Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 600(7889): 530-535, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34670266

RESUMEN

The emergence of SARS-CoV-2 variants is jeopardizing the effectiveness of current vaccines and limiting the application of monoclonal antibody-based therapy for COVID-19 (refs. 1,2). Here we analysed the memory B cells of five naive and five convalescent people vaccinated with the BNT162b2 mRNA vaccine to investigate the nature of the B cell and antibody response at the single-cell level. Almost 6,000 cells were sorted, over 3,000 cells produced monoclonal antibodies against the spike protein and more than 400 cells neutralized the original SARS-CoV-2 virus first identified in Wuhan, China. The B.1.351 (Beta) and B.1.1.248 (Gamma) variants escaped almost 70% of these antibodies, while a much smaller portion was impacted by the B.1.1.7 (Alpha) and B.1.617.2 (Delta) variants. The overall loss of neutralization was always significantly higher in the antibodies from naive people. In part, this was due to the IGHV2-5;IGHJ4-1 germline, which was found only in people who were convalescent and generated potent and broadly neutralizing antibodies. Our data suggest that people who are seropositive following infection or primary vaccination will produce antibodies with increased potency and breadth and will be able to better control emerging SARS-CoV-2 variants.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Células B de Memoria/inmunología , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/aislamiento & purificación , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , Anticuerpos ampliamente neutralizantes/genética , Anticuerpos ampliamente neutralizantes/aislamiento & purificación , Convalecencia , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Femenino , Humanos , Masculino , Pruebas de Neutralización , Seroconversión , Análisis de la Célula Individual , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología
2.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34417349

RESUMEN

To investigate the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the immune population, we coincupi bated the authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for seven passages, but, after 45 d, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed, at day 80, by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom, South Africa, Brazil, and Japan of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed.


Asunto(s)
Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/farmacología , Sitios de Unión , COVID-19/genética , COVID-19/virología , Chlorocebus aethiops , Convalecencia , Expresión Génica , Humanos , Evasión Inmune , Sueros Inmunes/química , Modelos Moleculares , Mutación , Pruebas de Neutralización , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero
3.
Nat Commun ; 13(1): 2263, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477725

RESUMEN

The emerging threat represented by SARS-CoV-2 variants, demands the development of therapies for better clinical management of COVID-19. MAD0004J08 is a potent Fc-engineered monoclonal antibody (mAb) able to neutralize in vitro all current SARS-CoV-2 variants of concern (VoCs) including the omicron variant even if with significantly reduced potency. Here we evaluated data obtained from the first 30 days of a phase 1 clinical study (EudraCT N.: 2020-005469-15 and ClinicalTrials.gov Identifier: NCT04932850). The primary endpoint evaluated the percentage of severe adverse events. Secondary endpoints evaluated pharmacokinetic and serum neutralization titers. A single dose administration of MAD0004J08 via intramuscular (i.m.) route is safe and well tolerated, resulting in rapid serum distribution and sera neutralizing titers higher than COVID-19 convalescent and vaccinated subjects. A single dose administration of MAD0004J08 is also sufficient to effectively neutralize major SARS-CoV-2 variants of concern (alpha, beta, gamma and delta). MAD0004J08 can be a major advancement in the prophylaxis and clinical management of COVID-19.


Asunto(s)
Anticuerpos Monoclonales , SARS-CoV-2 , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/sangre , Anticuerpos Antivirales , COVID-19 , Humanos , Inyecciones Intramusculares , Pruebas de Neutralización , SARS-CoV-2/inmunología
4.
J Immunol Methods ; 489: 112937, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33253698

RESUMEN

A newly identified coronavirus, named SARS-CoV-2, emerged in December 2019 in Hubei Province, China, and quickly spread throughout the world; so far, it has caused more than 49.7 million cases of disease and 1,2 million deaths. The diagnosis of SARS-CoV-2 infection is currently based on the detection of viral RNA in nasopharyngeal swabs by means of molecular-based assays, such as real-time RT-PCR. Furthermore, serological assays detecting different classes of antibodies constitute an excellent surveillance strategy for gathering information on the humoral immune response to infection and the spread of the virus through the population. In addition, it can contribute to evaluate the immunogenicity of novel future vaccines and medicines for the treatment and prevention of COVID-19 disease. The aim of this study was to determine SARS-CoV-2-specific antibodies in human serum samples by means of different commercial and in-house ELISA kits, in order to evaluate and compare their results first with one another and then with those yielded by functional assays using wild-type virus. It is important to identify the level of SARS-CoV-2-specific IgM, IgG and IgA antibodies in order to predict human population immunity, possible cross-reactivity with other coronaviruses and to identify potentially infectious subjects. In addition, in a small sub-group of samples, a subtyping IgG ELISA has been performed. Our findings showed a notable statistical correlation between the neutralization titers and the IgG, IgM and IgA ELISA responses against the receptor-binding domain of the spike protein. Thus confirming that antibodies against this portion of the virus spike protein are highly neutralizing and that the ELISA Receptor-Binding Domain-based assay can be used as a valid surrogate for the neutralization assay in laboratories that do not have biosecurity level-3 facilities.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/inmunología , Células Cultivadas , Chlorocebus aethiops , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunidad Humoral , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Células Vero
5.
Tumori ; 107(5): 446-451, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33176598

RESUMEN

There are no robust data on the real onset of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and spread in the prepandemic period worldwide. We investigated the presence of SARS-CoV-2 receptor-binding domain (RBD)-specific antibodies in blood samples of 959 asymptomatic individuals enrolled in a prospective lung cancer screening trial between September 2019 and March 2020 to track the date of onset, frequency, and temporal and geographic variations across the Italian regions. SARS-CoV-2 RBD-specific antibodies were detected in 111 of 959 (11.6%) individuals, starting from September 2019 (14%), with a cluster of positive cases (>30%) in the second week of February 2020 and the highest number (53.2%) in Lombardy. This study shows an unexpected very early circulation of SARS-CoV-2 among asymptomatic individuals in Italy several months before the first patient was identified, and clarifies the onset and spread of the coronavirus disease 2019 (COVID-19) pandemic. Finding SARS-CoV-2 antibodies in asymptomatic people before the COVID-19 outbreak in Italy may reshape the history of pandemic.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/epidemiología , SARS-CoV-2/inmunología , Anciano , Infecciones Asintomáticas , Femenino , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Estudios Prospectivos
6.
Viruses ; 12(9)2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927639

RESUMEN

The recent outbreak of a novel Coronavirus (SARS-CoV-2) and its rapid spread across the continents has generated an urgent need for assays to detect the neutralising activity of human sera or human monoclonal antibodies against SARS-CoV-2 spike protein and to evaluate the serological immunity in humans. Since the accessibility of live virus microneutralisation (MN) assays with SARS-CoV-2 is limited and requires enhanced bio-containment, the approach based on "pseudotyping" can be considered a useful complement to other serological assays. After fully characterising lentiviral pseudotypes bearing the SARS-CoV-2 spike protein, we employed them in pseudotype-based neutralisation assays in order to profile the neutralising activity of human serum samples from an Italian sero-epidemiological study. The results obtained with pseudotype-based neutralisation assays mirrored those obtained when the same panel of sera was tested against the wild type virus, showing an evident convergence of the pseudotype-based neutralisation and MN results. The overall results lead to the conclusion that the pseudotype-based neutralisation assay is a valid alternative to using the wild-type strain, and although this system needs to be optimised and standardised, it can not only complement the classical serological methods, but also allows serological assessments to be made when other methods cannot be employed, especially in a human pandemic context.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/virología , Lentivirus/genética , Pruebas de Neutralización/métodos , Pandemias , Neumonía Viral/virología , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , COVID-19 , Línea Celular , Infecciones por Coronavirus/epidemiología , Humanos , Sueros Inmunes/inmunología , Italia/epidemiología , Plásmidos/genética , Neumonía Viral/epidemiología , SARS-CoV-2 , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus/biosíntesis , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/fisiología , Transfección , Vesiculovirus/genética , Carga Viral
7.
Vaccines (Basel) ; 8(1)2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31991681

RESUMEN

Growing interest in universal influenza vaccines and novel administration routes has led to the development of alternative serological assays that are able to detect antibodies against conserved epitopes. We present a competitive ELISA method that is able to accurately determine the ratio of serum immunoglobulin G directed against the different domains of the hemagglutinin, the head and the stalk. Human serum samples were treated with two variants of the hemagglutinin protein from the A/California/7/2009 influenza virus. The signals detected were assigned to different groups of antibodies and presented as a ratio between head and stalk domains. A subset of selected sera was also tested by hemagglutination inhibition, single radial hemolysis, microneutralization, and enzyme-linked lectin assays. Pre-vaccination samples from adults showed a quite high presence of anti-stalk antibodies, and the results were substantially in line with those of the classical serological assays. By contrast, pre-vaccination samples from children did not present anti-stalk antibodies, and the majority of the anti-hemagglutinin antibodies that were detected after vaccination were directed against the head domain. The presented approach, when supported by further assays, can be used to assess the presence of specific anti-stalk antibodies and the potential boost of broadly protective antibodies, especially in the case of novel universal influenza vaccine approaches.

8.
bioRxiv ; 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33398278

RESUMEN

To investigate the evolution of SARS-CoV-2 in the immune population, we co-incubated authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for 7 passages, but after 45 days, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed at day 80 by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom and South Africa of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed. ONE SENTENCE SUMMARY: Three mutations allowed SARS-CoV-2 to evade the polyclonal antibody response of a highly neutralizing COVID-19 convalescent plasma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA