEN
BACKGROUND: Older age and chronic disease are important risk factors for developing severe COVID-19. At population level, vaccine-induced immunity substantially reduces the risk of severe COVID-19 disease and hospitalization. However, the relative impact of humoral and cellular immunity on protection from breakthrough infection and severe disease is not fully understood. METHODS: In a study cohort of 655 primarily older study participants (median of 63 years (IQR: 51-72)), we determined serum levels of Spike IgG antibodies using a Multiantigen Serological Assay and quantified the frequency of SARS-CoV-2 Spike-specific CD4 + and CD8 + T cells using activation induced marker assay. This enabled characterization of suboptimal vaccine-induced cellular immunity. The risk factors of being a cellular hypo responder were assessed using logistic regression. Further follow-up of study participants allowed for an evaluation of the impact of T cell immunity on breakthrough infections. RESULTS: We show reduced serological immunity and frequency of CD4 + Spike-specific T cells in the oldest age group (≥75 years) and higher Charlson Comorbidity Index (CCI) categories. Male sex, age group ≥75 years, and CCI > 0 is associated with an increased likelihood of being a cellular hypo-responder while vaccine type is a significant risk factor. Assessing breakthrough infections, no protective effect of T cell immunity is identified. CONCLUSIONS: SARS-CoV-2 Spike-specific immune responses in both the cellular and serological compartment of the adaptive immune system increase with each vaccine dose and are progressively lower with older age and higher prevalence of comorbidities. The findings contribute to the understanding of the vaccine response in individuals with increased risk of severe COVID-19 disease and hospitalization.
Vaccination has proven very effective in protecting against severe disease and hospitalization of people with COVID-19, the disease caused by SARS-CoV-2. It is still unclear, however, how the different components of the immune system respond to SARS-CoV-2 vaccination and protect from infection and severe disease. Two of the most predominant components of the immune system are specialized proteins and cells. The proteins circulate in the blood and help clear the virus by binding to it, while the cells either kill the virus or help other cells to produce more antibodies. Here, we examined the response of these two components to the SARS-CoV-2 vaccine in 655 Danish citizens. The response of both components was lower in people over 75 years old and with other diseases. These findings help in understanding the immune responses following SARS-CoV-2 vaccination in people at increased risk of severe symptoms of COVID-19.
RESUMEN
OBJECTIVES: To identify individual characteristics associated with serological COVID-19 vaccine responsiveness and the durability of vaccine-induced antibodies. METHODS: Adults without history of SARS-CoV-2 infection from the Danish population scheduled for SARS-CoV-2 vaccination were enrolled in this parallel group, phase 4 study. SARS-CoV-2 Spike IgG and Spike-ACE2-receptor-blocking antibodies were measured at days 0, 21, 90, and 180. Vaccine responsiveness was categorized according to Spike IgG and Spike-ACE2-receptor-blocking levels at day 90 after first vaccination. Nondurable vaccine response was defined as day-90 responders who no longer had significant responses by day 180. RESULTS: Of 6544 participants completing two vaccine doses (median age 64 years; interquartile range: 54-75), 3654 (55.8%) received BTN162b2, 2472 (37.8%) mRNA-1273, and 418 (6.4%) ChAdOx1 followed by an mRNA vaccine. Levels of both types of antibodies increased from baseline to day 90 and then decreased to day 180. The decrease was more pronounced for levels of Spike-ACE2-receptor-blocking antibodies than for Spike IgG. Proportions with vaccine hyporesponsiveness and lack of durable response were 5.0% and 12.1% for Spike IgG and 12.7% and 39.6% for Spike-ACE2-receptor-blocking antibody levels, respectively. Male sex, vaccine type, and number of comorbidities were associated with all four outcomes. Additionally, age ≥75 years was associated with hyporesponsiveness for Spike-ACE2-receptor-blocking antibodies (adjusted odds ratio: 1.59; 95% confidence interval: 1.25-2.01) but not for Spike IgG. DISCUSSION: Comorbidity, male sex, and vaccine type were risk factors for hyporesponsiveness and nondurable response to COVID-19 vaccination. The functional activity of vaccine-induced antibodies declined with increasing age and had waned to pre-second-vaccination levels for most individuals after 6 months.