RESUMEN
PURPOSE: To evaluate a vendor-agnostic multiparametric mapping scheme based on 3D quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS) for whole-brain T1, T2, and proton density (PD) mapping. METHODS: This prospective, multi-institutional study was conducted between September 2021 and February 2022 using five different 3T systems from four prominent MRI vendors. The accuracy of this technique was evaluated using a standardized MRI system phantom. Intra-scanner repeatability and inter-vendor reproducibility of T1, T2, and PD values were evaluated in 10 healthy volunteers (6 men; mean age ± SD, 28.0 ± 5.6 y) who underwent scan-rescan sessions on each scanner (total scans = 100). To evaluate the feasibility of 3D-QALAS, nine patients with multiple sclerosis (nine women; mean age ± SD, 48.2 ± 11.5 y) underwent imaging examination on two 3T MRI systems from different manufacturers. RESULTS: Quantitative maps obtained with 3D-QALAS showed high linearity (R2 = 0.998 and 0.998 for T1 and T2, respectively) with respect to reference measurements. The mean intra-scanner coefficients of variation for each scanner and structure ranged from 0.4% to 2.6%. The mean structure-wise test-retest repeatabilities were 1.6%, 1.1%, and 0.7% for T1, T2, and PD, respectively. Overall, high inter-vendor reproducibility was observed for all parameter maps and all structure measurements, including white matter lesions in patients with multiple sclerosis. CONCLUSION: The vendor-agnostic multiparametric mapping technique 3D-QALAS provided reproducible measurements of T1, T2, and PD for human tissues within a typical physiological range using 3T scanners from four different MRI manufacturers.
Asunto(s)
Encéfalo , Esclerosis Múltiple , Masculino , Humanos , Femenino , Reproducibilidad de los Resultados , Estudios Prospectivos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Esclerosis Múltiple/diagnóstico por imagen , Mapeo EncefálicoRESUMEN
BACKGROUND: Assessment of treatment response in triple-negative breast cancer (TNBC) may guide individualized care for improved patient outcomes. Diffusion tensor imaging (DTI) measures tissue anisotropy and could be useful for characterizing changes in the tumors and adjacent fibroglandular tissue (FGT) of TNBC patients undergoing neoadjuvant systemic treatment (NAST). PURPOSE: To evaluate the potential of DTI parameters for prediction of treatment response in TNBC patients undergoing NAST. STUDY TYPE: Prospective. POPULATION: Eighty-six women (average age: 51 ± 11 years) with biopsy-proven clinical stage I-III TNBC who underwent NAST followed by definitive surgery. 47% of patients (40/86) had pathologic complete response (pCR). FIELD STRENGTH/SEQUENCE: 3.0 T/reduced field of view single-shot echo-planar DTI sequence. ASSESSMENT: Three MRI scans were acquired longitudinally (pre-treatment, after 2 cycles of NAST, and after 4 cycles of NAST). Eleven histogram features were extracted from DTI parameter maps of tumors, a peritumoral region (PTR), and FGT in the ipsilateral breast. DTI parameters included apparent diffusion coefficients and relative diffusion anisotropies. pCR status was determined at surgery. STATISTICAL TESTS: Longitudinal changes of DTI features were tested for discrimination of pCR using Mann-Whitney U test and area under the receiver operating characteristic curve (AUC). A P value <0.05 was considered statistically significant. RESULTS: 47% of patients (40/86) had pCR. DTI parameters assessed after 2 and 4 cycles of NAST were significantly different between pCR and non-pCR patients when compared between tumors, PTRs, and FGTs. The median surface/average anisotropy of the PTR, measured after 2 and 4 cycles of NAST, increased in pCR patients and decreased in non-pCR patients (AUC: 0.78; 0.027 ± 0.043 vs. -0.017 ± 0.042 mm2 /s). DATA CONCLUSION: Quantitative DTI features from breast tumors and the peritumoral tissue may be useful for predicting the response to NAST in TNBC. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 4.
RESUMEN
PURPOSE: To develop a rigid real-time prospective motion-corrected multiparametric mapping technique and to test the performance of quantitative estimates. METHODS: Motion tracking and correction were performed by integrating single-shot spiral navigators into a multiparametric imaging technique, three-dimensional quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS). The spiral navigator was optimized, and quantitative measurements were validated using a standard system phantom. The effect of motion correction on whole-brain T1 and T2 mapping under different types of head motion during the scan was evaluated in 10 healthy volunteers. Finally, six patients with Parkinson's disease, which is known to be associated with a high prevalence of motion artifacts, were scanned to evaluate the effectiveness of our method in the real world. RESULTS: The phantom study demonstrated that the proposed motion correction method did not introduce quantitative bias. Improved parametric map quality and repeatability were shown in volunteer experiments with both in-plane and through-plane motions, comparable to the no-motion ground truth. In real-life validation in patients, the approach showed improved parametric map quality compared to images obtained without motion correction. CONCLUSIONS: Real-time prospective motion-corrected multiparametric relaxometry based on 3D-QALAS provided robust and repeatable whole-brain multiparametric mapping.
Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Artefactos , Encéfalo/diagnóstico por imagen , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Fantasmas de Imagen , Estudios ProspectivosRESUMEN
BACKGROUND: Pathologic complete response (pCR) to neoadjuvant systemic therapy (NAST) in triple-negative breast cancer (TNBC) is a strong predictor of patient survival. Edema in the peritumoral region (PTR) has been reported to be a negative prognostic factor in TNBC. PURPOSE: To determine whether quantitative apparent diffusion coefficient (ADC) features from PTRs on reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) predict the response to NAST in TNBC. STUDY TYPE: Prospective. POPULATION/SUBJECTS: A total of 108 patients with biopsy-proven TNBC who underwent NAST and definitive surgery during 2015-2020. FIELD STRENGTH/SEQUENCE: A 3.0 T/rFOV single-shot diffusion-weighted echo-planar imaging sequence (DWI). ASSESSMENT: Three scans were acquired longitudinally (pretreatment, after two cycles of NAST, and after four cycles of NAST). For each scan, 11 ADC histogram features (minimum, maximum, mean, median, standard deviation, kurtosis, skewness and 10th, 25th, 75th, and 90th percentiles) were extracted from tumors and from PTRs of 5 mm, 10 mm, 15 mm, and 20 mm in thickness with inclusion and exclusion of fat-dominant pixels. STATISTICAL TESTS: ADC features were tested for prediction of pCR, both individually using Mann-Whitney U test and area under the receiver operating characteristic curve (AUC), and in combination in multivariable models with k-fold cross-validation. A P value < 0.05 was considered statistically significant. RESULTS: Fifty-one patients (47%) had pCR. Maximum ADC from PTR, measured after two and four cycles of NAST, was significantly higher in pCR patients (2.8 ± 0.69 vs 3.5 ± 0.94 mm2 /sec). The top-performing feature for prediction of pCR was the maximum ADC from the 5-mm fat-inclusive PTR after cycle 4 of NAST (AUC: 0.74; 95% confidence interval: 0.64, 0.84). Multivariable models of ADC features performed similarly for fat-inclusive and fat-exclusive PTRs, with AUCs ranging from 0.68 to 0.72 for the cycle 2 and cycle 4 scans. DATA CONCLUSION: Quantitative ADC features from PTRs may serve as early predictors of the response to NAST in TNBC. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 4.
Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Terapia Neoadyuvante , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Estudios Prospectivos , Estudios Retrospectivos , Imagen de Difusión por Resonancia Magnética/métodosRESUMEN
Endometrial cancer is the second most common gynecologic cancer worldwide and the most common gynecologic cancer in the United States, with an increasing incidence in high-income countries. Although the International Federation of Gynecology and Obstetrics (FIGO) staging system for endometrial cancer is a surgical staging system, contemporary published evidence-based data and expert opinions recommend MRI for treatment planning as it provides critical diagnostic information on tumor size and depth, extent of myometrial and cervical invasion, extrauterine extent, and lymph node status, all of which are essential in choosing the most appropriate therapy. Multiparametric MRI using a combination of T2-weighted sequences, diffusion-weighted imaging, and multiphase contrast-enhanced imaging is the mainstay for imaging assessment of endometrial cancer. Identification of important prognostic factors at MRI improves both treatment selection and posttreatment follow-up. MRI also plays a crucial role for fertility-preserving strategies and in patients who are not surgical candidates by helping guide therapy and identify procedural complications. This review is a product of the Society of Abdominal Radiology Uterine and Ovarian Cancer Disease-Focused Panel and reflects a multidisciplinary international collaborative effort to summarize updated information highlighting the role of MRI for endometrial cancer depiction and delineation, treatment planning, and follow-up. The article includes information regarding dedicated MRI protocols, tips for MRI reporting, imaging pitfalls, and strategies for image quality optimization. The roles of MRI-guided radiation therapy, hybrid PET/MRI, and advanced MRI techniques that are applicable to endometrial cancer imaging are also discussed. Online supplemental material is available for this article. ©RSNA, 2022.
Asunto(s)
Neoplasias Endometriales , Neoplasias de los Genitales Femeninos , Humanos , Femenino , Estadificación de Neoplasias , Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/patología , Neoplasias Endometriales/cirugía , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias de los Genitales Femeninos/patologíaRESUMEN
PURPOSE: To determine if tumor necrosis by pretreatment breast MRI and its quantitative imaging characteristics are associated with response to NAST in TNBC. METHODS: This retrospective study included 85 TNBC patients (mean age 51.8 ± 13 years) with MRI before NAST and definitive surgery during 2010-2018. Each MRI included T2-weighted, diffusion-weighted (DWI), and dynamic contrast-enhanced (DCE) imaging. For each index carcinoma, total tumor volume including necrosis (TTV), excluding necrosis (TV), and the necrosis-only volume (NV) were segmented on early-phase DCE subtractions and DWI images. NV and %NV were calculated. Percent enhancement on early and late phases of DCE and apparent diffusion coefficient were extracted from TTV, TV, and NV. Association between necrosis with pathological complete response (pCR) was assessed using odds ratio (OR). Multivariable analysis was used to evaluate the prognostic value of necrosis with T stage and nodal status at staging. Mann-Whitney U tests and area under the curve (AUC) were used to assess performance of imaging metrics for discriminating pCR vs non-pCR. RESULTS: Of 39 patients (46%) with necrosis, 17 had pCR and 22 did not. Necrosis was not associated with pCR (OR, 0.995; 95% confidence interval [CI] 0.4-2.3) and was not an independent prognostic factor when combined with T stage and nodal status at staging (P = 0.46). None of the imaging metrics differed significantly between pCR and non-pCR in patients with necrosis (AUC < 0.6 and P > 0.40). CONCLUSION: No significant association was found between necrosis by pretreatment MRI or the quantitative imaging characteristics of tumor necrosis and response to NAST in TNBC.
Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Adulto , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Medios de Contraste , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Necrosis , Terapia Neoadyuvante , Estudios Retrospectivos , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológicoRESUMEN
BACKGROUND: Dynamic contrast-enhanced (DCE) MRI is useful for diagnosis and assessment of treatment response in breast cancer. Fast DCE MRI offers a higher sampling rate of contrast enhancement curves in comparison to conventional DCE MRI, potentially characterizing tumor perfusion kinetics more accurately for measurement of functional tumor volume (FTV) as a predictor of treatment response. PURPOSE: To investigate FTV by fast DCE MRI as a predictor of neoadjuvant systemic therapy (NAST) response in triple-negative breast cancer (TNBC). STUDY TYPE: Prospective. POPULATION/SUBJECTS: Sixty patients with biopsy-confirmed TNBC between December 2016 and September 2020. FIELD STRENGTH/SEQUENCE: A 3.0 T/3D fast spoiled gradient echo-based DCE MRI ASSESSMENT: Patients underwent MRI at baseline and after four cycles (C4) of NAST, followed by definitive surgery. DCE subtraction images were analyzed in consensus by two breast radiologists with 5 (A.H.A.) and 2 (H.S.M.) years of experience. Tumor volumes (TV) were measured on early and late subtractions. Tumors were segmented on 1 and 2.5-minute early phases subtractions and FTV was determined using optimized signal enhancement thresholds. Interpolated enhancement curves from segmented voxels were used to determine optimal early phase timing. STATISTICAL TESTS: Tumor volumes were compared between patients who had a pathologic complete response (pCR) and those who did not using the area under the receiver operating curve (AUC) and Mann-Whitney U test. RESULTS: About 26 of 60 patients (43%) had pCR. FTV at 1 minute after injection at C4 provided the best discrimination between pCR and non-pCR, with AUC (95% confidence interval [CI]) = 0.85 (0.74,0.95) (P < 0.05). The 1-minute timing was optimal for FTV measurements at C4 and for the change between C4 and baseline. TV from the early phase at C4 also yielded a good AUC (95%CI) of 0.82 (0.71,0.93) (P < 0.05). DATA CONCLUSION: FTV and TV measured at 1 minute after injection can predict response to NAST in TNBC. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: 4.
Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Medios de Contraste , Femenino , Humanos , Imagen por Resonancia Magnética , Terapia Neoadyuvante , Estudios Prospectivos , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Carga TumoralRESUMEN
Purpose: MR temperature imaging (MRTI) was employed for visualizing the spatiotemporal evolution of the exotherm of thermoembolization, an investigative transarterial treatment for solid tumors. Materials and methods: Five explanted kidneys were injected with thermoembolic solutions, and monitored by MRTI. In three nonselective experiments, 5 ml of 4 mol/l dichloroacetyl chloride (DCA-Cl) solution in a hydrocarbon vehicle was injected via the main renal artery. For two of these three, MRTI temperature data were compared to fiber optic thermal probes. Another two kidneys received selective injections, treating only portions of the kidneys with 1 ml of 2 mol/l DCA-Cl. MRTI data were acquired and compared to changes in pre- and post-injection CT. Specimens were bisected and photographed for gross pathology 24 h post-procedure. Results: MRTI temperature estimates were within ±1 °C of the probes. In experiments without probes, MRTI measured increases of 30 °C. Some regions had not reached peak temperature by the end of the >18 min acquisition. MRTI indicated the initial heating occurred in the renal cortex, gradually spreading more proximally toward the main renal artery. Gross pathology showed the nonselective injection denatured the entire kidney whereas in the selective injections, only the treated territory was coagulated. Conclusion: The spatiotemporal evolution of thermoembolization was visualized for the first time using noninvasive MRTI, providing unique insight into the thermodynamics of thermoembolization. Précis Thermoembolization is being investigated as a novel transarterial treatment. In order to begin to characterize delivery of this novel treatment modality and aid translation from the laboratory to patients, we employ MR temperature imaging to visualize the spatiotemporal distribution of temperature from thermoembolization in ex vivo tissue.
Asunto(s)
Embolización Terapéutica , Imagen por Resonancia Magnética , Termografía , Animales , Riñón/diagnóstico por imagen , Arteria Renal/diagnóstico por imagen , Porcinos , TemperaturaRESUMEN
PURPOSE: To develop a flexible fast spin echo (FSE) triple-echo Dixon (FTED) technique. METHODS: An FSE pulse sequence was modified by replacing each readout gradient with three fast-switching bipolar readout gradients with minimal interecho dead time. The corresponding three echoes were used to generate three raw images with relative phase shifts of -θ, 0, and θ between water and fat signals. A region growing-based two-point Dixon phase correction algorithm was used to joint process two separate pairs of the three raw images, yielding a final set of water-only and fat-only images. The flexible FTED technique was implemented on 1.5T and 3.0T scanners and evaluated in five subjects for fat-suppressed T2-weighted imaging and in one subject for post-contrast fat-suppressed T1-weighted imaging. RESULTS: The flexible FTED technique achieved a high data acquisition efficiency, comparable to that of FSE, and was flexible in scan protocols. The joint two-point Dixon phase correction algorithm helped to ensure consistency in the processing of the two separate pairs of raw images. Reliable and uniform separation of water and fat was achieved in all of the test cases. CONCLUSION: The flexible FTED technique incorporates the benefits of both FSE and Dixon imaging and provided more flexibility than the original FTED in applications such as fat-suppressed T2-weighted and T1-weighted imaging. Magn Reson Med 77:1049-1057, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Agua Corporal/diagnóstico por imagen , Mama/anatomía & histología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Algoritmos , Femenino , Humanos , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
PURPOSE: MR-only treatment planning requires images of high geometric fidelity, particularly for large fields of view (FOV). However, the availability of large FOV distortion phantoms with analysis software is currently limited. This work sought to optimize a modular distortion phantom to accommodate multiple bore configurations and implement distortion characterization in a widely implementable solution. METHOD AND MATERIALS: To determine candidate materials, 1.0 T MR and CT images were acquired of twelve urethane foam samples of various densities and strengths. Samples were precision-machined to accommodate 6 mm diameter paintballs used as landmarks. Final material candidates were selected by balancing strength, machinability, weight, and cost. Bore sizes and minimum aperture width resulting from couch position were tabulated from the literature (14 systems, 5 vendors). Bore geometry and couch position were simulated using MATLAB to generate machine-specific models to optimize the phantom build. Previously developed software for distortion characterization was modified for several magnet geometries (1.0 T, 1.5 T, 3.0 T), compared against previously published 1.0 T results, and integrated into the 3D Slicer application platform. RESULTS: All foam samples provided sufficient MR image contrast with paintball landmarks. Urethane foam (compressive strength â¼1000 psi, density ~20 lb/ft3 ) was selected for its accurate machinability and weight characteristics. For smaller bores, a phantom version with the following parameters was used: 15 foam plates, 55 × 55 × 37.5 cm3 (L×W×H), 5,082 landmarks, and weight ~30 kg. To accommodate > 70 cm wide bores, an extended build used 20 plates spanning 55 × 55 × 50 cm3 with 7,497 landmarks and weight ~44 kg. Distortion characterization software was implemented as an external module into 3D Slicer's plugin framework and results agreed with the literature. CONCLUSION: The design and implementation of a modular, extendable distortion phantom was optimized for several bore configurations. The phantom and analysis software will be available for multi-institutional collaborations and cross-validation trials to support MR-only planning.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Programas Informáticos , Diseño de Equipo , Imagen por Resonancia Magnética/normas , Tomografía Computarizada por Rayos XRESUMEN
PURPOSE: To assess the correlation among MR elastography (MRE) measured liver stiffness (LS), liver fibrosis, and hepatic venous pressure gradient (HVPG) in a swine model of cirrhosis. MATERIALS AND METHODS: Three swine served as controls, and liver fibrosis was induced in eight swine by transarterial embolization. LS and HVPG were obtained at baseline and 4 weeks (prenecropsy) following induction of liver fibrosis. RESULTS: Four weeks following the induction of liver cirrhosis, experimental animals developed an increase in HVPG of 8.0±6.4 mmHg compared with 0.3±1.2 mmHg for controls (P=0.08). Over the same timeframe, mean MRE-measured LS increased 0.82±0.39 kPa for experimental swine and 0.1±0.05 kPa for controls (P=0.01). A positive correlation was observed between increases in HVPG and LS (ρ=0.682; P=0.02). Liver fibrosis was measured on explanted livers at 4 weeks and yielded mean fibrosis scores of 2.8 for experimental animals and 0 for controls (P=0.0016). A positive correlation was observed between higher LS and liver fibrosis (ρ=0.884; P=0.0003). CONCLUSION: MRE is a reliable noninvasive technique to measure LS in a swine model of cirrhosis. Significant positive correlations were observed between LS and HVPG as well as LS and fibrosis.
Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Cirrosis Hepática/diagnóstico , Presión Portal , Análisis de Varianza , Animales , Biopsia con Aguja , Modelos Animales de Enfermedad , Inmunohistoquímica , Cirrosis Hepática/patología , Curva ROC , Distribución Aleatoria , Valores de Referencia , Sus scrofa , PorcinosRESUMEN
Objective: The purpose of this study was to investigate the technical feasibility of integrating the quantitative maps available from SyntheticMR into the head and neck adaptive radiation oncology workflow. While SyntheticMR has been investigated for diagnostic applications, no studies have investigated its feasibility and potential for MR-Simulation or MR-Linac workflow. Demonstrating the feasibility of using this technique will facilitate rapid quantitative biomarker extraction which can be leveraged to guide adaptive radiation therapy decision making. Approach: Two phantoms, two healthy volunteers, and one patient were scanned using SyntheticMR on the MR-Simulation and MR-Linac devices with scan times between four to six minutes. Images in phantoms and volunteers were conducted in a test/retest protocol. The correlation between measured and reference quantitative T1, T2, and PD values were determined across clinical ranges in the phantom. Distortion was also studied. Contours of head and neck organs-at-risk (OAR) were drawn and applied to extract T1, T2, and PD. These values were plotted against each other, clusters were computed, and their separability significance was determined to evaluate SyntheticMR for differentiating tumor and normal tissue. Main Results: The Lin's Concordance Correlation Coefficient between the measured and phantom reference values was above 0.98 for both the MR-Sim and MR-Linac. No significant levels of distortion were measured. The mean bias between the measured and phantom reference values across repeated scans was below 4% for T1, 7% for T2, and 4% for PD for both the MR-Sim and MR-Linac. For T1 vs. T2 and T1 vs. PD, the GTV contour exhibited perfect purity against neighboring OARs while being 0.7 for T2 vs. PD. All cluster significance levels between the GTV and the nearest OAR, the tongue, using the SigClust method was p < 0.001. Significance: The technical feasibility of SyntheticMR was confirmed. Application of this technique to the head and neck adaptive radiation therapy workflow can enrich the current quantitative biomarker landscape.
RESUMEN
Triple-negative breast cancer (TNBC) is often treated with neoadjuvant systemic therapy (NAST). We investigated if radiomic models based on multiparametric Magnetic Resonance Imaging (MRI) obtained early during NAST predict pathologic complete response (pCR). We included 163 patients with stage I-III TNBC with multiparametric MRI at baseline and after 2 (C2) and 4 cycles of NAST. Seventy-eight patients (48%) had pCR, and 85 (52%) had non-pCR. Thirty-six multivariate models combining radiomic features from dynamic contrast-enhanced MRI and diffusion-weighted imaging had an area under the receiver operating characteristics curve (AUC) > 0.7. The top-performing model combined 35 radiomic features of relative difference between C2 and baseline; had an AUC = 0.905 in the training and AUC = 0.802 in the testing set. There was high inter-reader agreement and very similar AUC values of the pCR prediction models for the 2 readers. Our data supports multiparametric MRI-based radiomic models for early prediction of NAST response in TNBC.
Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Terapia Neoadyuvante , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/patología , Femenino , Terapia Neoadyuvante/métodos , Persona de Mediana Edad , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Adulto , Anciano , Resultado del Tratamiento , Curva ROC , Imagen por Resonancia Magnética/métodos , RadiómicaRESUMEN
Accurate tumor segmentation is required for quantitative image analyses, which are increasingly used for evaluation of tumors. We developed a fully automated and high-performance segmentation model of triple-negative breast cancer using a self-configurable deep learning framework and a large set of dynamic contrast-enhanced MRI images acquired serially over the patients' treatment course. Among all models, the top-performing one that was trained with the images across different time points of a treatment course yielded a Dice similarity coefficient of 93% and a sensitivity of 96% on baseline images. The top-performing model also produced accurate tumor size measurements, which is valuable for practical clinical applications.
RESUMEN
Early assessment of neoadjuvant systemic therapy (NAST) response for triple-negative breast cancer (TNBC) is critical for patient care in order to avoid the unnecessary toxicity of an ineffective treatment. We assessed functional tumor volumes (FTVs) from dynamic contrast-enhanced (DCE) MRI after 2 cycles (C2) and 4 cycles (C4) of NAST as predictors of response in TNBC. A group of 100 patients with stage I-III TNBC who underwent DCE MRI at baseline, C2, and C4 were included in this study. Tumors were segmented on DCE images of 1 min and 2.5 min post-injection. FTVs were measured using the optimized percentage enhancement (PE) and signal enhancement ratio (SER) thresholds. The Mann-Whitney test was used to compare the performance of the FTVs at C2 and C4. Of the 100 patients, 49 (49%) had a pathologic complete response (pCR) and 51 (51%) had a non-pCR. The maximum area under the receiving operating characteristic curve (AUC) for predicting the treatment response was 0.84 (p < 0.001) for FTV at C4 followed by FTV at C2 (AUC = 0.82, p < 0.001). The FTV measured at baseline was not able to discriminate pCR from non-pCR. FTVs measured on DCE MRI at C2, as well as at C4, of NAST can potentially predict pCR and non-pCR in TNBC patients.
RESUMEN
Purpose To determine if a radiomics model based on quantitative maps acquired with synthetic MRI (SyMRI) is useful for predicting neoadjuvant systemic therapy (NAST) response in triple-negative breast cancer (TNBC). Materials and Methods In this prospective study, 181 women diagnosed with stage I-III TNBC were scanned with a SyMRI sequence at baseline and at midtreatment (after four cycles of NAST), producing T1, T2, and proton density (PD) maps. Histopathologic analysis at surgery was used to determine pathologic complete response (pCR) or non-pCR status. From three-dimensional tumor contours drawn on the three maps, 310 histogram and textural features were extracted, resulting in 930 features per scan. Radiomic features were compared between pCR and non-pCR groups by using Wilcoxon rank sum test. To build a multivariable predictive model, logistic regression with elastic net regularization and cross-validation was performed for texture feature selection using 119 participants (median age, 52 years [range, 26-77 years]). An independent testing cohort of 62 participants (median age, 48 years [range, 23-74 years]) was used to evaluate and compare the models by area under the receiver operating characteristic curve (AUC). Results Univariable analysis identified 15 T1, 10 T2, and 12 PD radiomic features at midtreatment that predicted pCR with an AUC greater than 0.70 in both the training and testing cohorts. Multivariable radiomics models of maps acquired at midtreatment demonstrated superior performance over those acquired at baseline, achieving AUCs as high as 0.78 and 0.72 in the training and testing cohorts, respectively. Conclusion SyMRI-based radiomic features acquired at midtreatment are potentially useful for identifying early NAST responders in TNBC. Keywords: MR Imaging, Breast, Outcomes Analysis ClinicalTrials.gov registration no. NCT02276443 Supplemental material is available for this article. © RSNA, 2023 See also the commentary by Houser and Rapelyea in this issue.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Persona de Mediana Edad , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Terapia Neoadyuvante/métodos , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , MamaRESUMEN
Early prediction of neoadjuvant systemic therapy (NAST) response for triple-negative breast cancer (TNBC) patients could help oncologists select individualized treatment and avoid toxic effects associated with ineffective therapy in patients unlikely to achieve pathologic complete response (pCR). The objective of this study is to evaluate the performance of radiomic features of the peritumoral and tumoral regions from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquired at different time points of NAST for early treatment response prediction in TNBC. This study included 163 Stage I-III patients with TNBC undergoing NAST as part of a prospective clinical trial (NCT02276443). Peritumoral and tumoral regions of interest were segmented on DCE images at baseline (BL) and after two (C2) and four (C4) cycles of NAST. Ten first-order (FO) radiomic features and 300 gray-level-co-occurrence matrix (GLCM) features were calculated. Area under the receiver operating characteristic curve (AUC) and Wilcoxon rank sum test were used to determine the most predictive features. Multivariate logistic regression models were used for performance assessment. Pearson correlation was used to assess intrareader and interreader variability. Seventy-eight patients (48%) had pCR (52 training, 26 testing), and 85 (52%) had non-pCR (57 training, 28 testing). Forty-six radiomic features had AUC at least 0.70, and 13 multivariate models had AUC at least 0.75 for training and testing sets. The Pearson correlation showed significant correlation between readers. In conclusion, Radiomic features from DCE-MRI are useful for differentiating pCR and non-pCR. Similarly, predictive radiomic models based on these features can improve early noninvasive treatment response prediction in TNBC patients undergoing NAST.
RESUMEN
Current clinical MR imaging practices rely on the qualitative assessment of images for diagnosis and treatment planning. While contrast in MR images is dependent on the spin parameters of the imaged tissue, pixel values on MR images are relative and are not scaled to represent any tissue properties. Synthetic MR is a fully featured imaging workflow consisting of efficient multi-parameter mapping acquisition, synthetic image generation, and volume quantitation of brain tissues. As the application becomes more widely available on multiple vendors and scanner platforms, it has also gained widespread adoption as clinicians begin to recognize the benefits of rapid quantitation. This review will provide details about the sequence with a focus on the physical principles behind its relaxometry mechanisms. It will present an overview of the products in their current form and some potential issues when implementing it in the clinic. It will conclude by highlighting some recent advances of the technique, including a 3D mapping method and its associated applications.
Asunto(s)
Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Flujo de TrabajoRESUMEN
The task group (TG) on magnetic resonance imaging (MRI) implementation in high-dose-rate (HDR) brachytherapy (BT)-Considerations from simulation to treatment, TG 303, was constituted by the American Association of Physicists in Medicine's (AAPM's) Science Council under the direction of the Therapy Physics Committee, the Brachytherapy Subcommittee, and the Working Group on Brachytherapy Clinical Applications. The TG was charged with developing recommendations for commissioning, clinical implementation, and on-going quality assurance (QA). Additionally, the TG was charged with describing HDR BT workflows and evaluating practical consideration that arise when implementing MR imaging. For brevity, the report is focused on the treatment of gynecologic and prostate cancer. The TG report provides an introduction and rationale for MRI implementation in BT, a review of previous publications on topics including available applicators, clinical trials, previously published BT-related TG reports, and new image-guided recommendations beyond CT-based practices. The report describes MRI protocols and methodologies, including recommendations for the clinical implementation and logical considerations for MR imaging for HDR BT. Given the evolution from prescriptive to risk-based QA, an example of a risk-based analysis using MRI-based, prostate HDR BT is presented. In summary, the TG report is intended to provide clear and comprehensive guidelines and recommendations for commissioning, clinical implementation, and QA for MRI-based HDR BT that may be utilized by the medical physics community to streamline this process. This report is endorsed by the American Brachytherapy Society.
Asunto(s)
Braquiterapia , Neoplasias de la Próstata , Braquiterapia/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Próstata , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Estados UnidosRESUMEN
PURPOSE: To provide quantitative temperature monitoring for thermal therapies in bone marrow by measuring temperature-dependent signal changes in the bone marrow of ex vivo canine femurs heated with a 980-nm laser at 1.5T and 3.0T. MATERIALS AND METHODS: Using a multi-gradient echo (≤ 16) acquisition and signal modeling with the Stieglitz-McBride algorithm, the temperature sensitivity coefficients (TSC, ppm/°C) of water and multiple lipid components' proton resonance frequency (PRF) values are measured at high spatiotemporal resolutions (1.6 × 1.6 × 4 mm(3) , ≤ 5 seconds). Responses in R(2) * and amplitudes of each peak were also measured as a function of temperature simultaneously. RESULTS: Calibrations demonstrate that lipid signal may be used to compensate for B(0) errors to provide accurate temperature readings (<1.0°C). Over a temperature range of 17.2-57.2°C, the TSCs after correction to a bulk methylene reference are -0.87 × 10(-2) ± 4.7 × 10(-4) ppm/°C and -0.87 × 10(-2) ± 4.0 × 10(-4) ppm/°C for 1.5T and 3.0T, respectively. CONCLUSION: Overall, we demonstrate that accurate and precise temperature measurements can be made in bone marrow. In addition, the relationship of R(2) * and signal amplitudes with respect to temperature are shown to differ significantly where conformal changes are predicted by Arrhenius rate model analysis.