Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Annu Rev Immunol ; 36: 73-101, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29144836

RESUMEN

The cellular degradative pathway of autophagy has a fundamental role in immunity. Here, we review the function of autophagy and autophagy proteins in inflammation. We discuss how the autophagy machinery controls the burden of infectious agents while simultaneously limiting inflammatory pathologies, which often involves processes that are distinct from conventional autophagy. Among the newly emerging processes we describe are LC3-associated phagocytosis and targeting by autophagy proteins, both of which require many of the same proteins that mediate conventional autophagy. We also discuss how autophagy contributes to differentiation of myeloid and lymphoid cell types, coordinates multicellular immunity, and facilitates memory responses. Together, these functions establish an intimate link between autophagy, mucosal immunity, and chronic inflammatory diseases. Finally, we offer our perspective on current challenges and barriers to translation.


Asunto(s)
Autofagia , Susceptibilidad a Enfermedades , Inflamación/etiología , Animales , Biomarcadores , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunomodulación , Inflamación/diagnóstico , Inflamación/metabolismo , Transducción de Señal
2.
Immunity ; 40(6): 924-35, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24931121

RESUMEN

Autophagy is a lysosomal degradation pathway that is important in cellular homeostasis. Prior work showed a key role for the autophagy related 5 (Atg5) in resistance to Toxoplasma gondii. Here we show that the cassette of autophagy proteins involved in the conjugation of microtubule-associated protein 1 light chain 3 (LC3) to phosphatidylethanolamine, including Atg7, Atg3, and the Atg12-Atg5-Atg16L1 complex play crucial roles in the control of T. gondii in vitro and in vivo. In contrast, pharmacologic modulation of the degradative autophagy pathway or genetic deletion of other essential autophagy genes had no substantial effects. Rather the conjugation system was required for targeting of LC3 and interferon-γ effectors onto the vacuolar membrane of T. gondii and its consequent disruption. These data suggest that the ubiquitin-like conjugation systems that reorganize intracellular membranes during canonical autophagy are necessary for proper targeting of immune effectors to the intracellular vacuole membranes utilized by pathogens.


Asunto(s)
Autofagia/inmunología , Macrófagos/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Animales , Proteína 12 Relacionada con la Autofagia , Proteína 5 Relacionada con la Autofagia , Proteína 7 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/inmunología , Células HEK293 , Humanos , Interferón gamma/inmunología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/inmunología , Fosfatidiletanolaminas/química , Unión Proteica/inmunología , Proteínas/inmunología , Toxoplasmosis/parasitología , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/inmunología , Vacuolas/inmunología , Vacuolas/metabolismo , Vacuolas/parasitología
3.
EMBO Rep ; 21(11): e50830, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33124745

RESUMEN

Inflammation associated with gram-negative bacterial infections is often instigated by the bacterial cell wall component lipopolysaccharide (LPS). LPS-induced inflammation and resulting life-threatening sepsis are mediated by the two distinct LPS receptors TLR4 and caspase-11 (caspase-4/-5 in humans). Whereas the regulation of TLR4 activation by extracellular and phago-endosomal LPS has been studied in great detail, auxiliary host factors that specifically modulate recognition of cytosolic LPS by caspase-11 are largely unknown. This study identifies autophagy-related and dynamin-related membrane remodeling proteins belonging to the family of Immunity-related GTPases M clade (IRGM) as negative regulators of caspase-11 activation in macrophages. Phagocytes lacking expression of mouse isoform Irgm2 aberrantly activate caspase-11-dependent inflammatory responses when exposed to extracellular LPS, bacterial outer membrane vesicles, or gram-negative bacteria. Consequently, Irgm2-deficient mice display increased susceptibility to caspase-11-mediated septic shock in vivo. This Irgm2 phenotype is partly reversed by the simultaneous genetic deletion of the two additional Irgm paralogs Irgm1 and Irgm3, indicating that dysregulated Irgm isoform expression disrupts intracellular LPS processing pathways that limit LPS availability for caspase-11 activation.


Asunto(s)
Lipopolisacáridos , Choque Séptico , Animales , Caspasas/genética , Caspasas Iniciadoras , Dinaminas , Inflamasomas , Lipopolisacáridos/toxicidad , Ratones , Choque Séptico/inducido químicamente , Choque Séptico/genética
4.
Mar Drugs ; 20(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36005486

RESUMEN

Obesity increases the risks of metabolic syndromes including nonalcoholic fatty liver disease (NAFLD), diabetic dyslipidemia, and chronic kidney disease. Dietary krill oil (KO) has shown antioxidant and anti-inflammatory properties, thereby being a therapeutic potential for obesity-induced metabolic syndromes. Thus, the effects of KO on lipid metabolic alteration were examined in a high-fat diet (HFD)-fed mice model. The HFD model (n = 10 per group) received an oral gavage with distilled water as a control, metformin at 250 mg/kg, and KO at 400, 200, and 100 mg/kg for 12 weeks. The HFD-induced weight gain and fat deposition were significantly reduced in the KO treatments compared with the control. Blood levels were lower in parameters for NAFLD (e.g., alanine aminotransferase, and triglyceride), type 2 diabetes (e.g., glucose and insulin), and renal dysfunction (e.g., blood urea nitrogen and creatinine) by the KO treatments. The KO inhibited lipid synthesis through the modification of gene expressions in the liver and adipose tissues and adipokine-mediated pathways. Furthermore, KO showed hepatic antioxidant activities and glucose lowering effects. Histopathological analyses revealed that the KO ameliorated the hepatic steatosis, pancreatic endocrine/exocrine alteration, adipose tissue hypertrophy, and renal steatosis. These analyses suggest that KO may be promising for inhibiting obesity and metabolic syndromes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Euphausiacea , Resistencia a la Insulina , Síndrome Metabólico , Enfermedad del Hígado Graso no Alcohólico , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Hígado , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Triglicéridos/metabolismo
5.
J Virol ; 94(17)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32581099

RESUMEN

Human norovirus is the leading cause of gastroenteritis worldwide, yet basic questions about its life cycle remain unanswered due to an historical lack of robust experimental systems. Recent studies on the closely related murine norovirus (MNV) have identified CD300LF as an indispensable entry factor for MNV. We compared the MNV susceptibilities of cells from different mouse strains and identified polymorphisms in murine CD300LF which are critical for its function as an MNV receptor. Bone marrow-derived macrophages (BMDMs) from I/LnJ mice were resistant to infection from multiple MNV strains which readily infect BMDMs from C57BL/6J mice. The resistance of I/LnJ BMDMs was specific to MNV, since the cells supported infection of other viruses comparably to C57BL/6J BMDMs. Transduction of I/LnJ BMDMs with C57BL/6J CD300LF made the cells permissible to MNV infection, suggesting that the cause of resistance lies in the entry step of MNV infection. In fact, we mapped this phenotype to a 4-amino-acid difference at the CC' loop of CD300LF; swapping of these amino acids between C57BL/6J and I/LnJ CD300LF proteins made the mutant C57BL/6J CD300LF functionally impaired and the corresponding mutant of I/LnJ CD300LF functional as an MNV entry factor. Surprisingly, expression of the I/LnJ CD300LF in other cell types made the cells infectible by MNV, even though the I/LnJ allele did not function as an MNV receptor in macrophage-like cells. Correspondingly, I/LnJ CD300LF bound MNV virions in permissive cells but not in nonpermissive cells. Collectively, our data suggest the existence of a cell type-specific modifier of MNV entry.IMPORTANCE MNV is a prevalent model system for studying human norovirus, which is the leading cause of gastroenteritis worldwide and thus a sizeable public health burden. Elucidating mechanisms underlying susceptibility of host cells to MNV infection can lead to insights on the roles that specific cell types play during norovirus pathogenesis. Here, we show that different alleles of the proteinaceous receptor for MNV, CD300LF, function in a cell type-dependent manner. In contrast to the C57BL/6J allele, which functions as an MNV entry factor in all tested cell types, including human cells, I/LnJ CD300LF does not function as an MNV entry factor in macrophage-like cells but does allow MNV entry in other cell types. Together, these observations indicate the existence of cell type-specific modifiers of CD300LF-dependent MNV entry.


Asunto(s)
Infecciones por Caliciviridae/virología , Resistencia a la Enfermedad/genética , Polimorfismo Genético , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo , Animales , Sitios de Unión , Gastroenteritis/virología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Modelos Moleculares , Norovirus , Conformación Proteica , Receptores Inmunológicos/química , Análisis de Secuencia de Proteína , Internalización del Virus
6.
Bioessays ; 40(6): e1700231, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29603284

RESUMEN

A hallmark of positive-sense RNA viruses is the formation of membranous shelters for safe replication in the cytoplasm. Once considered invisible to the immune system, these viral shelters are now found to be antagonized through the cooperation of autophagy proteins and anti-microbial GTPases. This coordinated effort of autophagy proteins guiding GTPases functions against not only the shelters of viruses but also cytoplasmic vacuoles containing bacteria or protozoa, suggesting a broad immune-defense mechanism against disparate vacuolar pathogens. Fundamental questions regarding this process remain: how the host recognizes these membranous structures as a target, how the autophagy proteins bring the GTPases to the shelters, and how the recruited GTPases disrupt these shelters. In this review, these questions are discussed, the answers to which will significantly advance our understanding of the response to vacuole-like structures of pathogens, thereby paving the way for the development of broadly effective anti-microbial strategies for public health.


Asunto(s)
Antivirales/metabolismo , Autofagia/fisiología , GTP Fosfohidrolasas/metabolismo , Interferones/metabolismo , Virus ARN/metabolismo , Animales , Humanos , Vacuolas/metabolismo
7.
J Biol Chem ; 293(16): 6022-6038, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29496999

RESUMEN

Germline-encoded receptors recognizing common pathogen-associated molecular patterns are a central element of the innate immune system and play an important role in shaping the host response to infection. Many of the innate immune molecules central to these signaling pathways are evolutionarily conserved. LysMD3 is a novel molecule containing a putative peptidoglycan-binding domain that has orthologs in humans, mice, zebrafish, flies, and worms. We found that the lysin motif (LysM) of LysMD3 is likely related to a previously described peptidoglycan-binding LysM found in bacteria. Mouse LysMD3 is a type II integral membrane protein that co-localizes with GM130+ structures, consistent with localization to the Golgi apparatus. We describe here two lines of mLysMD3-deficient mice for in vivo characterization of mLysMD3 function. We found that mLysMD3-deficient mice were born at Mendelian ratios and had no obvious pathological abnormalities. They also exhibited no obvious immune response deficiencies in a number of models of infection and inflammation. mLysMD3-deficient mice exhibited no signs of intestinal dysbiosis by 16S analysis or alterations in intestinal gene expression by RNA sequencing. We conclude that mLysMD3 contains a LysM with cytoplasmic orientation, but we were unable to define a physiological role for the molecule in vivo.


Asunto(s)
Eliminación de Gen , Animales , Autoantígenos/análisis , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Sistemas CRISPR-Cas , Femenino , Inmunidad Innata , Inflamación/genética , Inflamación/inmunología , Masculino , Proteínas de la Membrana/análisis , Ratones , Micosis/genética , Micosis/inmunología , Filogenia , Virosis/genética , Virosis/inmunología
8.
Infect Immun ; 87(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30297526

RESUMEN

Rickettsiae can cause life-threatening infections in humans. Macrophages are one of the initial targets for rickettsiae after inoculation by ticks. However, it remains poorly understood how rickettsiae remain free in macrophages prior to establishing their infection in microvascular endothelial cells. Here, we demonstrated that the concentration of Rickettsia australis was significantly greater in infected tissues of Atg5flox/flox mice than in the counterparts of Atg5flox/flox Lyz-Cre mice, in association with a reduced level of interleukin-1ß (IL-1ß) in serum. The greater concentration of R. australis in Atg5flox/flox bone marrow-derived macrophages (BMMs) than in Atg5flox/flox Lyz-Cre BMMs in vitro was abolished by exogenous treatment with recombinant IL-1ß. Rickettsia australis induced significantly increased levels of light chain 3 (LC3) form II (LC3-II) and LC3 puncta in Atg5-competent BMMs but not in Atg5-deficient BMMs, while no p62 turnover was observed. Further analysis found the colocalization of LC3 with a small portion of R. australis and Rickettsia-containing double-membrane-bound vacuoles in the BMMs of B6 mice. Moreover, treatment with rapamycin significantly increased the concentrations of R. australis in B6 BMMs compared to those in the untreated B6 BMM controls. Taken together, our results demonstrate that Atg5 favors R. australis infection in mouse macrophages in association with a suppressed level of IL-1ß production but not active autophagy flux. These data highlight the contribution of Atg5 in macrophages to the pathogenesis of rickettsial diseases.


Asunto(s)
Proteína 5 Relacionada con la Autofagia/metabolismo , Interacciones Huésped-Patógeno , Macrófagos/metabolismo , Macrófagos/microbiología , Rickettsia/crecimiento & desarrollo , Animales , Células Cultivadas , Femenino , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Rickettsiosis Exantemáticas
9.
J Gen Virol ; 99(11): 1482-1493, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30265237

RESUMEN

Modulation of RNA structure is essential in the life cycle of RNA viruses. Immediate replication upon infection requires RNA unwinding to ensure that RNA templates are not in intra- or intermolecular duplex forms. The calicivirus NS3, one of the highly conserved nonstructural (NS) proteins, has conserved motifs common to helicase superfamily 3 among six genogroups. However, its biological functions are not fully understood. In this study we report the oligomeric state and the nucleotide triphosphatase (NTPase) and RNA chaperone activities of the recombinant full-length NS3 derived from murine norovirus (MNV). The MNV NS3 has an Mg2+-dependent NTPase activity, and site-directed mutagenesis of the conserved NTPase motifs blocked enzyme activity and viral replication in cells. Further, the NS3 was found via fluorescence resonance energy transfer (FRET)-based assays to destabilize double-stranded RNA in the presence of Mg2+ or Mn2+ in an NTP-independent manner. However, the RNA destabilization activity was not affected by mutagenesis of the conserved motifs of NTPase. These results reveal that the MNV NS3 has an NTPase-independent RNA chaperone-like activity, and that a FRET-based RNA destabilization assay has the potential to identify new antiviral drugs targeting NS3.


Asunto(s)
Chaperonas Moleculares/metabolismo , Norovirus/enzimología , Nucleósido-Trifosfatasa/metabolismo , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Cationes Bivalentes/metabolismo , Línea Celular , Coenzimas/metabolismo , Humanos , Magnesio/metabolismo , Manganeso/metabolismo , Ratones , Chaperonas Moleculares/aislamiento & purificación , Nucleósido-Trifosfatasa/aislamiento & purificación , Multimerización de Proteína , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas no Estructurales Virales/aislamiento & purificación
10.
Proc Natl Acad Sci U S A ; 111(25): 9241-6, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24927592

RESUMEN

The selective autophagy substrate p62 serves as a molecular link between autophagy and cancer. Suppression of autophagy causes p62 accumulation and thereby contributes to tumorigenesis. Here we demonstrate that autophagy deficiency promotes cell proliferation and migration through p62-dependent stabilization of the oncogenic transcription factor Twist1. p62 binds to Twist1 and inhibits degradation of Twist1. In mice, p62 up-regulation promotes tumor cell growth and metastasis in a Twist1-dependent manner. Our findings demonstrate that Twist1 is a key downstream effector of p62 in regulation of cell proliferation and migration and suggest that targeting p62-mediated Twist1 stabilization is a promising therapeutic strategy for prevention and treatment of cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Movimiento Celular/genética , Proliferación Celular , Femenino , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Proteínas Nucleares/genética , Estabilidad Proteica , Proteína Sequestosoma-1 , Proteína 1 Relacionada con Twist/genética
11.
J Virol ; 89(12): 6352-63, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25855731

RESUMEN

UNLABELLED: Human noroviruses (HuNoV) are a significant cause of acute gastroenteritis in the developed world, and yet our understanding of the molecular pathways involved in norovirus replication and pathogenesis has been limited by the inability to efficiently culture these viruses in the laboratory. Using the murine norovirus (MNV) model, we have recently identified a network of host factors that interact with the 5' and 3' extremities of the norovirus RNA genome. In addition to a number of well-known cellular RNA binding proteins, the molecular chaperone Hsp90 was identified as a component of the ribonucleoprotein complex. Here, we show that the inhibition of Hsp90 activity negatively impacts norovirus replication in cell culture. Small-molecule-mediated inhibition of Hsp90 activity using 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin) revealed that Hsp90 plays a pleiotropic role in the norovirus life cycle but that the stability of the viral capsid protein is integrally linked to Hsp90 activity. Furthermore, we demonstrate that both the MNV-1 and the HuNoV capsid proteins require Hsp90 activity for their stability and that targeting Hsp90 in vivo can significantly reduce virus replication. In summary, we demonstrate that targeting cellular proteostasis can inhibit norovirus replication, identifying a potential novel therapeutic target for the treatment of norovirus infections. IMPORTANCE: HuNoV are a major cause of acute gastroenteritis around the world. RNA viruses, including noroviruses, rely heavily on host cell proteins and pathways for all aspects of their life cycle. Here, we identify one such protein, the molecular chaperone Hsp90, as an important factor required during the norovirus life cycle. We demonstrate that both murine and human noroviruses require the activity of Hsp90 for the stability of their capsid proteins. Furthermore, we demonstrate that targeting Hsp90 activity in vivo using small molecule inhibitors also reduces infectious virus production. Given the considerable interest in the development of Hsp90 inhibitors for use in cancer therapeutics, we identify here a new target that could be explored for the development of antiviral strategies to control norovirus outbreaks and treat chronic norovirus infection in immunosuppressed patients.


Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Interacciones Huésped-Patógeno , Norovirus/fisiología , Replicación Viral , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Benzoquinonas/farmacología , Benzoquinonas/uso terapéutico , Infecciones por Caliciviridae/prevención & control , Línea Celular , Supervivencia Celular , Cricetinae , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Íleon/virología , Lactamas Macrocíclicas/farmacología , Lactamas Macrocíclicas/uso terapéutico , Ratones Endogámicos BALB C , Carga Viral
12.
Cell Microbiol ; 16(6): 862-77, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24286610

RESUMEN

Autophagy is a key innate immune response to intracellular parasites that promotes their delivery to degradative lysosomes following detection in the cytosol or within damaged vacuoles. Like Listeria and Shigella, which use specific mechanisms to avoid autophagic detection and capture, the bacterial pathogen Francisella tularensis proliferates within the cytosol of macrophages without demonstrable control by autophagy. To examine how Francisella evades autophagy, we screened a library of F. tularensis subsp. tularensis Schu S4 HimarFT transposon mutants in GFP-LC3-expressing murine macrophages by microscopy for clones localized within autophagic vacuoles after phagosomal escape. Eleven clones showed autophagic capture at 6 h post-infection, whose HimarFT insertions clustered to fourgenetic loci involved in lipopolysaccharidic and capsular O-antigen biosynthesis. Consistent with the HimarFT mutants, in-frame deletion mutants of two representative loci, FTT1236 and FTT1448c (manC), lacking both LPS and capsular O-antigen, underwent phagosomal escape but were cleared from the host cytosol. Unlike wild-type Francisella, the O-antigen deletion mutants were ubiquitinated, and recruited the autophagy adaptor p62/SQSTM1 and LC3 prior to cytosolic clearance. Autophagy-deficient macrophages partially supported replication of both mutants, indicating that O-antigen-lacking Francisella are controlled by autophagy. These data demonstrate the intracellular protective role of this bacterial surface polysaccharide against autophagy.


Asunto(s)
Autofagia , Francisella tularensis/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Viabilidad Microbiana , Antígenos O/inmunología , Antígenos O/metabolismo , Animales , Células Cultivadas , Citosol/microbiología , Elementos Transponibles de ADN , Francisella tularensis/fisiología , Interacciones Huésped-Patógeno , Ratones Endogámicos C57BL , Mutagénesis Insercional
13.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39071306

RESUMEN

Autophagy is known to suppress tumor initiation by removing genotoxic stresses in normal cells. Conversely, autophagy is also known to support tumor progression by alleviating metabolic stresses in neoplastic cells. Centered on this pro-tumor role of autophagy, there have been many clinical trials to treat cancers through systemic blocking of autophagy. Such systemic inhibition affects both tumor cells and non-tumor cells, and the consequence of blocked autophagy in non-tumor cells in the context of tumor microenvironment is relatively understudied. Here, we examined the effect of autophagy-deficient myeloid cells on the progression of autophagy-competent tumors. We found that blocking autophagy only in myeloid cells modulated tumor progression markedly but such effects were context dependent. In a tumor implantation model, the growth of implanted tumor cells was substantially reduced in mice with autophagy-deficient myeloid cells; T cells infiltrated deeper into the tumors and were responsible for the reduced growth of the implanted tumor cells. In an oncogene-driven tumor induction model, however, tumors grew faster and metastasized more in mice with autophagy-deficient myeloid cells. These data demonstrate that the autophagy status of myeloid cells plays a critical role in tumor progression, promoting or suppressing tumor growth depending on the context of tumor-myeloid cell interactions. This study indicates that systemic use of autophagy inhibitors in cancer therapy may have differential effects on rates of tumor progression in patients due to effects on myeloid cells and that this warrants more targeted use of selective autophagy inhibitors in a cancer therapy in a clinical setting.

14.
J Virol ; 86(23): 12655-64, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22973039

RESUMEN

Noroviruses (NVs) cause the majority of cases of epidemic nonbacterial gastroenteritis worldwide and contribute to endemic enteric disease. However, the molecular mechanisms responsible for immune control of their replication are not completely understood. Here we report that the transcription factor interferon regulatory factor 1 (IRF-1) is required for control of murine NV (MNV) replication and pathogenesis in vivo. This led us to studies documenting a cell-autonomous role for IRF-1 in gamma interferon (IFN-γ)-mediated inhibition of MNV replication in primary macrophages. This role of IRF-1 in the inhibition of MNV replication by IFN-γ is independent of IFN-αß signaling. While the signal transducer and activator of transcription STAT-1 was also required for IFN-γ-mediated inhibition of MNV replication in vitro, class II transactivator (CIITA), interferon regulatory factor 3 (IRF-3), and interferon regulatory factor 7 (IRF-7) were not required. We therefore hypothesized that there must be a subset of IFN-stimulated genes (ISGs) regulated by IFN-γ in a manner dependent only on STAT-1 and IRF-1. Analysis of transcriptional profiles of macrophages lacking various transcription factors confirmed this hypothesis. These studies identify a key role for IRF-1 in IFN-γ-dependent control of norovirus infection in mice and macrophages.


Asunto(s)
Gastroenteritis/virología , Factor 1 Regulador del Interferón/metabolismo , Interferón gamma/metabolismo , Norovirus/fisiología , Replicación Viral/fisiología , Análisis de Varianza , Animales , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Curva ROC , Factor de Transcripción STAT1/metabolismo , Estadísticas no Paramétricas , Transcriptoma
15.
PLoS Pathog ; 7(10): e1002292, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21998588

RESUMEN

Gammaherpesviruses such as KSHV and EBV establish lifelong persistent infections through latency in lymphocytes. These viruses have evolved several strategies to counteract the various components of the innate and adaptive immune systems. We conducted an unbiased screen using the genetically and biologically related virus, MHV-68, to find viral ORFs involved in the inhibition of type I interferon signaling and identified a conserved viral dUTPase, ORF54. Here we define the contribution of ORF54 in type I interferon inhibition by ectopic expression and through the use of genetically modified MHV-68. ORF54 and an ORF54 lacking dUTPase enzymatic activity efficiently inhibit type I interferon signaling by inducing the degradation of the type I interferon receptor protein IFNAR1. Subsequently, we show in vitro that the lack of ORF54 causes a reduction in lytic replication in the presence of type I interferon signaling. Investigation of the physiological consequence of IFNAR1 degradation and importance of ORF54 during MHV-68 in vivo infection demonstrates that ORF54 has an even greater impact on persistent infection than on lytic replication. MHV-68 lacking ORF54 expression is unable to efficiently establish latent infection in lymphocytes, although it replicates relatively normally in lung tissues. However, infection of IFNAR-/- mice alleviates this phenotype, emphasizing the specific role of ORF54 in type I interferon inhibition. Infection of mice and cells by a recombinant MHV-68 virus harboring a site specific mutation in ORF54 rendering the dUTPase inactive demonstrates that dUTPase enzymatic activity is not required for anti-interferon function of ORF54. Moreover, we find that dUTPase activity is dispensable at all stages of MHV-68 infection analyzed. Overall, our data suggest that ORF54 has evolved anti-interferon activity in addition to its dUTPase enzymatic activity, and that it is actually the anti-interferon role that renders ORF54 critical for establishing an effective persistent infection of MHV-68.


Asunto(s)
Infecciones por Herpesviridae/inmunología , Interferón Tipo I/antagonistas & inhibidores , Pirofosfatasas/metabolismo , Rhadinovirus/enzimología , Rhadinovirus/genética , Animales , Chlorocebus aethiops , Regulación Viral de la Expresión Génica , Genes Virales , Humanos , Inmunidad Innata , Interferón Tipo I/genética , Ratones , Ratones Noqueados , Modelos Animales , Células 3T3 NIH , Plásmidos , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Recombinación Genética , Rhadinovirus/fisiología , Transducción de Señal , Células Vero , Proteínas Virales/genética , Proteínas Virales/metabolismo , Latencia del Virus
16.
mBio ; 14(3): e0017223, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37052473

RESUMEN

Replication complexes (RCs), formed by positive-strand (+) RNA viruses through rearrangements of host endomembranes, protect their replicating RNA from host innate immune defenses. We have shown that two evolutionarily conserved defense systems, autophagy and interferon (IFN), target viral RCs and inhibit viral replication collaboratively. However, the mechanism by which autophagy proteins target viral RCs and the role of IFN-inducible GTPases in the disruption of RCs remains poorly understood. Here, using murine norovirus (MNV) as a model (+) RNA virus, we show that the guanylate binding protein 1 (GBP1) is the human GTPase responsible for inhibiting RCs. Furthermore, we found that ATG16L1 mediates the LC3 targeting of MNV RC by binding to WIPI2B and CAPRIN1, and that IFN gamma-mediated control of MNV replication was dependent on CAPRIN1. Collectively, this study identifies a novel mechanism for the autophagy machinery-mediated recognition and inhibition of viral RCs, a hallmark of (+) RNA virus replication. IMPORTANCE Replication complexes provide a microenvironment important for (+) RNA virus replication and shield it from host immune response. Previously we have shown that interferon gamma (IFNG) disrupts the RC of MNV via evolutionarily conserved autophagy proteins and IFN-inducible GTPases. Elucidating the mechanism of targeting of viral RC by ATG16L1 and IFN-induced GTPase will pave the way for development of therapeutics targeting the viral replication complexes. Here, we have identified GBP1 as the sole GBP targeting viral RC and uncovered the novel role of CAPRIN1 in recruiting ATG16L1 to the viral RC.


Asunto(s)
Interferón gamma , Interferones , Humanos , Animales , Ratones , GTP Fosfohidrolasas/metabolismo , Replicación Viral , ARN , Proteínas de Ciclo Celular
17.
bioRxiv ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37961427

RESUMEN

The role of autophagy in tumorigenesis and tumor metastasis remains poorly understood. Here we show that inhibition of autophagy stabilizes the transcription factor Twist1 through Sequestosome-1 (SQSTM1, also known as p62) and thus increases cell proliferation, migration, and epithelial-mesenchymal transition (EMT) in tumor development and metastasis. Inhibition of autophagy or p62 overexpression blocks Twist1 protein degradation in the proteasomes, while p62 inhibition enhances it. SQSTM1/p62 interacts with Twist1 via the UBA domain of p62, in a Twist1-ubiquitination-dependent manner. Lysine 175 in Twist1 is critical for Twist1 ubiquitination, degradation, and SQSTM1/p62 interaction. For squamous skin cancer and melanoma cells that express Twist1, SQSTM1/p62 increases tumor growth and metastasis in mice. Together, our results identified Twist1 as a key downstream protein for autophagy and suggest a critical role of the autophagy/p62/Twist1 axis in cancer development and metastasis.

18.
mBio ; : e0233223, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37905813

RESUMEN

Genes required for the lysosomal degradation pathway of autophagy play key roles in topologically distinct and physiologically important cellular processes. Some functions of ATG genes are independent of their role in degradative autophagy. One of the first described of these ATG gene-dependent, but degradative autophagy independent, processes is the requirement for a subset of ATG genes in interferon-γ (IFNγ)-induced inhibition of norovirus and Toxoplasma gondii replication. Herein, we identified additional genes that are required for, or that negatively regulate, this innate immune effector pathway. Enzymes in the UFMylation pathway negatively regulated IFNγ-induced inhibition of norovirus replication via effects of Ern1. IFNγ-induced inhibition of norovirus replication required Gate-16 (also termed GabarapL2), Wipi2b, Atg9a, Cul3, and Klhl9 but not Becn1 (encoding Beclin 1), Atg14, Uvrag, or Sqstm1. The phosphatidylinositol-3-phosphate and ATG16L1-binding domains of WIPI2B, as well as the ATG5-binding domain of ATG16L1, were required for IFNγ-induced inhibition of norovirus replication. Other members of the Cul3, Atg8, and Wipi2 gene families were not required, demonstrating exquisite specificity within these gene families for participation in IFNγ action. The generality of some aspects of this mechanism was demonstrated by a role for GATE-16 and WIPI2 in IFNγ-induced control of Toxoplasma gondii infection in human cells. These studies further delineate the genes and mechanisms of an ATG gene-dependent programmable form of cytokine-induced innate intracellular immunity. IMPORTANCE Interferon-γ (IFNγ) is a critical mediator of cell-intrinsic immunity to intracellular pathogens. Understanding the complex cellular mechanisms supporting robust interferon-γ-induced host defenses could aid in developing new therapeutics to treat infections. Here, we examined the impact of autophagy genes in the interferon-γ-induced host response. We demonstrate that genes within the autophagy pathway including Wipi2, Atg9, and Gate-16, as well as ubiquitin ligase complex genes Cul3 and Klhl9 are required for IFNγ-induced inhibition of murine norovirus (norovirus hereinafter) replication in mouse cells. WIPI2 and GATE-16 were also required for IFNγ-mediated restriction of parasite growth within the Toxoplasma gondii parasitophorous vacuole in human cells. Furthermore, we found that perturbation of UFMylation pathway components led to more robust IFNγ-induced inhibition of norovirus via regulation of endoplasmic reticulum (ER) stress. Enhancing or inhibiting these dynamic cellular components could serve as a strategy to control intracellular pathogens and maintain an effective immune response.

19.
J Virol ; 84(5): 2453-65, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20015983

RESUMEN

Human gammaherpesviruses, Epstein-Barr virus, and human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus are important pathogens associated with diseases, including lymphomas and other malignancies. Murine gammaherpesvirus 68 (MHV-68) is used as an experimental model system to study the host immune control of infection and explore novel vaccine strategies based on latency-deficient live viruses. We studied the properties and the potential of a recombinant MHV-68 (AC-RTA) in which the genes required for persistent infection were replaced by a constitutively expressed viral transcription activator, RTA, which dictates the virus to lytic replication. After intranasal infection of mice, replication of AC-RTA in the lung was attenuated, and no AC-RTA virus or viral DNA was detected in the isolated splenocytes, indicating a lack of latency in the spleen. Infection of the AC-RTA virus elicited both cellular immune responses and virus-specific IgG at a level comparable to that elicited by infection of the wild-type virus. Importantly, vaccination of AC-RTA was able to protect mice against subsequent challenge by the wild-type MHV-68. AC-RTA provides a vaccine strategy for preventing infection of human gammaherpesviruses. Furthermore, our results suggest that immunity to the major latent antigens is not required for protection.


Asunto(s)
Inmunidad/inmunología , Rhadinovirus/inmunología , Rhadinovirus/fisiología , Latencia del Virus/inmunología , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Femenino , Perfilación de la Expresión Génica , Herpesvirus Humano 4/inmunología , Herpesvirus Humano 4/fisiología , Herpesvirus Humano 8/inmunología , Herpesvirus Humano 8/fisiología , Humanos , Ratones , Ratones Endogámicos BALB C , Rhadinovirus/genética , Bazo/virología , Vacunación , Proteínas Virales/genética , Proteínas Virales/inmunología , Latencia del Virus/genética , Replicación Viral/inmunología
20.
PLoS Pathog ; 5(10): e1000609, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19816569

RESUMEN

Gamma-herpesviruses (gammaHVs) have developed an interaction with their hosts wherein they establish a life-long persistent infection and are associated with the onset of various malignancies. One critical virulence factor involved in the persistency of murine gamma-herpesvirus 68 (gammaHV68) is the viral homolog of the Bcl-2 protein (vBcl-2), which has been implicated to counteract both host apoptotic responses and autophagy pathway. However, the relative significance of the two activities of vBcl-2 in viral persistent infection has yet to be elucidated. Here, by characterizing a series of loss-of-function mutants of vBcl-2, we have distinguished the vBcl-2-mediated antagonism of autophagy from the vBcl-2-mediated inhibition of apoptosis in vitro and in vivo. A mutant gammaHV68 virus lacking the anti-autophagic activity of vBcl-2 demonstrates an impaired ability to maintain chronic infections in mice, whereas a mutant virus lacking the anti-apoptotic activity of vBcl-2 establishes chronic infections as efficiently as the wild-type virus but displays a compromised ability for ex vivo reactivation. Thus, the vBcl-2-mediated antagonism of host autophagy constitutes a novel mechanism by which gammaHVs confer persistent infections, further underscoring the importance of autophagy as a critical host determinant in the in vivo latency of gamma-herpesviruses.


Asunto(s)
Gammaherpesvirinae/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Autofagia/genética , Autofagia/inmunología , Beclina-1 , Gammaherpesvirinae/inmunología , Gammaherpesvirinae/fisiología , Genes Supresores de Tumor , Infecciones por Herpesviridae/patología , Lisosomas/virología , Ratones , Mutación , Rhadinovirus/genética , Rhadinovirus/inmunología , Rhadinovirus/fisiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA