Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Planta ; 258(4): 80, 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37715847

RESUMEN

MAIN CONCLUSION: In P. aeruginosa, mutation of the gene encoding N-acyl-L-homoserine lactone synthase LasI drives defense and plant growth promotion, and this latter trait requires adequate nitrate nutrition. Cross-kingdom communication with bacteria is crucial for plant growth and productivity. Here, we show a strong induction of genes for nitrate uptake and assimilation in Arabidopsis seedlings co-cultivated with P. aeruginosa WT (PAO1) or ΔlasI mutants defective on the synthesis of the quorum-sensing signaling molecule N-(3-oxododecanoyl)-L-homoserine lactone. Along with differential induction of defense-related genes, the change from plant growth repression to growth promotion upon bacterial QS disruption, correlated with upregulation of the dual-affinity nitrate transceptor CHL1/AtNRT1/NPF6.3 and the nitrate reductases NIA1 and NIA2. CHL1-GUS was induced in Arabidopsis primary root tips after transfer onto P. aeruginosa ΔlasI streaks at low and high N availability, whereas this bacterium required high concentrations of nitrogen to potentiate root and shoot biomass production and to improve root branching. Arabidopsis chl1-5 and chl1-12 mutants and double mutants in NIA1 and NIA2 nitrate reductases showed compromised growth under low nitrogen availability and failed to mount an effective growth promotion and root branching response even at high NH4NO3. WT P. aeruginosa PAO1 and P. aeruginosa ΔlasI mutant promoted the accumulation of nitric oxide (NO) in roots of both the WT and nia1nia2 double mutants, whereas NO donors SNP or SNAP did not improve growth or root branching in nia1nia2 double mutants with or without bacterial cocultivation. Thus, inoculation of Arabidopsis roots with P. aeruginosa drives gene expression for improved nitrogen acquisition and this macronutrient is critical for the plant growth-promoting effects upon disruption of the LasI quorum-sensing system.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Nitratos , Pseudomonas aeruginosa/genética , Arabidopsis/genética , Lactonas , Acil-Butirolactonas , Nitrato Reductasas , Óxido Nítrico , Proteínas de Arabidopsis/genética , Nitrato-Reductasa/genética
2.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768387

RESUMEN

Anastrepha spp. (Diptera: Tephritidae) infestations cause significant economic losses in commercial fruit production worldwide. However, some plants quickly counteract the insertion of eggs by females by generating neoplasia and hindering eclosion, as is the case for Persea americana Mill., cv. Hass (Hass avocados). We followed a combined transcriptomics/metabolomics approach to identify the molecular mechanisms triggered by Hass avocados to detect and react to the oviposition of the pestiferous Anastrepha ludens (Loew). We evaluated two conditions: fruit damaged using a sterile pin (pin) and fruit oviposited by A. ludens females (ovi). We evaluated both of the conditions in a time course experiment covering five sampling points: without treatment (day 0), 20 min after the treatment (day 1), and days 3, 6, and 9 after the treatment. We identified 288 differentially expressed genes related to the treatments. Oviposition (and possibly bacteria on the eggs' surface) induces a plant hypersensitive response (HR), triggering a chitin receptor, producing an oxidative burst, and synthesizing phytoalexins. We also observed a process of cell wall modification and polyphenols biosynthesis, which could lead to polymerization in the neoplastic tissue surrounding the eggs.


Asunto(s)
Magnoliopsida , Persea , Tephritidae , Animales , Femenino , Oviposición , Tephritidae/genética , Frutas
3.
Funct Integr Genomics ; 22(6): 1467-1493, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36199002

RESUMEN

Plant metabolomics studies haves revealed new bioactive compounds. However, like other omics disciplines, the generated data are not fully exploited, mainly because the commonly performed analyses focus on elucidating the presence/absence of distinctive metabolites (and/or their precursors) and not on providing a holistic view of metabolomic changes and their participation in organismal adaptation to biotic and abiotic stress conditions. Therefore, spectral libraries generated from Cecropia obtusifolia cell suspension cultures in a previous study were considered as a case study and were reanalyzed herein. These libraries were obtained from a time-course experiment under nitrate starvation conditions using both electrospray ionization modes. The applied methodology included the use of ecological analytical tools in a systematic four-step process, including a population analysis of metabolite α diversity, richness, and evenness (i); a chemometrics analysis to identify discriminant groups (ii); differential metabolic marker identification (iii); and enrichment analyses and annotation of active metabolic pathways enriched by differential metabolites (iv). Our species α diversity results referring to the diversity of metabolites represented by mass-to-charge ratio (m/z) values detected at a specific retention time (rt) (an uncommon way to analyze untargeted metabolomic data) suggest that the metabolome is dynamic and is modulated by abiotic stress. A total of 147 and 371 m/z_rt pairs was identified as differential markers responsive to nitrate starvation in ESI- and ESI+ modes, respectively. Subsequent enrichment analysis showed a high degree of completeness of biosynthetic pathways such as those of brassinosteroids, flavonoids, and phenylpropanoids.


Asunto(s)
Metabolómica , Nitratos , Metabolómica/métodos , Metaboloma , Flavonoides/metabolismo , Plantas
4.
Proc Natl Acad Sci U S A ; 116(34): 17081-17089, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31387975

RESUMEN

The avocado, Persea americana, is a fruit crop of immense importance to Mexican agriculture with an increasing demand worldwide. Avocado lies in the anciently diverged magnoliid clade of angiosperms, which has a controversial phylogenetic position relative to eudicots and monocots. We sequenced the nuclear genomes of the Mexican avocado race, P. americana var. drymifolia, and the most commercially popular hybrid cultivar, Hass, and anchored the latter to chromosomes using a genetic map. Resequencing of Guatemalan and West Indian varieties revealed that ∼39% of the Hass genome represents Guatemalan source regions introgressed into a Mexican race background. Some introgressed blocks are extremely large, consistent with the recent origin of the cultivar. The avocado lineage experienced 2 lineage-specific polyploidy events during its evolutionary history. Although gene-tree/species-tree phylogenomic results are inconclusive, syntenic ortholog distances to other species place avocado as sister to the enormous monocot and eudicot lineages combined. Duplicate genes descending from polyploidy augmented the transcription factor diversity of avocado, while tandem duplicates enhanced the secondary metabolism of the species. Phenylpropanoid biosynthesis, known to be elicited by Colletotrichum (anthracnose) pathogen infection in avocado, is one enriched function among tandems. Furthermore, transcriptome data show that tandem duplicates are significantly up- and down-regulated in response to anthracnose infection, whereas polyploid duplicates are not, supporting the general view that collections of tandem duplicates contribute evolutionarily recent "tuning knobs" in the genome adaptive landscapes of given species.


Asunto(s)
Colletotrichum/fisiología , ADN Intergénico , Introgresión Genética , Genoma de Planta , Interacciones Huésped-Patógeno/genética , Magnoliopsida , Persea , Filogenia , Enfermedades de las Plantas , Duplicación de Gen , Magnoliopsida/genética , Magnoliopsida/microbiología , Persea/genética , Persea/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
5.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269578

RESUMEN

Citrus tristeza virus (CTV) is an important threat to the global citrus industry, causing severe economic losses worldwide. The disease management strategies are focused on vector control, tree culling, and the use of resistant varieties and rootstocks. Sweet orange (Citrus sinensis) trees showing either severe or mild CTV symptoms have been observed in orchards in Veracruz, Mexico, and were probably caused by different virus strains. To understand these symptomatic differences, transcriptomic analyses were conducted using asymptomatic trees. CTV was confirmed to be associated with infected plants, and mild and severe strains were successfully identified by a polymorphism in the coat protein (CP) encoding gene. RNA-Seq analysis revealed more than 900 significantly differentially expressed genes in response to mild and severe strains, with some overlapping genes. Importantly, multiple sequence reads corresponding to Citrus exocortis viroid and Hop stunt viroid were found in severe symptomatic and asymptomatic trees, but not in plants with mild symptoms. The differential gene expression profiling obtained in this work provides an overview of molecular behavior in naturally CTV-infected trees. This work may contribute to our understanding of citrus-virus interaction in more natural settings, which can help develop strategies for integrated crop management.


Asunto(s)
Citrus sinensis/virología , Closterovirus/patogenicidad , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Virus de Plantas/patogenicidad , Proteínas Virales/genética , Citrus sinensis/genética , Closterovirus/genética , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Regulación Viral de la Expresión Génica , México , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Virus de Plantas/genética , RNA-Seq , Virulencia
6.
BMC Genomics ; 21(1): 418, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32571204

RESUMEN

BACKGROUND: In bacteria, pan-genomes are the result of an evolutionary "tug of war" between selection and horizontal gene transfer (HGT). High rates of HGT increase the genetic pool and the effective population size (Ne), resulting in open pan-genomes. In contrast, selective pressures can lead to local adaptation by purging the variation introduced by HGT and mutation, resulting in closed pan-genomes and clonal lineages. In this study, we explored both hypotheses, elucidating the pan-genome of Vibrionaceae isolates after a perturbation event in the endangered oasis of Cuatro Ciénegas Basin (CCB), Mexico, and looking for signals of adaptation to the environments in their genomes. RESULTS: We obtained 42 genomes of Vibrionaceae distributed in six lineages, two of them did not showed any close reference strain in databases. Five of the lineages showed closed pan-genomes and were associated to either water or sediment environment; their high Ne estimates suggest that these lineages are not from a recent origin. The only clade with an open pan-genome was found in both environments and was formed by ten genetic groups with low Ne, suggesting a recent origin. The recombination and mutation estimators (r/m) ranged from 0.005 to 2.725, which are similar to oceanic Vibrionaceae estimations. However, we identified 367 gene families with signals of positive selection, most of them found in the core genome; suggesting that despite recombination, natural selection moves the Vibrionaceae CCB lineages to local adaptation, purging the genomes and keeping closed pan-genome patterns. Moreover, we identify 598 SNPs associated with an unstructured environment; some of the genes associated with these SNPs were related to sodium transport. CONCLUSIONS: Different lines of evidence suggest that the sampled Vibrionaceae, are part of the rare biosphere usually living under famine conditions. Two of these lineages were reported for the first time. Most Vibrionaceae lineages of CCB are adapted to their micro-habitats rather than to the sampled environments. This pattern of adaptation is concordant with the association of closed pan-genomes and local adaptation.


Asunto(s)
Polimorfismo de Nucleótido Simple , Vibrionaceae/clasificación , Vibrionaceae/fisiología , Secuenciación Completa del Genoma/métodos , Adaptación Fisiológica , Transferencia de Gen Horizontal , Genética de Población , Genoma Bacteriano , Familia de Multigenes , Mutación , Filogenia , Densidad de Población , Selección Genética , Vibrionaceae/genética , Vibrionaceae/aislamiento & purificación
7.
Proc Natl Acad Sci U S A ; 114(22): E4435-E4441, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28507139

RESUMEN

Utricularia gibba, the humped bladderwort, is a carnivorous plant that retains a tiny nuclear genome despite at least two rounds of whole genome duplication (WGD) since common ancestry with grapevine and other species. We used a third-generation genome assembly with several complete chromosomes to reconstruct the two most recent lineage-specific ancestral genomes that led to the modern U. gibba genome structure. Patterns of subgenome dominance in the most recent WGD, both architectural and transcriptional, are suggestive of allopolyploidization, which may have generated genomic novelty and led to instantaneous speciation. Syntenic duplicates retained in polyploid blocks are enriched for transcription factor functions, whereas gene copies derived from ongoing tandem duplication events are enriched in metabolic functions potentially important for a carnivorous plant. Among these are tandem arrays of cysteine protease genes with trap-specific expression that evolved within a protein family known to be useful in the digestion of animal prey. Further enriched functions among tandem duplicates (also with trap-enhanced expression) include peptide transport (intercellular movement of broken-down prey proteins), ATPase activities (bladder-trap acidification and transmembrane nutrient transport), hydrolase and chitinase activities (breakdown of prey polysaccharides), and cell-wall dynamic components possibly associated with active bladder movements. Whereas independently polyploid Arabidopsis syntenic gene duplicates are similarly enriched for transcriptional regulatory activities, Arabidopsis tandems are distinct from those of U. gibba, while still metabolic and likely reflecting unique adaptations of that species. Taken together, these findings highlight the special importance of tandem duplications in the adaptive landscapes of a carnivorous plant genome.


Asunto(s)
Carnivoría/fisiología , Genoma de Planta , Lamiales/genética , Lamiales/fisiología , Adaptación Fisiológica/genética , Proteasas de Cisteína/química , Proteasas de Cisteína/genética , Evolución Molecular , Duplicación de Gen , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Poliploidía , Análisis de Secuencia de ADN , Sintenía
8.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066422

RESUMEN

This investigation cultured Cecropia obtusifolia cells in suspension to evaluate the effect of nitrate deficiency on the growth and production of chlorogenic acid (CGA), a secondary metabolite with hypoglycemic and hypolipidemic activity that acts directly on type 2 diabetes mellitus. Using cell cultures in suspension, a kinetics time course was established with six time points and four total nitrate concentrations. The metabolites of interest were quantified by high-performance liquid chromatography (HPLC), and the metabolome was analyzed using directed and nondirected approaches. Finally, using RNA-seq methodology, the first transcript collection for C. obtusifolia was generated. HPLC analysis detected CGA at all sampling points, while metabolomic analysis confirmed the identity of CGA and of precursors involved in its biosynthesis. Transcriptome analysis identified differentially expressed genes and enzymes involved in the biosynthetic pathway of CGA. C. obtusifolia probably expresses a key enzyme with bifunctional activity, the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase and hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HQT/HCT), which recognizes shikimic acid or quinic acid as a substrate and incorporates either into one of the two routes responsible for CGA biosynthesis.


Asunto(s)
Cecropia/genética , Metaboloma , Transcriptoma , Cecropia/química , Cecropia/metabolismo , Ácido Clorogénico/análisis , Hipoglucemiantes/análisis
9.
Int J Mol Sci ; 21(16)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784357

RESUMEN

Somatic embryogenesis (SE) is a valuable model for understanding the mechanism of plant embryogenesis and a tool for the mass production of plants. However, establishing SE in avocado has been complicated due to the very low efficiency of embryo induction and plant regeneration. To understand the molecular foundation of the SE induction and development in avocado, we compared embryogenic (EC) and non-embryogenic (NEC) cultures of two avocado varieties using proteomic and metabolomic approaches. Although Criollo and Hass EC exhibited similarities in the proteome and metabolome profile, in general, we observed a more active phenylpropanoid pathway in EC than NEC. This pathway is associated with the tolerance of stress responses, probably through the reinforcement of the cell wall and flavonoid production. We could corroborate that particular polyphenolics compounds, including p-coumaric acid and t-ferulic acid, stimulated the production of somatic embryos in avocado. Exogen phenolic compounds were associated with the modification of the content of endogenous polyphenolic and the induction of the production of the putative auxin-a, adenosine, cellulose and 1,26-hexacosanediol-diferulate. We suggest that in EC of avocado, there is an enhanced phenylpropanoid metabolism for the production of the building blocks of lignin and flavonoid compounds having a role in cell wall reinforcement for tolerating stress response. Data are available at ProteomeXchange with the identifier PXD019705.


Asunto(s)
Adaptación Fisiológica , Pared Celular/metabolismo , Persea/embriología , Persea/fisiología , Técnicas de Embriogénesis Somática de Plantas , Propanoles/metabolismo , Estrés Fisiológico , Pared Celular/ultraestructura , Metabolómica , Modelos Biológicos , Persea/ultraestructura , Fenotipo , Proteínas de Plantas/metabolismo , Polifenoles/metabolismo , Análisis de Componente Principal , Proteómica
10.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138264

RESUMEN

Anastrepha ludens is a key pest of mangoes and citrus from Texas to Costa Rica but the mechanisms of odorant perception in this species are poorly understood. Detection of volatiles in insects occurs mainly in the antenna, where molecules penetrate sensillum pores and link to soluble proteins in the hemolymph until reaching specific odor receptors that trigger signal transduction and lead to behavioral responses. Scrutinizing the molecular foundation of odorant perception in A. ludens is necessary to improve biorational management strategies against this pest. After exposing adults of three maturity stages to a proteinaceous attractant, we studied antennal morphology and comparative proteomic profiles using nano-LC-MS/MS with tandem mass tags combined with synchronous precursor selection (SPS)-MS3. Antennas from newly emerged flies exhibited dense agglomerations of olfactory sensory neurons. We discovered 4618 unique proteins in the antennas of A. ludens and identified some associated with odor signaling, including odorant-binding and calcium signaling related proteins, the odorant receptor co-receptor (Orco), and putative odorant-degrading enzymes. Antennas of sexually immature flies exhibited the most upregulation of odor perception proteins compared to mature flies exposed to the attractant. This is the first report where critical molecular players are linked to the odor perception mechanism of A. ludens.


Asunto(s)
Frutas/química , Feromonas/farmacología , Proteoma/análisis , Proteoma/metabolismo , Tephritidae/metabolismo , Animales , Tephritidae/efectos de los fármacos
11.
BMC Plant Biol ; 19(1): 560, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852435

RESUMEN

BACKGROUND: Croton draco is an arboreal species and its latex as well as some other parts of the plant, are traditionally used in the treatment of a wide range of ailments and diseases. Alkaloids, such as magnoflorine, prevent early atherosclerosis progression while taspine, an abundant constituent of latex, has been described as a wound-healer and antitumor-agent. Despite the great interest for these and other secondary metabolites, no omics resources existed for the species and the biosynthetic pathways of these alkaloids remain largely unknown. RESULTS: To gain insights into the pathways involved in magnoflorine and taspine biosynthesis by C. draco and identify the key enzymes in these processes, we performed an integrated analysis of the transcriptome and metabolome in the major organs (roots, stem, leaves, inflorescences, and flowers) of this species. Transcript profiles were generated through high-throughput RNA-sequencing analysis while targeted and high resolution untargeted metabolomic profiling was also performed. The biosynthesis of these compounds appears to occur in the plant organs examined, but intermediaries may be translocated from the cells in which they are produced to other cells in which they accumulate. CONCLUSIONS: Our results provide a framework to better understand magnoflorine and taspine biosynthesis in C. draco. In addition, we demonstrate the potential of multi-omics approaches to identify candidate genes involved in the biosynthetic pathways of interest.


Asunto(s)
Alcaloides/biosíntesis , Aporfinas/metabolismo , Croton/metabolismo , Metaboloma , Transcriptoma , Vías Biosintéticas
12.
Nature ; 498(7452): 94-8, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23665961

RESUMEN

It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba. Despite its tiny size, the U. gibba genome accommodates a typical number of genes for a plant, with the main difference from other plant genomes arising from a drastic reduction in non-genic DNA. Unexpectedly, we identified at least three rounds of WGD in U. gibba since common ancestry with tomato (Solanum) and grape (Vitis). The compressed architecture of the U. gibba genome indicates that a small fraction of intergenic DNA, with few or no active retrotransposons, is sufficient to regulate and integrate all the processes required for the development and reproduction of a complex organism.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Magnoliopsida/genética , ADN Intergénico/genética , Duplicación de Gen/genética , Genes de Plantas/genética , Modelos Genéticos , Solanum/genética , Sintenía/genética , Vitis/genética
13.
J Hered ; 110(1): 58-67, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30371801

RESUMEN

Drosophila mojavensis normally breeds in necrotic columnar cactus, but they also feed and breed in Opuntia fruit (prickly pear) which serves as a seasonal resource. The prickly pear fruits (PPFs) are much different chemically from cacti, mainly in their free sugars and lipid content, raising the question of the effects of this seasonal shift on fitness and on gene expression. Here we reared 3 isofemale strains of D. mojavensis collected from different parts of the species' range on semi-natural medium of either cactus or PPF and measured the development time, survival, body weights, and desiccation resistance. All these parameters were affected by diet and by interaction with strain and or sex. Interestingly, however, there appear to be tradeoffs: flies developed faster in prickly pear and the emerging adults were heavier, but those having grown in cactus were more resistant to desiccation. We also evaluated the gene expression of emerging male and female adult flies using RNA-Seq. While more genes were down-regulated in PPF than up-regulated in both sexes, the sexes did differ in expression patterns. The majority of the genes that were preferentially expressed comparing PPF versus cactus underlie metabolism. Genes involved with carbohydrate and lipid metabolism, as well as with the amino acid serine, and their relationship to growth and development reflect the ways in which these dietary differences affect the flies.


Asunto(s)
Drosophila/fisiología , Opuntia/parasitología , Animales , Dieta , Drosophila/genética , Drosophila/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , América del Norte , Estaciones del Año , Transcripción Genética
14.
BMC Genomics ; 19(1): 721, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30285612

RESUMEN

BACKGROUND: The Ambrosia Fusarium Clade phytopathogenic Fusarium fungi species have a symbiotic relationship with ambrosia beetles in the genus Euwallacea (Coleoptera: Curculionidae). Related beetle species referred to as Euwallacea sp. near fornicatus have been spread in California, USA and are recognized as the causal agents of Fusarium dieback, a disease that causes mortality of many plant species. Despite the importance of this fungi, no transcriptomic resources have been generated. The datasets described here represent the first ever transcripts available for these species. We focused our study on the isolated species of Fusarium that is associated with one of the cryptic species referred to as Kuroshio Shot Hole Borer (KSHB) Euwallacea sp. near fornicatus. RESULTS: Hydrogen concentration is a critical signal in fungi for growth and host colonization, the aim of this study was to evaluate the effect of different pH conditions on growth and gene expression of the fungus Fusarium sp. associated with KSHB. An RNA-seq approach was used to compare the gene expression of the fungus grown for 2 weeks in liquid medium at three different pH levels (5.0, 6.0, and 7.0). An unbuffered treatment was included to evaluate the capability of the fungus to change the pH of its environment and the impact in gene expression. The results showed that the fungus can grow and modulate its genetic expression at different pH conditions; however, growth was stunted in acidic pH in comparison with neutral pH. The results showed a differential expression pattern in each pH condition even when acidic conditions prevailed at the end of the experiment. After comparing transcriptomics data from the three treatments, we found a total of 4,943 unique transcripts that were differentially expressed. CONCLUSIONS: We identified transcripts related to pH signaling such as the conserved PAL/RIM pathway, some transcripts related to secondary metabolism and other transcripts that were differentially expressed. Our analysis suggests possible mechanisms involved in pathogenicity in this novel Fusarium species. This is the first report that shows transcriptomic data of this pathogen as well as the first report of genes and proteins involved in their metabolism identifying potential virulence factors.


Asunto(s)
Ambiente , Fusarium/genética , Fusarium/fisiología , Perfilación de la Expresión Génica , Gorgojos/microbiología , Animales , Ácido Fusárico/biosíntesis , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Concentración de Iones de Hidrógeno , Anotación de Secuencia Molecular , Filogenia , Homología de Secuencia de Ácido Nucleico , Simbiosis
16.
Curr Microbiol ; 75(3): 247-255, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29051980

RESUMEN

Bacillus sp. B25 is an effective biocontrol agent against the maize pathogenic fungus Fusarium verticillioides (Fv). Previous in vitro assays have shown that B25 has protease, glucanase, and chitinase activities and siderophores production; however, specific mechanisms by which B25 controls Fv are still unknown. To determine the genetic traits involved in biocontrol, B25 genome was sequenced and analyzed. B25 genome is composed of 5,113,413 bp and 5251 coding genes. A multilocus phylogenetic analysis (MLPA) suggests that B25 is closely related to the Bacillus cereus group and a high percentage (70-75%) of the genetic information is conserved between B25 and related strains, which include most of the genes associated to fungal antagonism. Some of these genes are shared with some biocontrol agents of the Bacillus genus and less with Pseudomonas and Serratia strains. We performed a genomic comparison between B25 and five Bacillus spp., Pseudomonas and Serratia strains. B25 contains genes involved in a wide variety of antagonistic mechanisms including chitinases, glycoside hydrolases, siderophores, antibiotics, and biofilm production that could be implicated in root colonization. Also, 24 genomic islands and 3 CRISPR sequences were identified in the B25 genome. This is the first comparative genome analysis between strains belonging to the B. cereus group and biocontrol agents of phytopathogenic fungi. These results are the starting point for further studies on B25 gene expression during its interaction with Fv.


Asunto(s)
Antibiosis , Bacillus/genética , Fusarium/fisiología , Genoma Bacteriano , Enfermedades de las Plantas/microbiología , Zea mays/microbiología , Bacillus/clasificación , Bacillus/fisiología , Genómica , Filogenia , Enfermedades de las Plantas/prevención & control
17.
Mol Biol Evol ; 32(5): 1284-95, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25637935

RESUMEN

Utricularia gibba is an aquatic carnivorous plant with highly specialized morphology, featuring fibrous floating networks of branches and leaf-like organs, no recognizable roots, and bladder traps that capture and digest prey. We recently described the compressed genome of U. gibba as sufficient to control the development and reproduction of a complex organism. We hypothesized intense deletion pressure as a mechanism whereby most noncoding DNA was deleted, despite evidence for three independent whole-genome duplications (WGDs). Here, we explore the impact of intense genome fractionation in the evolutionary dynamics of U. gibba's functional gene space. We analyze U. gibba gene family turnover by modeling gene gain/death rates under a maximum-likelihood statistical framework. In accord with our deletion pressure hypothesis, we show that the U. gibba gene death rate is significantly higher than those of four other eudicot species. Interestingly, the gene gain rate is also significantly higher, likely reflecting the occurrence of multiple WGDs and possibly also small-scale genome duplications. Gene ontology enrichment analyses of U. gibba-specific two-gene orthogroups, multigene orthogroups, and singletons highlight functions that may represent adaptations in an aquatic carnivorous plant. We further discuss two homeodomain transcription factor gene families (WOX and HDG/HDZIP-IV) showing conspicuous differential expansions and contractions in U. gibba. Our results 1) reconcile the compactness of the U. gibba genome with its accommodation of a typical number of genes for a plant genome, and 2) highlight the role of high gene family turnover in the evolutionary diversification of U. gibba's functional gene space and adaptations to its unique lifestyle and highly specialized body plan.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Molecular , Lamiales/genética , Carnivoría , Genoma de Planta , Lamiales/fisiología , Familia de Multigenes/genética , Filogenia
18.
BMC Plant Biol ; 16(1): 177, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27527830

RESUMEN

BACKGROUND: Calophyllum brasiliense is highlighted as an important resource of calanolides, which are dipyranocoumarins that inhibit the reverse transcriptase of human immunodeficiency virus type 1 (HIV-1 RT). Despite having great medicinal importance, enzymes involved in calanolide, biosynthesis and the pathway itself, are still largely unknown. Additionally, no genomic resources exist for this plant species. RESULTS: In this work, we first analyzed the transcriptome of C. brasiliense leaves, stem, and roots using a RNA-seq strategy, which provided a dataset for functional gene mining. According to the structures of the calanolides, putative biosynthetic pathways were proposed. Finally, candidate unigenes in the transcriptome dataset, potentially involved in umbelliferone and calanolide (angular pyranocoumarin) biosynthetic pathways, were screened using mainly homology-based BLAST and phylogenetic analyses. CONCLUSIONS: The unigene dataset that was generated in this study provides an important resource for further molecular studies of C. brasiliense, especially for functional analysis of candidate genes involved in the biosynthetic pathways of linear and angular pyranocoumarins.


Asunto(s)
Calophyllum/genética , Proteínas de Plantas/genética , Piranocumarinas/metabolismo , Calophyllum/clasificación , Calophyllum/metabolismo , Perfilación de la Expresión Génica , Filogenia , Proteínas de Plantas/metabolismo , Transcriptoma
19.
BMC Genomics ; 16: 599, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26268848

RESUMEN

BACKGROUND: Avocado (Persea americana) is an economically important tropical fruit considered to be a good source of fatty acids. Despite its importance, the molecular and cellular characterization of biochemical and developmental processes in avocado is limited due to the lack of transcriptome and genomic information. RESULTS: The transcriptomes of seeds, roots, stems, leaves, aerial buds and flowers were determined using different sequencing platforms. Additionally, the transcriptomes of three different stages of fruit ripening (pre-climacteric, climacteric and post-climacteric) were also analyzed. The analysis of the RNAseqatlas presented here reveals strong differences in gene expression patterns between different organs, especially between root and flower, but also reveals similarities among the gene expression patterns in other organs, such as stem, leaves and aerial buds (vegetative organs) or seed and fruit (storage organs). Important regulators, functional categories, and differentially expressed genes involved in avocado fruit ripening were identified. Additionally, to demonstrate the utility of the avocado gene expression atlas, we investigated the expression patterns of genes implicated in fatty acid metabolism and fruit ripening. CONCLUSIONS: A description of transcriptomic changes occurring during fruit ripening was obtained in Mexican avocado, contributing to a dynamic view of the expression patterns of genes involved in fatty acid biosynthesis and the fruit ripening process.


Asunto(s)
Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Persea/genética , Proteínas de Plantas/genética , Análisis de Secuencia de ARN/métodos , Flores/genética , Flores/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Persea/química , Persea/crecimiento & desarrollo , Persea/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo
20.
BMC Genomics ; 16: 657, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26330142

RESUMEN

BACKGROUND: Lophophora williamsii (commonly named peyote) is a small, spineless cactus with psychoactive alkaloids, particularly mescaline. Peyote utilizes crassulacean acid metabolism (CAM), an alternative form of photosynthesis that exists in succulents such as cacti and other desert plants. Therefore, its transcriptome can be considered an important resource for future research focused on understanding how these plants make more efficient use of water in marginal environments and also for research focused on better understanding of the overall mechanisms leading to production of plant natural products and secondary metabolites. RESULTS: In this study, two cDNA libraries were generated from L. williamsii. These libraries, representing buttons (tops of stems) and roots were sequenced using different sequencing platforms (GS-FLX, GS-Junior and PGM, respectively). A total of 5,541,550 raw reads were generated, which were assembled into 63,704 unigenes with an average length of 564.04 bp. A total of 25,149 unigenes (62.19 %) was annotated using public databases. 681 unigenes were found to be differentially expressed when comparing the two libraries, where 400 were preferentially expressed in buttons and 281 in roots. Some of the major alkaloids, including mescaline, were identified by GC-MS and relevant metabolic pathways were reconstructed using the Kyoto encyclopedia of genes and genomes database (KEGG). Subsequently, the expression patterns of preferentially expressed genes putatively involved in mescaline production were examined and validated by qRT-PCR. CONCLUSIONS: High throughput transcriptome sequencing (RNA-seq) analysis allowed us to efficiently identify candidate genes involved in mescaline biosynthetic pathway in L. williamsii; these included tyrosine/DOPA decarboxylase, hydroxylases, and O-methyltransferases. This study sets the theoretical foundation for bioassay design directed at confirming the participation of these genes in mescaline production.


Asunto(s)
Genes de Plantas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mescalina/biosíntesis , Sophora/genética , Transcriptoma/genética , Vías Biosintéticas/genética , Descarboxilación , Dihidroxifenilalanina/metabolismo , Hidroxilación , Funciones de Verosimilitud , Mescalina/química , Metiltransferasas/metabolismo , Anotación de Secuencia Molecular , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Sophora/enzimología , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA