Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(27): e2307210, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38279606

RESUMEN

Sepsis is a life-threatening condition that can progress to septic shock as the body's extreme response to pathogenesis damages its own vital organs. Staphylococcus aureus (S. aureus) accounts for 50% of nosocomial infections, which are clinically treated with antibiotics. However, methicillin-resistant strains (MRSA) have emerged and can withstand harsh antibiotic treatment. To address this problem, curcumin (CCM) is employed to prepare carbonized polymer dots (CPDs) through mild pyrolysis. Contrary to curcumin, the as-formed CCM-CPDs are highly biocompatible and soluble in aqueous solution. Most importantly, the CCM-CPDs induce the release of neutrophil extracellular traps (NETs) from the neutrophils, which entrap and eliminate microbes. In an MRSA-induced septic mouse model, it is observed that CCM-CPDs efficiently suppress bacterial colonization. Moreover, the intrinsic antioxidative, anti-inflammatory, and anticoagulation activities resulting from the preserved functional groups of the precursor molecule on the CCM-CPDs prevent progression to severe sepsis. As a result, infected mice treated with CCM-CPDs show a significant decrease in mortality even through oral administration. Histological staining indicates negligible organ damage in the MRSA-infected mice treated with CCM-CPDs. It is believed that the in vivo studies presented herein demonstrate that multifunctional therapeutic CPDs hold great potential against life-threatening infectious diseases.


Asunto(s)
Trampas Extracelulares , Staphylococcus aureus Resistente a Meticilina , Polímeros , Sepsis , Animales , Sepsis/tratamiento farmacológico , Trampas Extracelulares/efectos de los fármacos , Polímeros/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Neutrófilos/efectos de los fármacos , Carbono/química , Carbono/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Curcumina/farmacología , Curcumina/uso terapéutico , Curcumina/química , Humanos
2.
Bioorg Med Chem Lett ; 97: 129544, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939864

RESUMEN

Human neutrophil elastase (HNE) overexpression has a crucial role in most acute inflammation and alpha1-antitrypsin deficiency syndromes observed in humans, triggering neutrophil invasion and activation of macrophage inflammatory and proteolytic effects, leading to tissue damage. Manipulating HNE level homeostasis could potentially help treat neutrophilic inflammation. Previous studies have shown that sirtinol (1) has a specific influence on HNE and potently attenuates acute lung injury and hepatic injury mediated by lipopolysaccharide or trauma hemorrhage. Therefore, 1 was chosen as the model structure to obtain more potent anti-HNE agents. In the present study, we synthesized a series of sirtinol analogues and determined their inhibitory effects on HNE. Structure-activity relationship (SAR) studies showed that swapping the imine and methyl groups of the sirtinol scaffold with diazene and carboxyl groups, respectively, enhances the HNE inhibiting potency. Compound 29 exhibited the highest potency in the SAR study and showed dual inhibitory effects on HNE and proteinase 3 with IC50 values of 4.91 and 20.69 µM, respectively. Furthermore, 29 was confirmed to have dual impacts on inhibiting O2•- generation and elastase release in cell-based assays with IC50 values of 0.90 and 1.86 µM, respectively. These findings suggest that 29 is a promising candidate for developing HNE inhibitors in the treatment of neutrophilic inflammatory diseases.


Asunto(s)
Benzamidas , Inflamación , Humanos , Relación Estructura-Actividad , Proteínas Inhibidoras de Proteinasas Secretoras/farmacología
3.
J Nat Prod ; 86(4): 719-729, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37023532

RESUMEN

Four new alkaloids, hippobrines A-D (1-4), along with three new polyacetylenes, hippobrenes A-C (5-7), were isolated from Hippobroma longiflora. Compounds 1-3 possess an unprecedented carbon skeleton. All of the new structures were determined by analyzing their mass and NMR spectroscopic data. The absolute configurations of 1 and 2 were confirmed by single-crystal X-ray analyses, and the absolute configurations of 3 and 7 were deduced using their ECD spectra. Plausible biogenetic pathways of 1 and 4 were proposed. In regard to bioactivities, all compounds (1-7) exhibited weak antiangiogenic activity against human endothelial progenitor cells, with IC50 values ranging from 21.1 ± 1.1 to 44.0 ± 2.3 µg/mL.


Asunto(s)
Alcaloides , Humanos , Estructura Molecular , Polímero Poliacetilénico , Alcaloides/farmacología , Alcaloides/química
4.
Planta Med ; 89(11): 1063-1073, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36977489

RESUMEN

Dried Iris rhizomes have been used in Chinese and European traditional medicine for the treatment of various diseases such as bacterial infections, cancer, and inflammation, as well as for being astringent, laxative, and diuretic agents. Eighteen phenolic compounds including some rare secondary metabolites, such as irisolidone, kikkalidone, irigenin, irisolone, germanaism B, kaempferol, and xanthone mangiferin, were isolated for the first time from Iris aphylla rhizomes. The hydroethanolic Iris aphylla extract and some of its isolated constituents showed protective effects against influenza H1N1 and enterovirus D68 and anti-inflammatory activity in human neutrophils. The promising anti-influenza effect of apigenin (13: , almost 100% inhibition at 50 µM), kaempferol (14: , 92%), and quercetin (15: , 48%) were further confirmed by neuraminidase inhibitory assay. Irisolidone (1: , almost 100% inhibition at 50 µM), kikkalidone (5: , 93%), and kaempferol (14: , 83%) showed promising anti-enterovirus D68 activity in vitro. The identified compounds were plotted using ChemGPS-NP to correlate the observed activity of the isolated phenolic compounds with the in-house database of anti-influenza and anti-enterovirus agents. Our results indicated that the hydroethanolic Iris aphylla extract and Iris phenolics hold the potential to be developed for the management of seasonal pandemics of influenza and enterovirus infections.


Asunto(s)
Flavonas , Subtipo H1N1 del Virus de la Influenza A , Género Iris , Humanos , Quempferoles , Extractos Vegetales/farmacología , Rizoma/química , Antivirales/farmacología , Relación Estructura-Actividad , Fenoles/análisis , Antiinflamatorios/farmacología
5.
J Enzyme Inhib Med Chem ; 38(1): 2175821, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36789662

RESUMEN

Neurodegenerative diseases such as Alzheimer's disease (AD) are multifactorial with several different pathologic mechanisms. Therefore, it is assumed that multitargeted-directed ligands (MTDLs) which interact with different biological targets relevant to the diseases, might offer an improved therapeutic alternative than using the traditional "one-target, one-molecule" approach. Herein, we describe new benzothiazole-based derivatives as a privileged scaffold for histamine H3 receptor ligands (H3R). The most affine compound, the 3-(azepan-1-yl)propyloxy-linked benzothiazole derivative 4b, displayed a Ki value of 0.012 µM. The multitargeting potential of these H3R ligands towards AChE, BuChE and MAO-B enzymes was evaluated to yield compound 3s (pyrrolidin-1-yl-(6-((5-(pyrrolidin-1-yl)pentyl)oxy)benzo[d]thiazol-2-yl)methanone) as the most promising MTDL with a Ki value of 0.036 µM at H3R and IC50 values of 6.7 µM, 2.35 µM, and 1.6 µM towards AChE, BuChE, and MAO-B, respectively. These findings suggest that compound 3s can be a lead structure for developing new multi-targeting anti-AD agents.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Relación Estructura-Actividad , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Acetilcolinesterasa/metabolismo , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Benzotiazoles/farmacología , Ligandos
6.
Mar Drugs ; 21(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37623737

RESUMEN

Inflammation is a critical defense mechanism that is utilized by the body to protect itself against pathogens and other noxious invaders. However, if the inflammatory response becomes exaggerated or uncontrollable, its original protective role is not only demolished but it also becomes detrimental to the affected tissues or even to the entire body. Thus, regulating the inflammatory process is crucial to ensure that it is resolved promptly to prevent any subsequent damage. The role of neutrophils in inflammation has been highlighted in recent decades by a plethora of studies focusing on neutrophilic inflammatory diseases as well as the mechanisms to regulate the activity of neutrophils during the overwhelmed inflammatory process. As natural products have demonstrated promising effects in a wide range of pharmacological activities, they have been investigated for the discovery of new anti-inflammatory therapeutics to overcome the drawbacks of current synthetic agents. Octocorals have attracted scientists as a plentiful source of novel and intriguing marine scaffolds that exhibit many pharmacological activities, including anti-inflammatory effects. In this review, we aim to provide a summary of the neutrophilic anti-inflammatory properties of these marine organisms that were demonstrated in 46 studies from 1995 to the present (April 2023). We hope the present work offers a comprehensive overview of the anti-inflammatory potential of octocorals and encourages researchers to identify promising leads among numerous compounds isolated from octocorals over the past few decades to be further developed into anti-inflammatory therapeutic agents.


Asunto(s)
Antozoos , Productos Biológicos , Animales , Productos Biológicos/farmacología , Inflamación/tratamiento farmacológico , Neutrófilos , Radiofármacos
7.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36674768

RESUMEN

Continuing chemical investigation of the Red Sea sponge Spongia sp. led to the isolation of four new 3,4-seco-3,19-dinorspongian diterpenoid lactones, secodinorspongins A-D (1-4), along with a classical spongian diterpenoid lactone, sponginolide (5). The chemical structures, including the absolute configurations of these compounds, were elucidated using the extensive spectroscopic study composed of 1D and 2D NMR data analyses, and a comparison between calculated-electronic-circular-dichroism (ECD) and experimental-circular-dichroism (CD) spectra. A plausible biosynthetic pathway of 1-4 was also proposed. Furthermore, the cytotoxicity, antibacterial and anti-inflammatory activities of 1-5 were evaluated. Compound 1 was found to exhibit inhibitory activity against the growth of Staphylococcus aureus (S. aureus), and 4 and 5 exhibited suppression of superoxide-anion generation and elastase release in fMLF/CB-induced human neutrophils.


Asunto(s)
Diterpenos , Poríferos , Animales , Humanos , Lactonas , Staphylococcus aureus , Estructura Molecular , Poríferos/química , Diterpenos/química
8.
Molecules ; 28(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36677898

RESUMEN

It has been shown that phosphodiesterase 5 (PDE5) inhibitors have anticancer effects in a variety of malignancies in both in vivo and in vitro experiments. The role of cGMP elevation in colorectal carcinoma (CRC) has been extensively studied. Additionally, DNA topoisomerase II (Topo II) inhibition is a well-established mechanism of action that mediates the effects of several approved anticancer drugs such as doxorubicin and mitoxantrone. Herein, we present 9-benzylaminoacridine derivatives as dual inhibitors of the PDE5 and Topo II enzymes. We synthesized 31 derivatives and evaluated them against PDE5, whereby 22 compounds showed micromolar or sub-micromolar inhibition. The anticancer activity of the compounds was evaluated with the NCI 60-cell line testing. Moreover, the effects of the compounds on HCT-116 colorectal carcinoma (CRC) were extensively studied, and potent compounds against HCT-116 cells were studied for their effects on Topo II, cell cycle progression, and apoptosis. In addition to exhibiting significant growth inhibition against HCT116 cells, compounds 11, 12, and 28 also exhibited the most superior Topo II inhibitory activity and low micromolar PDE5 inhibition and affected cell cycle progression. Knowing that compounds that combat cancer through multiple mechanisms are among the best candidates for effective therapy, we believe that the current class of compounds merits further optimization and investigation to unleash their full therapeutic potential.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Inhibidores de Fosfodiesterasa 5 , Inhibidores de Topoisomerasa II , Humanos , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Fosfodiesterasa 5/farmacología
9.
Bioorg Chem ; 129: 106166, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36191429

RESUMEN

From the anti-inflammatory screening of Formosan Lauraceous plants, the methanolic extract of the root of Machilus zuihoensis var. mushaensis stood out for its potent inhibitory activity toward superoxide anion and elastase release in human neutrophils. Bioassay-guided fractionation of the root of M. zuihoensis var. mushaensis led to eight new compounds, including two butanolides (1-2), five lignanoids (3-7), and one sesquiterpenoid (8), along with 50 known compounds (9-58). Structures of these compounds were elucidated by NMR, UV, IR, CD, and MS analyses. Thirty-two isolates were evaluated for their anti-inflammatory activity. Among them, 9, 20, 27, 28, 30, 31, 35, and 40 exhibited significant superoxide anion generation inhibition selectively (IC50 value < 7.4 µM), 15 and 19 showed selective inhibition toward elastase release (IC50 value < 8.0 µM). Moreover, 3, 16, 21, and 22 simultaneously displayed superoxide anion generation and elastase release inhibition. It is worth mentioning that 21 and 22 showed more potent inhibitory activities (IC50 < 1.0 µM) on superoxide anion than the positive control, LY294002. Further quantitative HPLC analysis indicated the content of 21 and 22 were 0.90 and 3.04 mg/g (w/w) in the ethyl-acetate layer of the root of M. zuihoensis var. mushaensis, respectively. Altogether, M. zuihoensis var. mushaensis revealed a potential for developing the botanical new drug against inflammation-related disease.


Asunto(s)
Lauraceae , Superóxidos , Humanos , Lauraceae/química , Antiinflamatorios/farmacología , Elastasa Pancreática
10.
Bioorg Chem ; 127: 105977, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35779404

RESUMEN

The transcription factor NF-κB is a pivotal mediator of chronic inflammatory and autoimmune diseases. Based on our previously published dual EGFR/NF-κB inhibitors, we designed and synthesized new thiourea quinazoline derivatives that retained only the NF-κB inhibitory activity. Several congeners displayed a strong suppression of NF-κB activity in a reporter gene assay, yet low cytotoxicity, and were further evaluated in differentiated macrophage-like THP-1 cells. The compounds exhibited a strong inhibition of IL-6 and, less potently, of TNFα release, which was accompanied by a selective induction of macrophage cell death. The mode of action was investigated with a selected inhibitor, 18, revealing that the translocation of p65/RelA to the nucleus but not its release from the IκB complex was inhibited. Eventually, 18 was identified as the first small molecule inhibitor affecting only the phosphorylation of p65-Ser468 but not of Ser536, which may be causally related to the retention of NF-κB in the cytoplasm. Altogether, our novel NF-κB inhibitors seem applicable for the suppression of cytokine release and the additional selective depletion of activated macrophages in various inflammatory diseases.


Asunto(s)
FN-kappa B , Feniltiourea , Antiinflamatorios/farmacología , Receptores ErbB/metabolismo , Lipopolisacáridos , FN-kappa B/metabolismo , Fosforilación
11.
Mar Drugs ; 20(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35621948

RESUMEN

A persistent study on soft coral Sarcophyton tortuosum resulted in the characterization of two new cembranolides, tortuolides A and B (1 and 2), and a new related diterpene, epi-sarcophytonolide Q. Their structures were determined not only by extensive spectroscopic analysis but also by DFT calculations of ECD and NMR data, the latter of which was combined with statistical analysis methods, e.g., DP4+ and J-DP4 approaches. Anti-inflammatory and cytotoxicity activities were evaluated in this study.


Asunto(s)
Antozoos , Diterpenos , Animales , Antozoos/química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Diterpenos/química , Diterpenos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Espectroscopía de Resonancia Magnética
12.
Mar Drugs ; 20(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35447914

RESUMEN

A polyoxygenated and halogenated labdane, spongianol (1); a polyoxygenated steroid, 3ß,5α,9α-trihydroxy-24S-ethylcholest-7-en-6-one (2); a rare seven-membered lactone B ring, (22E,24S)-ergosta-7,22-dien-3ß,5α-diol-6,5-olide (3); and an α,ß-unsaturated fatty acid, (Z)-3-methyl-9-oxodec-2-enoic acid (4) as well as five known compounds, 10-hydroxykahukuene B (5), pacifenol (6), dysidamide (7), 7,7,7-trichloro-3-hydroxy-2,2,6-trimethyl-4-(4,4,4-trichloro-3-methyl-1-oxobu-tylamino)-heptanoic acid methyl ester (8), and the primary metabolite 2'-deoxynucleoside thymidine (9), have been isolated from the Red Sea sponge Spongia sp. The stereoisomer of 3 was discovered in Ganoderma resinaceum, and metabolites 5 and 6, isolated previously from red algae, were characterized unprecedentedly in the sponge. Compounds 7 and 8 have not been found before in the genus Spongia. Compounds 1-9 were also assayed for cytotoxicity as well as antibacterial and anti-inflammatory activities.


Asunto(s)
Poríferos , Animales , Antibacterianos/química , Antiinflamatorios/química , Océano Índico , Estructura Molecular , Poríferos/química , Esteroides/química
13.
Mar Drugs ; 20(8)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36005501

RESUMEN

Three new 5,5,6,6,5-pentacyclic spongian diterpenes, spongenolactones A-C (1-3), were isolated from a Red Sea sponge Spongia sp. The structures of the new metabolites were elucidated by extensive spectroscopic analysis and the absolute configurations of 1-3 were determined on the basis of comparison of the experimental circular dichroism (CD) and calculated electronic circular dichroism (ECD) spectra. Compounds 1-3 are the first 5,5,6,6,5-pentacyclic spongian diterpenes bearing an ß-hydroxy group at C-1. These metabolites were assayed for their cytotoxic, antibacterial, and anti-inflammatory activities. All three compounds were found to exert inhibitory activity against superoxide anion generation in fMLF/CB-stimulated human neutrophils. Furthermore, 1 showed a higher activity against the growth of Staphylococcus aureus in comparison to 2.


Asunto(s)
Diterpenos , Poríferos , Animales , Diterpenos/química , Humanos , Océano Índico , Estructura Molecular , Staphylococcus aureus
14.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555103

RESUMEN

Biscembranoids are the distinctive tetraterpenoids owing a 14/6/14 membered tricyclic scaffold that have been mainly discovered in the soft corals, especially the genera Sarcophyton, Lobophytum and Sinularia. Recent findings have demonstrated the great anti-inflammatory potential of biscembranoid analogues in human neutrophils, motivating more chemical and biological explorations targeting these marine-derived natural products. In the current study, the chemical diversity of biscembranoids derived from the cultured-type Sarcophyton trocheliophorum von Marenzeller was illustrated through MS/MS molecular networking (MN) profiling approach. Based on the MN patterns, the prioritization of unknown biscembranoid derivatives was putatively analyzed. As a result, the biscembrane targeting isolation afforded two new metabolites, sarcotrochelides A (1) and B (2), along with six known analogues (3-8). Their structures and relative configurations were determined by spectroscopic methods. In vitro neutrophil inflammatory inhibition was further investigated for all isolates based on reduced superoxide anion (O2•-) generation detections. Compounds 5-8 showed significant dose-dependently inhibitory effects, suggesting the cruciality of 6,7-dihydrooxepin-2(5H)-one moiety and saturated γ-lactone ring in their reactive oxygen species (ROS)-dependent anti-inflammatory properties.


Asunto(s)
Antozoos , Diterpenos , Animales , Humanos , Espectrometría de Masas en Tándem , Antozoos/química , Superóxidos/metabolismo , Análisis Espectral , Antiinflamatorios/química , Diterpenos/farmacología , Estructura Molecular
15.
Molecules ; 27(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35335252

RESUMEN

Euphormin-A (1) and euphormin-B (2), two new pyranocoumarin derivatives, and forty known compounds (3-42) were isolated from Euphorbia formosana Hayata (Euphorbiaceae). The chemical structures of all compounds were established based on spectroscopic analyses. Several isolates were evaluated for their anti-inflammatory activity. Compounds 1, 2, 10, 18, 25, and 33 significantly inhibited against superoxide anion generation and elastase release by human neutrophils in response to formyl-L-methionyl-L-leucyl-L-phenylalanine/cytochalasin B (fMLP/CB). Furthermore, compounds 25 and 33 displayed the most potent effects with IC50 values of 0.68 ± 0.18 and 1.39 ± 0.12 µM, respectively, against superoxide anion generation when compared with the positive control (2.01 ± 0.06 µM).


Asunto(s)
Euphorbia , Piranocumarinas , Antiinflamatorios/química , Antiinflamatorios/farmacología , Humanos , Elastasa Pancreática , Superóxidos
16.
Molecules ; 27(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35889335

RESUMEN

The fruit of Tetradium ruticarpum (TR) is commonly used in Chinese herbal medicine and it has known antiproliferative and antitumor activities, which can serve as a good source of functional ingredients. Although some antiproliferative compounds are reported to be present in TR fruit, most studies only focused on a limited range of metabolites. Therefore, in this study, the antiproliferative activity of different extracts of TR fruit was examined, and the potentially antiproliferative compounds were highlighted by applying an untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based multi-informative molecular networking strategy. The results showed that among different extracts of TR fruit, the EtOAc fraction F2-3 possessed the most potent antiproliferative activity against HL-60, T24, and LX-2 human cell lines. Through computational tool-aided structure prediction and integrating various data (sample taxonomy, antiproliferative activity, and compound identity) into a molecular network, a total of 11 indole alkaloids and 47 types of quinolone alkaloids were successfully annotated and visualized into three targeted bioactive molecular families. Within these families, up to 25 types of quinolone alkaloids were found that were previously unreported in TR fruit. Four indole alkaloids and five types of quinolone alkaloids were targeted as potentially antiproliferative compounds in the EtOAc fraction F2-3, and three (evodiamine, dehydroevodiamine, and schinifoline) of these targeted alkaloids can serve as marker compounds of F2-3. Evodiamine was verified to be one of the major antiproliferative compounds, and its structural analogues discovered in the molecular network were found to be promising antitumor agents. These results exemplify the application of an LC-MS/MS-based multi-informative molecular networking strategy in the discovery and annotation of bioactive compounds from complex mixtures of potential functional food ingredients.


Asunto(s)
Alcaloides , Evodia , Quinolonas , Alcaloides/análisis , Alcaloides/farmacología , Cromatografía Liquida , Evodia/química , Frutas/química , Humanos , Alcaloides Indólicos/análisis , Alcaloides Indólicos/farmacología , Extractos Vegetales/química , Quinolonas/análisis , Espectrometría de Masas en Tándem
17.
FASEB J ; 34(5): 7127-7143, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32275103

RESUMEN

Human neutrophils have a vital role in host defense and inflammatory responses in innate immune systems. Growing evidence shows that the overproduction of reactive oxygen species and granular proteolytic enzymes from activated neutrophils is linked to the pathogenesis of acute inflammatory diseases. However, adequate therapeutic targets are still lacking to regulate neutrophil functions. Herein, we report that MVBR-28, synthesized from the Mannich bases of heterocyclic chalcone, has anti-neutrophilic inflammatory effects through regulation of intracellular pH. MVBR-28 modulates neutrophil functions by attenuating respiratory burst, degranulation, and migration. Conversely, MVBR-28 has no antioxidant effects and fails to alter elastase activity in cell-free systems. The anti-inflammatory effects of MVBR-28 are not seen through cAMP pathways. Significantly, MVBR-28 potently inhibits extracellular Ca2+ influx in N-formyl-methionyl-leucyl-phenylalanine (fMLF)- and thapsigargin-activated human neutrophils. Notably, MVBR-28 attenuates fMLF-induced intracellular alkalization in a K+ -dependent manner, which is upstream of Ca2+ pathways. Collectively, these findings provide new insight into Mannich bases of heterocyclic chalcone regarding the regulation of neutrophil functions and the potential for the development of MVBR-28 as a lead compound for treating neutrophilic inflammatory diseases.


Asunto(s)
Chalconas/farmacología , Morfolinas/farmacología , Neutrófilos/efectos de los fármacos , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Señalización del Calcio/efectos de los fármacos , Degranulación de la Célula/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Chalconas/síntesis química , Chalconas/química , Humanos , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Morfolinas/síntesis química , Morfolinas/química , N-Formilmetionina Leucil-Fenilalanina/farmacología , Activación Neutrófila/efectos de los fármacos , Neutrófilos/patología , Neutrófilos/fisiología , Potasio/metabolismo , Estallido Respiratorio/efectos de los fármacos
18.
Bioorg Med Chem Lett ; 36: 127822, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33508463

RESUMEN

Over activation of neutrophils has been linked to many inflammatory diseases; one of critical pathologic mechanisms is that generation and exocellular release of superoxide anion from neutrophils results in peripheral tissues damage. Besides, in this study, 2-(3,5-dimethoxyphenoxy)-5,7-dimethoxy-chromen-4-one (4), a 2-phexnoychromone from our compound bank, was demonstrated to have the moderate inhibitory effect on superoxide anion generating. Therefore, serial chromones substituted with phenols or 3-flourothiophenol were designed, synthesized, and examined for suppression of superoxide anion generation. In accordance with the results, the methoxy group at 7 position (R3) of the chromone, as well as a hydrogen bond donor at a meta site of the phenyl ring greatly impacted on the activity. 2-(3-fluorophenyl)sulfanyl-7-methoxy-chromen-4-one (16), a successful example of bioisosteres from a phenol to a thiophenol, exhibited prominent anti-inflammatory effects with the IC50 value against superoxide anion generation of 5.0 ± 1.4 µM.


Asunto(s)
Cromonas/farmacología , Neutrófilos/efectos de los fármacos , Superóxidos/antagonistas & inhibidores , Aniones/antagonistas & inhibidores , Aniones/metabolismo , Cromonas/síntesis química , Cromonas/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Neutrófilos/metabolismo , Relación Estructura-Actividad , Superóxidos/metabolismo
19.
Bioorg Chem ; 108: 104562, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33358389

RESUMEN

Twelve undescribed lanostane-type triterpenes, and twenty-two known triterpenes were isolated and identified from a medicinal bracket fungus Fomitopsis pinicola (Sw.) P. Karst. The structures of these compounds were determined by spectroscopic and spectrometric analyses. The antiinflammatory potential of thirty-two triterpene compounds was evaluated using neutrophils as an assay model, and pinicolasin J was the most potent inhibitor of superoxide anion generation and elastase release, with IC50 values of 1.81 ± 0.44 and 2.50 ± 0.64 µM, respectively. This study provides scientific insight into the nutritional supplement value and medicinal development of Fomitopsis pinicola.


Asunto(s)
Antiinflamatorios/farmacología , Coriolaceae/química , Inhibidores Enzimáticos/farmacología , Cuerpos Fructíferos de los Hongos/química , Elastasa Pancreática/antagonistas & inhibidores , Triterpenos/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Estructura Molecular , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Elastasa Pancreática/metabolismo , Relación Estructura-Actividad , Triterpenos/química , Triterpenos/aislamiento & purificación
20.
Bioorg Chem ; 111: 104846, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33813149

RESUMEN

A series of ß-carboline derivatives was synthesized by the Pictet-Spengler reaction with or without the combretastatin skeleton. The structures of these derivatives were elucidated by spectroscopic techniques. All synthesized compounds were evaluated for their anti-inflammatory activity in human neutrophils. Among them, two compounds, NTU-228 and HK-72, showed significant inhibitory effects on N-formyl-Met-Leu-Phe (fMLF)-induced superoxide anion generation in human neutrophils with IC50 values of 5.58 ± 0.56 and 2.81 ± 0.07 µM, respectively. Neither NTU-228 nor HK-72 caused cytotoxicity in human neutrophils. NTU-228 inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and intracellular Ca2+ levels ([Ca2+]i) in fMLF-activated human neutrophils. Additionally, HK-72 selectively inhibited the fMLF-induced phosphorylation of p38 and [Ca2+]i in human neutrophils. Molecular docking analysis showed a favorable binding affinity of HK-72 toward p38 MAPK. The proposed synthetic strategy opens up new opportunities for the synthesis of novel potential candidates against neutrophilic inflammation.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Bibencilos/farmacología , Carbolinas/farmacología , Diseño de Fármacos , Inflamación/tratamiento farmacológico , Neutrófilos/efectos de los fármacos , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Bibencilos/química , Carbolinas/química , Relación Dosis-Respuesta a Droga , Humanos , Inflamación/metabolismo , Estructura Molecular , Neutrófilos/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA