RESUMEN
Decades of previous efforts to develop renal-sparing polyene antifungals were misguided by the classic membrane permeabilization model1. Recently, the clinically vital but also highly renal-toxic small-molecule natural product amphotericin B was instead found to kill fungi primarily by forming extramembraneous sponge-like aggregates that extract ergosterol from lipid bilayers2-6. Here we show that rapid and selective extraction of fungal ergosterol can yield potent and renal-sparing polyene antifungals. Cholesterol extraction was found to drive the toxicity of amphotericin B to human renal cells. Our examination of high-resolution structures of amphotericin B sponges in sterol-free and sterol-bound states guided us to a promising structural derivative that does not bind cholesterol and is thus renal sparing. This derivative was also less potent because it extracts ergosterol more slowly. Selective acceleration of ergosterol extraction with a second structural modification yielded a new polyene, AM-2-19, that is renal sparing in mice and primary human renal cells, potent against hundreds of pathogenic fungal strains, resistance evasive following serial passage in vitro and highly efficacious in animal models of invasive fungal infections. Thus, rational tuning of the dynamics of interactions between small molecules may lead to better treatments for fungal infections that still kill millions of people annually7,8 and potentially other resistance-evasive antimicrobials, including those that have recently been shown to operate through supramolecular structures that target specific lipids9.
Asunto(s)
Antifúngicos , Riñón , Polienos , Esteroles , Animales , Humanos , Ratones , Anfotericina B/análogos & derivados , Anfotericina B/química , Anfotericina B/toxicidad , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacología , Antifúngicos/toxicidad , Células Cultivadas , Colesterol/química , Colesterol/metabolismo , Farmacorresistencia Fúngica , Ergosterol/química , Ergosterol/metabolismo , Riñón/efectos de los fármacos , Cinética , Pruebas de Sensibilidad Microbiana , Micosis/tratamiento farmacológico , Micosis/microbiología , Polienos/química , Polienos/metabolismo , Polienos/farmacología , Pase Seriado , Esteroles/química , Esteroles/metabolismo , Factores de TiempoRESUMEN
Pathogenic fungi reside in the intestinal microbiota but rarely cause disease. Little is known about the interactions between fungi and the immune system that promote commensalism. Here we investigate the role of adaptive immunity in promoting mutual interactions between fungi and host. We find that potentially pathogenic Candida species induce and are targeted by intestinal immunoglobulin A (IgA) responses. Focused studies on Candida albicans reveal that the pathogenic hyphal morphotype, which is specialized for adhesion and invasion, is preferentially targeted and suppressed by intestinal IgA responses. IgA from mice and humans directly targets hyphal-enriched cell-surface adhesins. Although typically required for pathogenesis, C. albicans hyphae are less fit for gut colonization1,2 and we show that immune selection against hyphae improves the competitive fitness of C. albicans. C. albicans exacerbates intestinal colitis3 and we demonstrate that hyphae and an IgA-targeted adhesin exacerbate intestinal damage. Finally, using a clinically relevant vaccine to induce an adhesin-specific immune response protects mice from C. albicans-associated damage during colitis. Together, our findings show that adaptive immunity suppresses harmful fungal effectors, with benefits to both C. albicans and its host. Thus, IgA uniquely uncouples colonization from pathogenesis in commensal fungi to promote homeostasis.
Asunto(s)
Inmunidad Adaptativa , Candida albicans/inmunología , Candida albicans/fisiología , Interacciones Huésped-Patógeno/inmunología , Simbiosis/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígenos Fúngicos/inmunología , Candida albicans/patogenicidad , Colitis/inmunología , Colitis/microbiología , Colitis/patología , Femenino , Vacunas Fúngicas/inmunología , Microbioma Gastrointestinal/inmunología , Humanos , Hifa/inmunología , Inmunoglobulina A/inmunología , Masculino , Ratones , Persona de Mediana Edad , Adulto JovenRESUMEN
Fungal invasion of the oral epithelium is central to the pathogenesis of oropharyngeal candidiasis (OPC). Candida albicans invades the oral epithelium by receptor-induced endocytosis but this process is incompletely understood. We found that C. albicans infection of oral epithelial cells induces c-Met to form a multi-protein complex with E-cadherin and the epidermal growth factor receptor (EGFR). E-cadherin is necessary for C. albicans to activate both c-Met and EGFR and to induce the endocytosis of C. albicans. Proteomics analysis revealed that c-Met interacts with C. albicans Hyr1, Als3 and Ssa1. Both Hyr1 and Als3 are required for C. albicans to stimulate c-Met and EGFR in oral epithelial cells in vitro and for full virulence during OPC in mice. Treating mice with small molecule inhibitors of c-Met and EGFR ameliorates OPC, demonstrating the potential therapeutic efficacy of blocking these host receptors for C. albicans.
Asunto(s)
Candida albicans , Candidiasis Bucal , Animales , Ratones , Membrana Celular , Receptores ErbB , Cadherinas , Células EpitelialesRESUMEN
Candida albicans biofilms are a complex multilayer community of cells that are resistant to almost all classes of antifungal drugs. The bottommost layers of biofilms experience nutrient limitation where C. albicans cells are required to respire. We previously reported that a protein Ndu1 is essential for Candida mitochondrial respiration; loss of NDU1 causes inability of C. albicans to grow on alternative carbon sources and triggers early biofilm detachment. Here, we screened a repurposed library of FDA-approved small molecule inhibitors to identify those that prevent NDU1-associated functions. We identified an antihelminthic drug, Niclosamide (NCL), which not only prevented growth on acetate, C. albicans hyphenation and early biofilm growth, but also completely disengaged fully grown biofilms of drug-resistant C. albicans and Candida auris from their growth surface. To overcome the suboptimal solubility and permeability of NCL that is well known to affect its in vivo efficacy, we developed NCL-encapsulated Eudragit EPO (an FDA-approved polymer) nanoparticles (NCL-EPO-NPs) with high niclosamide loading, which also provided long-term stability. The developed NCL-EPO-NPs completely penetrated mature biofilms and attained anti-biofilm activity at low microgram concentrations. NCL-EPO-NPs induced ROS activity in C. albicans and drastically reduced oxygen consumption rate in the fungus, similar to that seen in an NDU1 mutant. NCL-EPO-NPs also significantly abrogated mucocutaneous candidiasis by fluconazole-resistant strains of C. albicans, in mice models of oropharyngeal and vulvovaginal candidiasis. To our knowledge, this is the first study that targets biofilm detachment as a target to get rid of drug-resistant Candida biofilms and uses NPs of an FDA-approved nontoxic drug to improve biofilm penetrability and microbial killing.
Asunto(s)
Candidiasis , Nanopartículas , Animales , Antifúngicos/farmacología , Biopelículas , Candida , Candida albicans , Candidiasis/microbiología , Fluconazol/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Niclosamida/farmacología , Niclosamida/uso terapéuticoRESUMEN
Ibrexafungerp (formerly SCY-078) is the first member of the triterpenoid class that prevents the synthesis of the fungal cell wall polymer ß-(1,3)-D-glucan by inhibiting the enzyme glucan synthase. We evaluated the in vivo efficacy of ibrexafungerp against pulmonary mucormycosis using an established murine model. Neutropenic mice were intratracheally infected with either Rhizopus delemar or Mucor circinelloides. Treatment with placebo (diluent control), ibrexafungerp (30 mg/kg, PO BID), liposomal amphotericin B (LAMB 10 mg/kg IV QD), posaconazole (PSC 30 mg/kg PO QD), or a combination of ibrexafungerp plus LAMB or ibrexafungerp plus PSC began 16 h post-infection and continued for 7 days for ibrexafungerp or PSC and through day 4 for LAMB. Ibrexafungerp was as effective as LAMB or PSC in prolonging median survival (range: 15 days to >21 days) and enhancing overall survival (30%-65%) vs placebo (9 days and 0%; P < 0.001) in mice infected with R. delemar. Furthermore, median survival and overall percent survival resulting from the combination of ibrexafungerp plus LAMB were significantly greater compared to all monotherapies (P ≤ 0.03). Similar survival results were observed in mice infected with M. circinelloides. Monotherapies also reduce the lung and brain fungal burden by ~0.5-1.0log10 conidial equivalents (CE)/g of tissue vs placebo in mice infected with R. delemar (P < 0.05), while a combination of ibrexafungerp plus LAMB lowered the fungal burden by ~0.5-1.5log10 CE/g compared to placebo or any of the monotherapy groups (P < 0.03). These results are promising and warrant continued investigation of ibrexafungerp as a novel treatment option against mucormycosis.
Asunto(s)
Anfotericina B , Antifúngicos , Glicósidos , Mucormicosis , Neutropenia , Triterpenos , Animales , Anfotericina B/uso terapéutico , Anfotericina B/farmacología , Mucormicosis/tratamiento farmacológico , Ratones , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Triterpenos/farmacología , Triterpenos/uso terapéutico , Neutropenia/tratamiento farmacológico , Neutropenia/complicaciones , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Rhizopus/efectos de los fármacos , Enfermedades Pulmonares Fúngicas/tratamiento farmacológico , Enfermedades Pulmonares Fúngicas/microbiología , Mucor/efectos de los fármacos , Triazoles/uso terapéutico , Triazoles/farmacologíaRESUMEN
Invasive mucormycosis (IM) is associated with high mortality and morbidity. MAT2203 is an orally administered lipid nanocrystal formulation of amphotericin B, which has been shown to be safe and effective against other fungal infections. We sought to compare the efficacy of MAT2203 to liposomal amphotericin B (LAMB) treatment in a neutropenic mouse model of IM due to Rhizopus arrhizus var. delemar or Mucor circinelloides f. jenssenii DI15-131. In R. arrhizus var. delemar-infected mice, 15 mg/kg of MAT2203 qd was as effective as 10 mg/kg of LAMB in prolonging median survival time vs placebo (13.5 and 16.5 days for MAT2203 and LAMB, respectively, vs 9 days for placebo) and enhancing overall survival vs placebo-treated mice (40% and 45% for MAT2203 and LAMB, respectively, vs 0% for placebo). A higher dose of 45 mg/kg of MAT2203 was not well tolerated by mice and showed no benefit over placebo. Similar results were obtained with mice infected with M. circinelloides. Furthermore, while both MAT2203 and LAMB treatment resulted in a significant reduction of ~1.0-2.0log and ~2.0-2.5log in Rhizopus delemar or M. circinelloides lung and brain burden vs placebo mice, respectively, LAMB significantly reduced tissue fungal burden in mice infected with R. delemar vs tissues of mice treated with MAT2203. These results support continued investigation and development of MAT2203 as a novel and oral formulation of amphotericin for the treatment of mucormycosis.
RESUMEN
During hematogenously disseminated candidiasis, blood borne fungi must invade the endothelial cells that line the blood vessels to infect the deep tissues. Although Candida albicans, which forms hyphae, readily invades endothelial cells, other medically important species of Candida are poorly invasive in standard in vitro assays and have low virulence in immunocompetent mouse models of disseminated infection. Here, we show that Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei can bind to vitronectin and high molecular weight kininogen present in human serum. Acting as bridging molecules, vitronectin and kininogen bind to αv integrins and the globular C1q receptor (gC1qR), inducing human endothelial cells to endocytose the fungus. This mechanism of endothelial cell invasion is poorly supported by mouse endothelial cells but can be restored when mouse endothelial cells are engineered to express human gC1qR or αv integrin. Overall, these data indicate that bridging molecule-mediated endocytosis is a common pathogenic strategy used by many medically important Candida spp. to invade human vascular endothelial cells.
Asunto(s)
Candidiasis , Células Endoteliales , Animales , Candida , Candida albicans , Candidiasis/microbiología , Células Endoteliales/microbiología , Humanos , Ratones , VitronectinaRESUMEN
BACKGROUND: Despite the unprecedented surge in the incidence of mucormycosis in the COVID-19 era, the antifungal susceptibility patterns (ASPs) of COVID-19 associated mucormycosis (CAM) isolates have not been investigated so far and it is unclear if the high mortality rate associated with CAM is driven by decreased susceptibility of Mucorales to antifungal drugs. OBJECTIVES: To describe the clinical, mycological, outcome and in vitro ASPs of CAM cases and their etiologies from Iran. PATIENTS/METHODS: A prospective study from January 2020 to January 2022 at a referral tertiary hospital in Tehran, Iran was conducted for screening mucormycosis through histopathology and mycological methods. The identity of Mucorales isolates was revealed with ITS-panfungal PCR& sequencing and MALDI-TOF. The AS for amphotericin B, itraconazole, isavuconazole and posaconazole was cleared according to the EUCAST antifungal susceptibility testing protocol. RESULT: A total of 150 individuals were diagnosed with CAM. Males constituted 60.7% of the population. The mean age was 54.9 years. Diabetes was the leading risk factor (74.7%). The median interval between diagnosis of COVID-19 and CAM was 31 days. The recovery rate of culture was as low as 41.3% with Rhizopus arrhizus being identified as the dominant (60; 96.7%) agent. Amphotericin B (MIC50 = 0.5 µg/ml) demonstrated the highest potency against Mucorales. CONCLUSION: Majority of the cases had either diabetes, history of corticosteroid therapy or simultaneously both conditions. Accordingly, close monitoring of blood glucose should be considered. The indications for corticosteroids therapy are recommended to be optimized. Also, an anti Mucorales prophylaxis may be necessitated to be administrated in high risk individuals. Although amphotericin B was the most active agent, a higher rate of resistance to this antifungal was noted here in comparison with earlier studies on mucormycetes from non-CAM cases.
Asunto(s)
COVID-19 , Diabetes Mellitus , Mucorales , Mucormicosis , Masculino , Humanos , Persona de Mediana Edad , Mucormicosis/diagnóstico , Mucormicosis/tratamiento farmacológico , Mucormicosis/epidemiología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Anfotericina B/farmacología , Anfotericina B/uso terapéutico , Centros de Atención Terciaria , Irán/epidemiología , Estudios Prospectivos , Diabetes Mellitus/tratamiento farmacológicoRESUMEN
Invasive pulmonary aspergillosis (IPA), invasive mucormycosis (IM), and invasive fusariosis (IF) are associated with high mortality and morbidity. Fosmanogepix (FMGX) is a first-in-class antifungal in clinical development with demonstrated broad-spectrum activity in animal models of infections. We sought to evaluate the benefit of combination therapy of FMGX plus liposomal amphotericin B (L-AMB) in severe delayed-treatment models of murine IPA, IM, and IF. While FMGX was equally as effective as L-AMB in prolonging the survival of mice infected with IPA, IM, or IF, combination therapy was superior to monotherapy in all three models. These findings were validated by greater reductions in the tissue fungal burdens (determined by quantitative PCR) of target organs in all three models versus the burdens in infected vehicle-treated (placebo) or monotherapy-treated mice. In general, histopathological examination of target organs corroborated the findings for fungal tissue burdens among all treatment arms. Our results show that treatment with the combination of FMGX plus L-AMB demonstrated high survival rates and fungal burden reductions in severe animal models of invasive mold infections, at drug exposures in mice similar to those achieved clinically. These encouraging results warrant further investigation of the FMGX-plus-L-AMB combination treatment for severely ill patients with IPA, IM, and IF.
Asunto(s)
Fusariosis , Aspergilosis Pulmonar Invasiva , Mucormicosis , Anfotericina B/uso terapéutico , Animales , Antifúngicos/uso terapéutico , Hongos , Fusariosis/tratamiento farmacológico , Aspergilosis Pulmonar Invasiva/tratamiento farmacológico , Ratones , Mucormicosis/tratamiento farmacológicoRESUMEN
We evaluated the in vitro activity of manogepix against Fusarium oxysporum and Fusarium solani species complex (FOSC and FSSC, respectively) isolates per CLSI document M38 broth microdilution methods. Manogepix demonstrated activity against both FOSC (MEC [minimum effective concentration] range, ≤0.015 to 0.03 µg/ml; MIC50 range, ≤0.015 to 0.125 µg/ml) and FSSC (MEC, ≤0.015 µg/ml; MIC50, ≤0.015 to 0.25 µg/ml). Amphotericin B was also active (MIC, 0.25 to 4 µg/ml), whereas the triazoles (MIC, 1 to >16 µg/ml) and micafungin (MEC, ≥8 µg/ml) had limited activity.
Asunto(s)
Fusarium , Aminopiridinas , Antifúngicos/farmacología , Isoxazoles , Pruebas de Sensibilidad MicrobianaRESUMEN
OBJECTIVES: Liposomal amphotericin B (L-AMB) and isavuconazonium sulphate are commonly used antifungal drugs to treat mucormycosis. However, the efficacy of combination therapy of L-AMB/isavuconazonium sulphate versus monotherapy is unknown. We used an immunosuppressed mouse model of pulmonary mucormycosis to compare the efficacy of L-AMB/isavuconazonium sulphate versus either drug alone. METHODS: Neutropenic mice were intratracheally infected with either Rhizopus delemar or Mucor circinelloides. Treatment with L-AMB, isavuconazonium sulphate, or a combination of both started 8 h post-infection and continued through to Day +4. Placebo mice received vehicle control. Survival to Day +21 and tissue fungal burden (by conidial equivalent using quantitative PCR) on Day +4, served as primary and secondary endpoints, respectively. RESULTS: For mice infected with R. delemar, L-AMB and isavuconazonium sulphate equally prolonged median survival time and enhanced survival versus placebo (an overall survival of 50% for either drug alone, versus 5% for placebo). Importantly, combination treatment resulted in an overall survival of 80%. Both antifungal drugs reduced tissue fungal burden of lungs and brain by â¼1.0-2.0 log versus placebo-treated mice. Treatment with combination therapy resulted in 2.0-3.5 log reduction in fungal burden of either organ versus placebo and 1.0 log reduction versus either drug alone. Similar treatment outcomes were obtained using mice infected with M. circinelloides. CONCLUSIONS: The L-AMB/isavuconazonium sulphate combination demonstrated greater activity versus monotherapy in immunosuppressed mice infected with either of the two most common causes of mucormycosis. These studies warrant further investigation of L-AMB/isavuconazonium sulphate combination therapy as an optimal therapy of human mucormycosis.
Asunto(s)
Mucormicosis , Anfotericina B , Animales , Antifúngicos/uso terapéutico , Ratones , Mucor , Mucormicosis/tratamiento farmacológico , Nitrilos , Piridinas , Rhizopus , TriazolesRESUMEN
Candida auris is an emerging, multi-drug resistant, health care-associated fungal pathogen. Its predominant prevalence in hospitals and nursing homes indicates its ability to adhere to and colonize the skin, or persist in an environment outside the host-a trait unique from other Candida species. Besides being associated globally with life-threatening disseminated infections, C. auris also poses significant clinical challenges due to its ability to adhere to polymeric surfaces and form highly drug-resistant biofilms. Here, we performed bioinformatic studies to identify the presence of adhesin proteins in C. auris, with sequence as well as 3-D structural homologies to the major adhesin/invasin of C. albicans, Als3. Anti-Als3p antibodies generated by vaccinating mice with NDV-3A (a vaccine based on the N-terminus of Als3 protein formulated with alum) recognized C. auris in vitro, blocked its ability to form biofilms and enhanced macrophage-mediated killing of the fungus. Furthermore, NDV-3A vaccination induced significant levels of C. auris cross-reactive humoral and cellular immune responses, and protected immunosuppressed mice from lethal C. auris disseminated infection, compared to the control alum-vaccinated mice. The mechanism of protection is attributed to anti-Als3p antibodies and CD4+ T helper cells activating tissue macrophages. Finally, NDV-3A potentiated the protective efficacy of the antifungal drug micafungin, against C. auris candidemia. Identification of Als3-like adhesins in C. auris makes it a target for immunotherapeutic strategies using NDV-3A, a vaccine with known efficacy against other Candida species and safety as well as efficacy in clinical trials. Considering that C. auris can be resistant to almost all classes of antifungal drugs, such an approach has profound clinical relevance.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Linfocitos T CD4-Positivos/inmunología , Candida/inmunología , Candidiasis/prevención & control , Resistencia a Múltiples Medicamentos/inmunología , Proteínas Fúngicas/inmunología , Vacunas Fúngicas/administración & dosificación , Compuestos de Alumbre/química , Animales , Candidiasis/inmunología , Candidiasis/microbiología , Ratones , Ratones Endogámicos ICR , VacunaciónRESUMEN
Melanin is a dark color pigment biosynthesized naturally in most living organisms. Fungal melanin is a major putative virulence factor of Mucorales fungi that allows intracellular persistence by inducing phagosome maturation arrest. Recently, it has been shown that the black pigments of Rhizopus delemar is of eumelanin type, that requires the involvement of tyrosinase (a copper-dependent enzyme) in its biosynthesis. Herein, we have developed a series of compounds (UOSC-1-14) to selectively target Rhizopus melanin and explored this mechanism therapeutically. The compounds were designed based on the scaffold of the natural product, cuminaldehyde, identified from plant sources and has been shown to develop non-selective inhibition of melanin production. While all synthesized compounds showed significant inhibition of Rhizopus melanin production and limited toxicity to mammalian cells, only four compounds (UOSC-1, 2, 13, and 14) were selected as promising candidates based on their selective inhibition to fungal melanin. The activity of compound UOSC-2 was comparable to the positive control kojic acid. The selected candidates showed significant inhibition of Rhizopus melanin but not human melanin by targeting the fungal tyrosinase, and with an IC50 that are 9 times lower than the reference standard, kojic acid. Furthermore, the produced white spores were phagocytized easily and cleared faster from the lungs of infected immunocompetent mice and from the human macrophages when compared with wild-type spores. Collectively, the results suggested that the newly designed derivatives, particularly UOSC-2 can serve as promising candidate to overcome persistence mechanisms of fungal melanin production and hence make them accessible to host defenses.
Asunto(s)
Productos Biológicos/metabolismo , Melaninas/biosíntesis , Rhizopus/química , Activación Enzimática/efectos de los fármacos , Humanos , Melaninas/metabolismo , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Fagocitosis/fisiología , Pironas/farmacología , Relación Estructura-ActividadRESUMEN
Mucormycosis is a life-threatening infection with high mortality that occurs predominantly in immunocompromised patients. Manogepix (MGX) is a novel antifungal that targets Gwt1, a protein involved in an early step in the conserved glycosylphosphotidyl inositol (GPI) posttranslational modification pathway of surface proteins in eukaryotic cells. Inhibition of fungal inositol acylation by MGX results in pleiotropic effects, including inhibition of maturation of GPI-anchored proteins necessary for growth and virulence. MGX has been previously shown to have in vitro activity against some strains of Mucorales. Here, we assessed the in vivo activity of the prodrug fosmanogepix, currently in clinical development for the treatment of invasive fungal infections, against two Rhizopus arrhizus strains with high (4.0 µg/ml) and low (0.25 µg/ml) minimum effective concentration (MEC) values. In both invasive pulmonary infection models, treatment of mice with 78 mg/kg or 104 mg/kg fosmanogepix, along with 1-aminobenzotriazole to enhance the serum half-life of MGX in mice, significantly increased median survival time and prolonged overall survival by day 21 postinfection compared to placebo. In addition, administration of fosmanogepix resulted in a 1 to 2 log reduction in both lung and brain fungal burden. For the 104 mg/kg fosmanogepix dose, tissue clearance and survival were comparable to clinically relevant doses of isavuconazole (ISA), which is FDA approved for the treatment of mucormycosis. These results support continued development of fosmanogepix as a first-in-class treatment for invasive mucormycosis.
Asunto(s)
Antifúngicos , Mucormicosis , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Humanos , Isoxazoles , Ratones , Pruebas de Sensibilidad Microbiana , Mucormicosis/tratamiento farmacológico , Rhizopus , Rhizopus oryzaeRESUMEN
There are limited treatment options for immunosuppressed patients with lethal invasive fungal infections due to Fusarium and Scedosporium Manogepix (MGX; APX001A) is a novel antifungal that targets the conserved Gwt1 enzyme required for localization of glycosylphosphatidylinositol-anchored mannoproteins in fungi. We evaluated the in vitro activity of MGX and the efficacy of the prodrug fosmanogepix (APX001) in immunosuppressed murine models of hematogenously disseminated fusariosis and pulmonary scedosporiosis. The MGX minimum effective concentration (MEC) for Scedosporium isolates was 0.03 µg/ml and ranged from 0.015 to 0.03 µg/ml for Fusarium isolates. In the scedosporiosis model, treatment of mice with 78 mg/kg and 104 mg/kg of body weight fosmanogepix, along with 1-aminobenzotriazole (ABT) to enhance the serum half-life of MGX, significantly increased median survival time versus placebo from 7 days to 13 and 11 days, respectively. Furthermore, administration of 104 mg/kg fosmanogepix resulted in an â¼2-log10 reduction in lung, kidney, or brain conidial equivalents/gram tissue (CE). Similarly, in the fusariosis model, 78 mg/kg and 104 mg/kg fosmanogepix plus ABT enhanced median survival time from 7 days to 12 and 10 days, respectively. A 2- to 3-log10 reduction in kidney and brain CE was observed. In both models, reduction in tissue fungal burden was corroborated with histopathological data, with target organs showing reduced or no abscesses in fosmanogepix-treated mice. Survival and tissue clearance were comparable to a clinically relevant high dose of liposomal amphotericin B (10 to 15 mg/kg). Our data support the continued development of fosmanogepix as a first-in-class treatment for infections caused by these rare molds.
Asunto(s)
Aminopiridinas/farmacología , Antifúngicos/farmacología , Fusariosis/tratamiento farmacológico , Fusarium/efectos de los fármacos , Huésped Inmunocomprometido , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Isoxazoles/farmacología , Scedosporium/efectos de los fármacos , Aminopiridinas/sangre , Aminopiridinas/farmacocinética , Animales , Antifúngicos/sangre , Antifúngicos/farmacocinética , Disponibilidad Biológica , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/microbiología , Esquema de Medicación , Combinación de Medicamentos , Fusariosis/inmunología , Fusariosis/microbiología , Fusariosis/mortalidad , Fusarium/crecimiento & desarrollo , Fusarium/inmunología , Semivida , Humanos , Infecciones Fúngicas Invasoras/inmunología , Infecciones Fúngicas Invasoras/microbiología , Infecciones Fúngicas Invasoras/mortalidad , Isoxazoles/sangre , Isoxazoles/farmacocinética , Riñón/efectos de los fármacos , Riñón/inmunología , Riñón/microbiología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/microbiología , Masculino , Ratones , Ratones Endogámicos ICR , Pruebas de Sensibilidad Microbiana , Profármacos , Scedosporium/crecimiento & desarrollo , Scedosporium/inmunología , Análisis de Supervivencia , Triazoles/farmacologíaRESUMEN
The rise in multidrug-resistant (MDR) organisms portends a serious global threat to the health care system with nearly untreatable infectious diseases, including pneumonia and its often fatal sequelae, acute respiratory distress syndrome (ARDS) and sepsis. Gram-negative bacteria (GNB), including Acinetobacter baumannii, Pseudomonas aeruginosa, and carbapenemase-producing Klebsiella pneumoniae (CPKP), are among the World Health Organization's and National Institutes of Health's high-priority MDR pathogens for targeted development of new therapies. Here, we show that stabilizing the host's vasculature by genetic deletion or pharmacological inhibition of the small GTPase ADP-ribosylation factor 6 (ARF6) increases survival rates of mice infected with A. baumannii, P. aeruginosa, and CPKP. We show that the pharmacological inhibition of ARF6-GTP phenocopies endothelium-specific Arf6 disruption in enhancing the survival of mice with A. baumannii pneumonia, suggesting that inhibition is on target. Finally, we show that the mechanism of protection elicited by these small-molecule inhibitors acts by the restoration of vascular integrity disrupted by GNB lipopolysaccharide (LPS) activation of the TLR4/MyD88/ARNO/ARF6 pathway. By targeting the host's vasculature with small-molecule inhibitors of ARF6 activation, we circumvent microbial drug resistance and provide a potential alternative/adjunctive treatment for emerging and reemerging pathogens.
Asunto(s)
Acinetobacter baumannii , Infecciones por Bacterias Gramnegativas , Factor 6 de Ribosilación del ADP , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Bacterias Gramnegativas , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Ratones , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosaRESUMEN
Different pathogens share similar medical settings and rely on similar virulence strategies to cause infections. We have previously applied 3-D computational modeling and bioinformatics to discover novel antigens that target more than one human pathogen. Active and passive immunization with the recombinant N-terminus of Candida albicans Hyr1 (rHyr1p-N) protect mice against lethal candidemia. Here we determine that Hyr1p shares homology with cell surface proteins of the multidrug resistant Gram negative bacterium, Acinetobacter baumannii including hemagglutinin (FhaB) and outer membrane protein A (OmpA). The A. baumannii OmpA binds to C. albicans Hyr1p, leading to a mixed species biofilm. Deletion of HYR1, or blocking of Hyr1p using polyclonal antibodies, significantly reduce A. baumannii binding to C. albicans hyphae. Furthermore, active vaccination with rHyr1p-N or passive immunization with polyclonal antibodies raised against specific peptide motifs of rHyr1p-N markedly improve survival of diabetic or neutropenic mice infected with A. baumannii bacteremia or pneumonia. Antibody raised against one particular peptide of the rHyr1p-N sequence (peptide 5) confers majority of the protection through blocking A. baumannii invasion of host cells and inducing death of the bacterium by a putative iron starvation mechanism. Anti-Hyr1 peptide 5 antibodies also mitigate A. baumannii /C. albicans mixed biofilm formation in vitro. Consistent with our bioinformatic analysis and structural modeling of Hyr1p, anti-Hyr1p peptide 5 antibodies bound to A. baumannii FhaB, OmpA, and an outer membrane siderophore binding protein. Our studies highlight the concept of cross-kingdom vaccine protection against high priority human pathogens such as A. baumannii and C. albicans that share similar ecological niches in immunocompromised patients.
Asunto(s)
Proteínas Fúngicas/inmunología , Proteínas Fúngicas/farmacología , Acinetobacter/efectos de los fármacos , Infecciones por Acinetobacter/inmunología , Acinetobacter baumannii/metabolismo , Animales , Antibacterianos/farmacología , Anticuerpos Antibacterianos/inmunología , Bacterias/inmunología , Infecciones Bacterianas , Proteínas de la Membrana Bacteriana Externa/metabolismo , Vacunas Bacterianas/inmunología , Biopelículas , Candida albicans/metabolismo , Candida albicans/patogenicidad , Proteínas Fúngicas/metabolismo , Inmunización Pasiva , Inmunoterapia , Ratones , Ratones Endogámicos BALB C , VacunaciónRESUMEN
Invasive pulmonary aspergillosis (IPA) due to Aspergillus fumigatus is a serious fungal infection in the immunosuppressed patient population. Despite the introduction of new antifungal agents, mortality rates remain high, and new treatments are needed. The novel antifungal APX001A targets the conserved Gwt1 enzyme required for the localization of glycosylphosphatidylinositol-anchored mannoproteins in fungi. We evaluated the in vitro activity of APX001A against A. fumigatus and the in vivo activity of its prodrug APX001 in an immunosuppressed mouse model of IPA. APX001A inhibited the growth of A. fumigatus with a minimum effective concentration of 0.03 µg/ml. The use of 50 mg/kg 1-aminobenzotriazole (ABT), a suicide inhibitor of cytochrome P450 enzymes, enhanced APX001A exposures (area under the time-concentration curve [AUC]) 16- to 18-fold and enhanced serum half-life from â¼1 to 9 h, more closely mimicking human pharmacokinetics. We evaluated the efficacy of APX001 (with ABT) in treating murine IPA compared to posaconazole treatment. Treatment of mice with 78 mg/kg once daily (QD), 78 mg/kg twice daily, or 104 mg/kg QD APX001 significantly enhanced the median survival time and prolonged day 21 postinfection overall survival compared to the placebo. Furthermore, administration of APX001 resulted in a significant reduction in lung fungal burden (4.2 to 7.6 log10 conidial equivalents/g of tissue) versus the untreated control and resolved the infection, as judged by histopathological examination. The observed survival and tissue clearance were comparable to a clinically relevant posaconazole dose. These results warrant the continued development of APX001 as a broad-spectrum, first-in-class treatment of invasive fungal infections.
Asunto(s)
Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Aspergilosis Pulmonar Invasiva/tratamiento farmacológico , Isoxazoles/farmacología , Isoxazoles/uso terapéutico , Animales , Modelos Animales de Enfermedad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Huésped Inmunocomprometido , Aspergilosis Pulmonar Invasiva/microbiología , Masculino , Ratones , Ratones Endogámicos ICR , Pruebas de Sensibilidad Microbiana , Triazoles/uso terapéuticoRESUMEN
Galactomannan (GM) detection in biological samples has been shown to predict therapeutic response by azoles and polyenes. In a murine invasive pulmonary aspergillosis model, fosmanogepix or posaconazole treatment resulted in an â¼6- to 7-log reduction in conidial equivalents (CE)/g lung tissue after 96 h versus placebo. Changes in GM levels in BAL fluid and serum mirrored reductions in lung CE, with significant decreases seen after 96 h or 72 h for fosmanogepix or posaconazole, respectively (P < 0.02).
Asunto(s)
Antifúngicos/uso terapéutico , Biomarcadores/metabolismo , Aspergilosis Pulmonar Invasiva/tratamiento farmacológico , Aspergilosis Pulmonar Invasiva/metabolismo , Mananos/metabolismo , Animales , Aspergilosis/tratamiento farmacológico , Aspergilosis/metabolismo , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/patogenicidad , Galactosa/análogos & derivados , Huésped Inmunocomprometido , Pulmón/microbiología , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Triazoles/uso terapéuticoRESUMEN
Candida auris, a newly-emerging Candida species, is a serious global health threat due to its multi-drug resistant pattern, difficulty to diagnose, and the high mortality associated with its invasive and bloodstream infections. Unlike C. albicans, and C. dubliniensis which can form true hyphae, C. auris grows as yeast or pseudohyphae and is capable of developing biofilms. The reasons for the inability of C. auris to form true hyphae are currently unknown. Metabolites secreted by microorganisms, including Candida, are known as important factors in controlling morphogenesis and pathogenesis. Metabolic profiling of C. auris and C. albicans cultures was performed using gas chromatographyâ»mass spectrometry (GCâ»MS). Compared to C. albicans, C. auris secreted several hyphae-inhibiting metabolites, including phenylethyl, benzyl and isoamyl alcohols. Furthermore, a biofilm-forming metabolite-tyrosol-was identified. On the other hand, several other biomarkers identified from C. auris but not from C. albicans cultures may be produced by the organism to overcome the host immune system or control fungal adaptations, and hence ease its invasion and infections. The results from this study are considered as the first identification of C. auris metabolic activities as a step forward to understand its virulence mechanisms.