Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 45(2): 885-902, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36826002

RESUMEN

Onosma species (Boraginaceae) are well known as medicinal plants due to their wide range of pharmaceutical potential. The present study aims to investigate the anticancer (in vitro) and chemo-protective (in vivo) efficacies of Onosma mutabilis extract (OME) in the azoxymethane (AOM)-induced aberrant crypt foci (ACF) in rats. The in vitro antiproliferative effects of OME were determined on two human tumor cell lines (Caco-2 and HT-29) via MTT assay. The in vivo chemoprotective effects of OME were investigated by performing various biochemical analyses in serum and tissue homogenates of albino rats, along with determining oxidative stress biomarkers. Inflammatory biomarkers of colon, colonic gross morphology (by methylene blue), ACF formation, and colonic histopathology (H & E stain) were determined. The immunohistochemistry of colonic tissues was also assessed by Bax and Bcl-2 protein expression. The results showed that the antitumor activity of OME against Caco-2 and HT-29 colorectal cancer cells ranged between 22.28-36.55 µg/mL. OME supplementation caused a significant drop in the ACF values and improved the immunohistochemistry of the rats shown by up-regulation of Bax and down-regulation of Bcl-2 protein expressions. These outcomes reveal that O. mutabilis may have chemoprotective efficiency against AOM-induced colon cancer represented by the attenuation of ACF formation possibly through inhibition of free radicals, inflammation, and stimulation of the colon antioxidant armory (SOD, CAT, and GPx) and positive regulation of the Nrf2-Keap1 pathway.

2.
Molecules ; 28(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770672

RESUMEN

Recent research on dipeptidyl peptidase-IV (DPP-IV) inhibitors has made it feasible to treat type 2 diabetes mellitus (T2DM) with minimal side effects. Therefore, in the present investigation, we aimed to discover and develop some coumarin-based sulphonamides as potential DPP-IV inhibitors in light of the fact that molecular hybridization of many bioactive pharmacophores frequently results in synergistic activity. Each of the proposed derivatives was subjected to an in silico virtual screening, and those that met all of the criteria and had a higher binding affinity with the DPP-IV enzyme were then subjected to wet lab synthesis, followed by an in vitro biological evaluation. The results of the pre-ADME and pre-tox predictions indicated that compounds 6e, 6f, 6h, and 6m to 6q were inferior and violated the most drug-like criteria. It was observed that 6a, 6b, 6c, 6d, 6i, 6j, 6r, 6s, and 6t displayed less binding free energy (PDB ID: 5Y7H) than the reference inhibitor and demonstrated drug-likeness properties, hence being selected for wet lab synthesis and the structures being confirmed by spectral analysis. In the in vitro enzyme assay, the standard drug Sitagliptin had an IC50 of 0.018 µM in the experiment which is the most potent. All the tested compounds also displayed significant inhibition of the DPP-IV enzyme, but 6i and 6j demonstrated 10.98 and 10.14 µM IC50 values, respectively, i.e., the most potent among the synthesized compounds. Based on our findings, we concluded that coumarin-based sulphonamide derivatives have significant DPP-IV binding ability and exhibit optimal enzyme inhibition in an in vitro enzyme assay.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Inhibidores de la Dipeptidil-Peptidasa IV/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Simulación del Acoplamiento Molecular , Sulfonamidas/farmacología , Sulfonamidas/química , Dipeptidil Peptidasa 4/química , Pruebas de Enzimas
3.
Int J Nanomedicine ; 19: 1109-1124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344441

RESUMEN

Background: Liver cancer is the sixth most prevalent form of cancer and the second major cause of cancer-associated mortalities worldwide. Cancer nanotechnology has the ability to fundamentally alter cancer treatment, diagnosis, and detection. Objective: In this study, we explained the development of graphene oxide/polyethylene glycol/folic acid/brucine nanocomposites (GO/PEG/Bru-FA NCs) and evaluated their antimicrobial and anticancer effect on the liver cancer HepG2 cells. Methodology: The GO/PEG/Bru-FA NCs were prepared using the co-precipitation technique and characterized using various techniques. The cytotoxicity of the GO/PEG/Bru-FA NCs was tested against both liver cancer HepG2 and non-malignant Vero cells using an MTT assay. The antimicrobial activity of the GO/PEG/Bru-FA NCs was tested against several pathogens using the well diffusion technique. The effects of GO/PEG/Bru-FA NCs on endogenous ROS accumulation, apoptosis, and MMP levels were examined using corresponding fluorescent staining assays, respectively. The apoptotic protein expressions, such as Bax, Bcl-2, and caspases, were studied using the corresponding kits. Results: The findings of various characterization assays revealed the development of GO/PEG/Bru-FA NCs with face-centered spherical morphology and an agglomerated appearance with an average size of 197.40 nm. The GO/PEG/Bru-FA NCs treatment remarkably inhibited the growth of the tested pathogens. The findings of the MTT assay evidenced that the GO/PEG/Bru-FA NCs effectively reduced the HepG2 cell growth while not showing toxicity to the Vero cells. The findings of the fluorescent assay proved that the GO/PEG/Bru-FA NCs increased ROS generation, reduced MMP levels, and promoted apoptosis in the HepG2 cells. The levels of Bax, caspase-9, and -3 were increased, and Bcl-2 was reduced in the GO/PEG/Bru-FA NCs-treated HepG2 cells. Conclusion: The results of this work demonstrate that GO/PEG/Bru-FA NCs suppress viability and induce apoptosis in HepG2 cells, indicating their potential as an anticancer candidate.


Asunto(s)
Antiinfecciosos , Grafito , Neoplasias Hepáticas , Nanocompuestos , Estricnina/análogos & derivados , Animales , Chlorocebus aethiops , Humanos , Polietilenglicoles , Células Hep G2 , Ácido Fólico/metabolismo , Células Vero , Especies Reactivas de Oxígeno , Proteína X Asociada a bcl-2 , Neoplasias Hepáticas/tratamiento farmacológico , Línea Celular Tumoral
4.
iScience ; 27(6): 110016, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38883810

RESUMEN

West and South Asian populations profoundly influenced Eurasian genetic and cultural diversity. We investigate the genetic history of the Y chromosome haplogroup L1-M22, which, while prevalent in these regions, lacks in-depth study. Robust Bayesian analyses of 165 high-coverage Y chromosomes favor a West Asian origin for L1-M22 ∼20.6 thousand years ago (kya). Moreover, this haplogroup parallels the genome-wide genetic ancestry of hunter-gatherers from the Iranian Plateau and the Caucasus. We characterized two L1-M22 harboring population groups during the Early Holocene. One expanded with the West Asian Neolithic transition. The other moved to South Asia ∼8-6 kya but showed no expansion. This group likely participated in the spread of Dravidian languages. These South Asian L1-M22 lineages expanded ∼4-3 kya, coinciding with the Steppe ancestry introduction. Our findings advance the current understanding of Eurasian historical dynamics, emphasizing L1-M22's West Asian origin, associated population movements, and possible linguistic impacts.

5.
RSC Adv ; 14(27): 19400-19427, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38887636

RESUMEN

Chicory (Cichorium endivia L. divaricatum) is a renowned medicinal plant traditionally used for various ailments, yet the pharmacological potential of its roots, particularly in terms of antitumor activity, remains elusive. In the present study, we explore, for the first time, the metabolomic profile of ethanolic extract from Cichorium endivia roots (CIR) and further unveil its antiproliferative potential. The untargeted phytochemical analysis UPLC/T-TOF-MS/MS identified 131 metabolites in the CIR extract, covering acids, amino acids, flavonoids, alkaloids, nucleotides, and carbohydrates. The antiproliferative activity of the CIR extract was tested in 14 cancer cell lines, revealing significant cytotoxicity (IC50: 2.85-29.15 µg mL-1) and a high selectivity index. Among the cells examined, the CIR extract recorded the most potent antiproliferative activity and selectivity toward HepG2 and Panc-1 cells, with an IC50 of 2.85 µg mL-1 and 3.86 µg mL-1, respectively, and SI > 10. Insights into the mode of action of the antiproliferative activity revealed that CIR extract induces cell arrest in the S phase while diminishing cell distribution in the G0/G1 and G2/M phases in HepG-2 and Panc-1 cells. Flow cytometric and RT-PCR analysis revealed that the CIR extract significantly triggers apoptosis and modulates the expression of pro-apoptotic and anti-apoptotic genes. Furthermore, the CIR extract exhibited a pronounced anti-inflammatory activity, as evidenced by down-regulating key cytokines in LPS-induced RAW 264.7 cells and selectively inhibiting the COX-2 enzyme. Finally, the CIR extract showed a robust total antioxidant capacity, together with potent free radicals and metal scavenging properties, highlighting its role in alleviating oxidative stress. Taken together, this study highlights the multifaceted therapeutic potential of CIR extract as a natural-based antitumor supplement.

6.
Environ Sci Pollut Res Int ; 31(3): 4439-4452, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103135

RESUMEN

Herbal medicine is one of the most common fields explored for combating colon cancers, and Pimpinella anisum L. seeds (PAS) have been utilized widely as medicinal agents because of their increased essential oil (trans-anethole) contents. In this essence, our study investigates the toxic effect and chemoprotective potentials of PAS against azoxymethane (AOM)-induced colon cancer in rats. The toxicity trial for PAS conducted by clustering fifteen rats into three groups (five rats each): A, normal control had 10% Tween 20; B, ingested with 2 g/kg PAS; and C, supplemented with 4 g/kg PAS. The in vivo cancer trial was performed by using 30 rats (Sprague-Dawley) that were randomly adapted in five steel cages (six rats each): group A, normal controls received two subcutaneous injections of normal saline 0.09% and ingested orally 10% Tween 20; groups B-E, rats received two injections of 15 mg/kg of azoxymethane (AOM) subcutaneously in 2 weeks and treated orally with 10% Tween 20 (group B) or intraperitoneal injection of 5-fluorouracil (35 mg/kg) (group C), or orally given 200 mg/kg PAS (group D) and 400 mg/kg PAS (group E) for 8 weeks. After the scarification of rats, the colon tissues were dissected for gross and histopathological evaluations. The acute toxicity trial showed the absence of any toxic signs in rats even after 14 days of ingesting 4 g/kg of PAS. The chemoprotective experiment revealed significant inhibitory potentials (65.93%) of PAS (400 mg/kg) against aberrant crypto foci incidence that could be correlated with its positive modulation of the immunohistochemically proteins represented by a significant up-regulation of the Bax protein and a decrease of the Bcl-2 protein expressions in colon tissues. Furthermore, PAS-treated rats had notably lower oxidative stress in colon tissues evidenced by decreased MDA levels and increased antiradical defense enzymes (SOD, CAT, and GPx). The outcomes suggest 400 mg/kg PAS as a viable additive for the development of potential pharmaceuticals against colorectal cancer.


Asunto(s)
Neoplasias del Colon , Pimpinella , Ratas , Animales , Antioxidantes/metabolismo , Azoximetano/toxicidad , Azoximetano/uso terapéutico , Pimpinella/química , Ratas Sprague-Dawley , Polisorbatos , Neoplasias del Colon/inducido químicamente , Antiinflamatorios
7.
Drug Des Devel Ther ; 18: 3959-3986, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39252766

RESUMEN

Introduction: Pulmonary fibrosis (PF) and tissue remodeling can greatly impair pulmonary function and often lead to fatal outcomes. Methodology: In the present study, we explored a novel molecular interplay of long noncoding (Lnc) RNA CBR3-AS1/ miRNA-29/ FIZZ1 axis in moderating the inflammatory processes, immunological responses, and oxidative stress pathways in bleomycin (BLM)-induced lung fibrosis. Furthermore, we investigated the pharmacological potential of Trimetazidine (TMZ) in ameliorating lung fibrosis. Results: Our results revealed that the BLM-treated group exhibited a significant upregulation in the expression of epigenetic regulators, lncRNA CBR3-AS1 and FIZZ1, compared to the control group (P<0.0001), along with the downregulation of miRNA-29 expression. Furthermore, Correlation analysis showed a significant positive association between lnc CBR3-AS1 and FIZZ1 (R=0.7723, p<0.05) and a significant negative association between miRNA-29 and FIZZ1 (R=-0.7535, p<0.05), suggesting lnc CBR3-AS1 as an epigenetic regulator of FIZZ1 in lung fibrosis. BLM treatment significantly increased the expression of Notch, Jagged1, Smad3, TGFB1, and hydroxyproline. Interestingly, the administration of TMZ demonstrated the ability to attenuate the deterioration effects caused by BLM treatment, as indicated by biochemical and histological analyses. Our investigations revealed that the therapeutic potential of TMZ as an antifibrotic drug could be ascribed to its ability to directly target the epigenetic regulators lncRNA CBR3-AS1/ miRNA-29/ FIZZ1, which in turn resulted in the mitigation of lung fibrosis. Histological and immunohistochemical analyses further validated the potential antifibrotic effects of TMZ by mitigating the structural damage associated with fibrosis. Discussion: Taken together, our study showed for the first time the interplay between epigenetic lncRNAs CBR3-AS1 and miRNA-29 in lung fibrosis and demonstrated that FIZZ1 could be a downregulatory gene for lncRNA CBR3-AS1 and miRNA-29. Our key findings demonstrate that TMZ significantly reduces the expression of fibrotic, oxidative stress, immunomodulatory, and inflammatory markers, along with epigenetic regulators associated with lung fibrosis. This validates its potential as an effective antifibrotic agent by targeting the CBR3-AS1/miRNA-29/FIZZ1 axis.


Asunto(s)
Bleomicina , MicroARNs , Fibrosis Pulmonar , ARN Largo no Codificante , Trimetazidina , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Animales , Ratones , Trimetazidina/farmacología , Masculino , Ratones Endogámicos C57BL
8.
Appl Biochem Biotechnol ; 195(2): 905-918, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36227501

RESUMEN

Urolithiasis is a common urological disorder, which causes considerable morbidity in both genders at all age groups worldwide. Though treatment options such as diuretics and non-invasive techniques to disintegrate the deposits are available, but often they are found less effective in the clinics. In this work, we planned to investigate the ameliorative effects of daidzin against the ethylene glycol (EG)-induced urolithiasis in rats. The male albino rats were distributed into four groups (n = 6) as control (group I), urolithiasis induced by the administration of 0.75% EG (group II), urolithiasis induced rats treated with 50 mg/kg of daidzin (group III), and urolithiasis rats treated with standard drug 750 mg/kg of cystone (group IV). The urine volume, pH, and total protein in the urine were assessed. The activities of marker enzymes in both plasma and kidney tissues were analyzed using assay kits. The levels of kidney function markers such as calcium, oxalate, urea, creatinine, uric acid, magnesium, BUN, and phosphorous were estimated using assay kits. The status of antioxidants and inflammatory cytokines were also examined using kits. The renal tissues were examined by histopathological analysis. Our results revealed that the daidzin treatment effectively decreased the urine pH and protein level and increased the urine volume in the urolithiasis rats. Daidzin decreased the calcium, oxalate, uric acid, and urea, creatinine, and BUN levels and also improved the magnesium and phosphorus in the urolithiasis rats. The activities of AST, ALT, ALP, GGT, and LDH were effectively reduced by the daidzin in both serum and renal tissue. Daidzin also reduced the inflammatory marker and increased the antioxidant levels. Histopathology results also proved the therapeutic effects of daidzin. Together, our results displayed that daidzin is effective in the amelioration of EG-induced urolithiasis in rats.


Asunto(s)
Riñón , Urolitiasis , Femenino , Masculino , Ratas , Antioxidantes/metabolismo , Calcio/metabolismo , Creatinina , Glicol de Etileno/efectos adversos , Glicol de Etileno/metabolismo , Riñón/metabolismo , Magnesio/metabolismo , Oxalatos/efectos adversos , Oxalatos/metabolismo , Extractos Vegetales/farmacología , Urea , Ácido Úrico/metabolismo , Ácido Úrico/farmacología , Urolitiasis/inducido químicamente , Urolitiasis/tratamiento farmacológico , Urolitiasis/metabolismo , Animales
9.
Appl Biochem Biotechnol ; 195(2): 919-932, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36227500

RESUMEN

Scopoletin is a phenolic coumarin isolated from a variety of plants and was originally used to treat various diseases including arthritis as well as bone-related diseases. The goal of this study was to determine scopoletin's therapeutic potential in an animal model of myocardial infarction induced with ISO. There were five groups of albino male rats. Group I (control) animals were orally treated with olive oil. Group II (scopoletin) animals were pre-treated orally with a 50-mg dosage of scopoletin for 28 days. Group III (ISO-treated) animals were treated with 85 mg/kg of ISO subcutaneously for 2 consecutive days (29th and 30th day). Group IV (scopoletin and ISO) animals were pre-treated orally with 25 mg of scopoletin for 28 days before exposure to ISO. Group V (scopoletin and ISO) animals were pre-treated with 50 mg of scopoletin for 28 days before exposure to ISO. In the ISO-administered animals, a wider heart-to-body weight ratio, a higher heart weight, higher cardiac diagnostic markers, higher MDA levels and related antioxidant levels, inflammatory, and apoptotic markers were observed. Scopoletin pre-treatment with ISO (25 and 50 mg/kg b.wt) significantly reduced heart-to-body weight ratio, cardiac diagnostic markers, MDA, inflammatory markers, and apoptotic markers. Meantime, a pre-treatment with scopoletin increased the levels of antioxidant enzymes. Inflammation and necrosis were observed in the histopathology of heart tissue of ISO-treated animals and these histopathological conditions were reversed by scopoletin pretreatment. The antioxidant and anti-inflammatory properties of ISO-treated rats were shown to be increased by scopoletin, showing its therapeutic potential against cardiovascular diseases. Through the use of its antioxidant and anti-inflammatory properties, scopoletin exhibited anti-myocardial infarction properties. However, further preclinical studies will be required to demonstrate the mechanism of action of scopoletin involved in anti-myocardial infarction.


Asunto(s)
Antioxidantes , Infarto del Miocardio , Ratas , Animales , Isoproterenol/efectos adversos , Isoproterenol/metabolismo , Antioxidantes/metabolismo , Escopoletina/efectos adversos , Escopoletina/metabolismo , Miocardio/metabolismo , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico , Antiinflamatorios/farmacología , Peso Corporal , Estrés Oxidativo , Cardiotónicos/efectos adversos
10.
Appl Biochem Biotechnol ; 195(9): 5394-5408, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35960488

RESUMEN

The study examined the protective effects of swertiamarin on rats with experimentally induced myocardial infarction. Three to six week-old male albino Wistar rats were used in this study and experimental myocardial infarction (MI) was induced using isoproterenol. Our results showed that swertiamarin restored the alteration in heart weight, body weight, and heart weight/tibia length ratio of MI-induced rats to basal levels significantly (p < 0.05). Swertiamarin significantly (p < 0.05) restored the levels of cardiac pathophysiological marker creatine kinase (CKMB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine transaminase (ALT), and cardiac troponin I (cTn-1) to near normalcy in MI-induced rats. Levels of oxidative stress markers malondialdehyde (MDA), protein carbonyls (PC), and levels of Vitamin C and Vitamin E were significantly (p < 0.05) reverted to near basal levels in MI-induced rats by swertiamarin. Levels of the antioxidant glutathione (GSH) and antioxidant enzymes which include superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), and plasma total antioxidant capacity (TAC) were (p < 0.05) brought to near normalcy in MI-induced rats by swertiamarin. Levels of sodium (Na), potassium (k), and calcium (Ca) ATPases were significantly (p < 0.05) restored to near normalcy in MI-induced rats by swertiamarin. Status of pro-inflammatory cytokines including tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and histological aberrations were also significantly (p < 0.05) restored to near normalcy in MI-induced rats by swertiamarin. Together, our results concluded that swertiamarin exerts significant cardioprotective functions in experimental MI in rats.


Asunto(s)
Antioxidantes , Infarto del Miocardio , Ratas , Animales , Antioxidantes/metabolismo , Miocardio/metabolismo , Peroxidación de Lípido , Infarto del Miocardio/tratamiento farmacológico , Glucósidos Iridoides/farmacología , Glucósidos Iridoides/metabolismo , Ratas Wistar , Estrés Oxidativo , Glutatión/metabolismo , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
11.
Int J Biol Macromol ; 253(Pt 4): 126889, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37714232

RESUMEN

Gold nanoparticles have been broadly investigated as cancer diagnostic and therapeutic agents. Gold nanoparticles are a favorable drug delivery vehicle with their unique subcellular size and good biocompatibility. Chitosan, agarose, fucoidan, porphyran, carrageenan, ulvan and alginate are all examples of biologically active macromolecules. Since they are biocompatible, biodegradable, and irritant-free, they find extensive application in biomedical and macromolecules. The versatility of these compounds is enhanced because they are amenable to modification by functional groups like sulfation, acetylation, and carboxylation. In an eco-friendly preparation process, the biocompatibility and targeting of GNPs can be improved by functionalizing them with polysaccharides. This article provides an update on using carbohydrate-based GNPs in liver cancer treatment, imaging, and drug administration. Selective surface modification of several carbohydrate types and further biological uses of GNPs are focused on.


Asunto(s)
Neoplasias Hepáticas , Nanopartículas del Metal , Nanopartículas , Humanos , Oro , Polímeros , Nanopartículas del Metal/uso terapéutico , Carbohidratos , Neoplasias Hepáticas/tratamiento farmacológico
12.
Artículo en Inglés | MEDLINE | ID: mdl-37659050

RESUMEN

Pain management has been a severe public health issue throughout the world. Acute pain if not treated at the appropriate time can lead to chronic pain that can cause psychological and social distress. Nothing can be more rewarding than treating pain successfully for a physician. However, the use of chemical NSAIDs and opiate drugs has taken a toll on the patients with their unavoidable side effects. This study intends to explore the potential to treat pain by inhibiting nociception and inflammation with a safer, non-addictive, effective, and low-cost alternative agent from a natural source, visnagin. In vivo studies have been conducted using male Swiss albino mice as models for this research. Nociception was induced using different chemical and thermal stimuli such as acetic acid, glutamate, capsaicin, and formalin. To check for the anti-inflammatory properties, carrageenan was used to induce inflammation and the activity was assayed using peritoneal cavity leukocyte infiltration analysis and pro-inflammatory cytokine level comparison with the supplementation of visnagin at three different dosages. The findings of this study revealed that the visnagin treatment effectively attenuated the acetic acid-induced writhing response, glutamate-induced paw licking numbers, capsaicin-induced pain response, and formalin-induced biphasic licking incidences in the experimental mice models. Furthermore, the visnagin treatment remarkably suppressed the carrageenan-induced inflammation in mice, which is evident from the decreased leukocytes, mononuclear, and polymorphonuclear cell numbers in the mice. The levels of cytokines such as TNF-α, IL-1ß, and IL-6 were effectively reduced by the visnagin treatment in the experimental mice. The results of open field test proved that the visnagin showed a better locomotor movement in the experimental mice. These results provided evidence for the potential activity of the visnagin against inflammatory and nociceptive responses in the mice.

13.
Int J Biol Macromol ; 253(Pt 7): 127334, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37820908

RESUMEN

Our study produced GO-TiO2-chitosan-escin nanocomposites (GTCEnc), characterized them using physical and biological methods, and evaluated their potential as cancer treatment candidates. Standard protocols were used to produce GTCEnc. Nanocomposites are created using XRD, FTIR, UV-Vis, and PL spectroscopy analysis. The morphology and ultrastructure of nanocomposites were investigated using SEM and TEM. Nanocomposites containing TiO2, GO, chitosan, and escin nanostructures were characterized using diffraction, microscopy, and spectroscopy; the antimicrobial activity of GTCEnc was investigated. Various methods were used to test the anticancer activity of GTCEnc against COLO 205 cell lines, including MTT, EtBr/AO, DAPI, JC-1, Annexin-V/FITC, cell cycle analysis, and activation of pro-apoptotic markers, such as caspase-3, -8, and -9. The nanocomposites were cytotoxic to COLO 205 cells, with an IC50 of 22.68 µg/mL, but not to 293T cells. In cells treated with nanomaterials, cytotoxicity, nuclear damage, apoptosis induction, and free radical production were significantly increased. Our finding suggests that GTCEnc has potent anticancer and antibacterial activity in vitro because of its unique nanocomposite properties and antibacterial and anticancer activity in vitro. Additional research is required to understand the clinical efficacy of these nanocomposites.


Asunto(s)
Quitosano , Neoplasias del Colon , Grafito , Nanocompuestos , Humanos , Escina , Quitosano/farmacología , Quitosano/química , Titanio/farmacología , Titanio/química , Antibacterianos/química , Grafito/farmacología , Grafito/química , Neoplasias del Colon/tratamiento farmacológico , Nanocompuestos/química
14.
J Biomol Struct Dyn ; : 1-12, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37747078

RESUMEN

Globally, dengue (DENV) fever has appeared as the most widespread vector-borne disease, affecting more than 100 million individuals annually. No approved anti-DENV therapy or preventive vaccine is available yet. DENV NS3 protein is associated with protease activity and is essential for viral replication process within the host cell. NS2B is linked with NS3 protein as a cofactor. Hence, NS3/NS2B is a potential druggable target for developing inhibitors against dengue virus. In the present study, a dataset of Beta vulgaris L.-based natural compounds was developed. Virtual ligand screening of 30 phytochemicals was carried out to find novel inhibitors against the NS2B/NS3 protein. Spatial affinity, drug-likeness, and binding behaviors of selected phytochemicals were analyzed. Post-simulation analysis, including Principal Component Analysis (PCA), MMGBSA, and Co-relation analysis, was also performed to provide deep insight for elucidating protein-ligand complexes. This computer-aided screening scrutinized four potent phytochemicals, including betavulgaroside II, vitexin xyloside, epicatechin, and isovitexin2-O-xyloside inhibitors exhibiting optimal binding with viral NS3/NS2B protein. Our study brings novel scaffolds against DENV NS2B/NS3 of serotype-2 to act as lead molecules for further biological optimization. In future, this study will prompt the exploration and development of adjuvant anti-DENV therapy based on natural compounds.Communicated by Ramaswamy H. Sarma.

15.
Int J Biol Macromol ; 253(Pt 2): 126581, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37652322

RESUMEN

Carbohydrate polymers-based surface-modified nano-delivery systems have gained significant attention in recent years for enhancing targeted delivery to colon cancer. These systems leverage carbohydrate polymers' unique properties, such as biocompatibility, biodegradability, and controlled release. These properties make them suitable candidates for drug delivery applications. Nano-delivery systems loaded with bioactive compounds are well-studied for targeted colorectal cancer delivery. However, those drugs' target reach is still limited in various nano-delivery systems. To overcome this limitation, surface modification of nanoparticles with carbohydrate polymers like chitosan, pectin, alginate, and guar gum showed enhanced target-reaching capacity along with enhanced anticancer efficacy. Recently, a chitosan-decorated PLGA nanoparticle was constructed with tannic acid and vitamin E and showed long-term release of specific targets along with higher anticancer efficacy. Similarly, Chitosan-conjugated glucuronic acid-coated silica nanoparticles loaded with capecitabine were studied against colon cancer and found to be the pH-responsive controlled release of capecitabine with higher anticancer efficacy. Surface-modified carbohydrate polymers have promising potential for improving colon cancer target delivery. By leveraging the unique properties of these polymers, such as surface modification, pH responsiveness, mucoadhesion, controlled drug release, and combination therapy, researchers are working toward developing more effective and targeted treatment strategies for colon cancer.


Asunto(s)
Quitosano , Neoplasias del Colon , Humanos , Polímeros/química , Sistema de Administración de Fármacos con Nanopartículas , Preparaciones de Acción Retardada , Quitosano/química , Capecitabina , Neoplasias del Colon/tratamiento farmacológico
16.
Front Chem ; 11: 1231030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601910

RESUMEN

Being the sixth most diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide, liver cancer is considered as a serious disease with a high prevalence and poor prognosis. Current anticancer drugs for liver cancer have drawbacks, such as limited efficacy in later stages of the disease, toxicity to healthy cells, and the potential for drug resistance. There is ample evidence that coumarin-based compounds are potent anticancer agents, with numerous analogues currently being investigated in preclinical and clinical studies. The current study aimed to explore the antitumor potency of a new class of 8-methoxycoumarin-3-carboxamides against liver cancer. Toward this aim, we have designed, synthesized, and characterized a new set of N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamide analogues. The assessment of antitumor activity revealed that the synthesized class of compounds possesses substantial cytotoxicity toward Hep-G2 cells when compared to staurosporine, without significant impact on normal cells. Out of the synthesized compounds, compound 7 demonstrated the most potent cytotoxic effect against Hep-G2 cells with an IC50 of 0.75 µM, which was more potent than the drug staurosporine (IC50 = 8.37 µM). The investigation into the mechanism behind the antiproliferative activity of compound 7 revealed that it interferes with DNA replication and induces DNA damage, leading to cell cycle arrest as demonstrated by a significant decrease in the percentage of cells in the G1 and G2/M phases, along with an increase in the percentage of cells in the S phase. Flow cytometric analysis further revealed that compound 7 has the ability to trigger programmed cell death by inducing necrosis and apoptosis in HepG-2 cells. Further explorations into the mechanism of action demonstrated that compound 7 displays a potent dual-inhibitory activity toward cytochrome P450 and vascular endothelial growth factor receptor-2 (VEGFR-2) proteins, as compared to sorafenib drug. Further, detailed computational studies revealed that compound 7 displays a considerable binding affinity toward the binding cavity of VEGFR2 and CYP450 proteins. Taken together, our findings indicate that the newly synthesized class of compounds, particularly compound 7, could serve as a promising scaffold for the development of highly effective anticancer agents against liver cancer.

17.
Front Pharmacol ; 14: 1113966, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909191

RESUMEN

Autism is complex and multifactorial, and is one of the fastest growing neurodevelopmental disorders. Canagliflozin (Cana) is an antidiabetic drug that exhibits neuroprotective properties in various neurodegenerative syndromes. This study investigated the possible protective effect of Cana against the valproic acid (VPA)-induced model of autism. VPA was injected subcutaneously (SC) into rat pups at a dose of 300 mg/kg, twice daily on postnatal day-2 (PD-2) and PD-3, and once on PD-4 to induce an autism-like syndrome. Graded doses of Cana were administered (5 mg/kg, 7.5 mg/kg, and 10 mg/kg, P.O.) starting from the first day of VPA injections and continued for 21 days. At the end of the experiment, behavioral tests and histopathological alterations were assessed. In addition, the gene expression of peroxisome proliferator-activated receptor γ (PPAR γ), lactate dehydrogenase A (LDHA), pyruvate dehydrogenase kinase (PDK), cellular myeloctomatosis (c-Myc) with protein expression of glucose transporter-1 (GLUT-1), phosphatase and tensin homolog (PTEN), and level of acetylcholine (ACh) were determined. Treatment with Cana significantly counteracted histopathological changes in the cerebellum tissues of the brain induced by VPA. Cana (5 mg/kg, 7.5 mg/kg, and 10 mg/kg) improved sociability and social preference, enhanced stereotypic behaviors, and decreased hyperlocomotion activity, in addition to its significant effect on the canonical Wnt/ß-catenin pathway via the downregulation of gene expression of LDHA (22%, 64%, and 73% in cerebellum tissues with 51%, 60%, and 75% in cerebrum tissues), PDK (27%, 50%, and 67% in cerebellum tissues with 34%, 66%, and 77% in cerebrum tissues), c-Myc (35%, 44%, and 72% in cerebellum tissues with 19%, 58%, and 79% in cerebrum tissues), protein expression of GLUT-1 (32%, 48%, and 49% in cerebellum tissues with 30%, 50%, and 54% in cerebrum tissues), and elevating gene expression of PPAR-γ (2, 3, and 4 folds in cerebellum tissues with 1.5, 3, and 9 folds in cerebrum tissues), protein expression of PTEN (2, 5, and 6 folds in cerebellum tissues with 6, 6, and 10 folds in cerebrum tissues), and increasing the ACh levels (4, 5, and 7 folds) in brain tissues. The current study confirmed the ameliorating effect of Cana against neurochemical and behavioral alterations in the VPA-induced model of autism in rats.

18.
Rev Recent Clin Trials ; 18(3): 181-205, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37069722

RESUMEN

The battle against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) associated coronavirus disease 2019 (COVID-19) is continued worldwide by administering firsttime emergency authorized novel mRNA-based and conventional vector-antigen-based anti- COVID-19 vaccines to prevent further transmission of the virus as well as to reduce the severe respiratory complications of the infection in infected individuals. However; the emergence of numerous SARS-CoV-2 variants is of concern, and the identification of certain breakthrough and reinfection cases in vaccinated individuals as well as new cases soaring in some low-to-middle income countries (LMICs) and even in some resource-replete nations have raised concerns that only vaccine jabs would not be sufficient to control and vanquishing the pandemic. Lack of screening for asymptomatic COVID-19-infected subjects and inefficient management of diagnosed COVID-19 infections also pose some concerns and the need to fill the gaps among policies and strategies to reduce the pandemic in hospitals, healthcare services, and the general community. For this purpose, the development and deployment of rapid screening and diagnostic procedures are prerequisites in premises with high infection rates as well as to screen mass unaffected COVID-19 populations. Novel methods of variant identification and genome surveillance studies would be an asset to minimize virus transmission and infection severity. The proposition of this pragmatic review explores current paradigms for the screening of SARS-CoV-2 variants, identification, and diagnosis of COVID-19 infection, and insights into the late-stage development of new methods to better understand virus super spread variants and genome surveillance studies to predict pandemic trajectories.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , SARS-CoV-2 , Vacunas contra la COVID-19 , Pandemias/prevención & control
19.
Biol Trace Elem Res ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37770673

RESUMEN

Boric acid (BA) is a naturally occurring weak Lewis acid containing boron, oxygen, and hydrogen elements that can be found in water, soil, and plants. Because of its numerous biological potentials including anti-proliferation actions, the present investigates the chemopreventive possessions of BA on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in rats. Thirty laboratory rats were divided into 5 groups: negative control (A) received two subcutaneous inoculations of normal saline and nourished on 10% Tween 20; groups B-E had two injections of 15 mg/kg azoxymethane followed by ingestion of 10% Tween 20 (B, cancer control), inoculation with intraperitoneal 35 mg/kg 5-fluorouracil injection (C, reference group), or ingested with boric acid 30 mg/kg (D) and 60 mg/kg (E). The gross morphology results showed significantly increased total colonic ACF in cancer controls, while BA treatment caused a significant reduction of ACF values. Histopathological evaluation of colons from cancer controls showed bizarrely elongated nuclei, stratified cells, and higher depletion of the submucosal glands than that of BA-treated groups. Boric acid treatment up-surged the pro-apoptotic (Bax) expression and reduced anti-apoptotic (Bcl-2) protein expressions. Moreover, BA ingestion caused upregulation of antioxidant enzymes (GPx, SOD, CAT), and lowered MDA contents in colon tissue homogenates. Boric acid-treated rats had significantly lower pro-inflammatory cytokines (TNF-α and IL-6) and higher anti-inflammatory cytokines (IL-10) based on serum analysis. The colorectal cancer attenuation by BA is shown by the reduced ACF numbers, anticipated by its regulatory potentials on the apoptotic proteins, antioxidants, and inflammatory cytokines originating from AOM-induced oxidative damage.

20.
BMC Complement Med Ther ; 23(1): 283, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559022

RESUMEN

BACKGROUND: The Biarum species (Kardeh) has been consumed as a traditional functional food and medicine for decades. The current study investigates the phytochemistry, in-vitro and in-vivo bioactivities of methanol extracts of B. bovei. METHODS: The Gas-chromatography mass spectrophotometer (GS/GS-MS) was used to analyze the phytochemical profile of the methanol extracts of B. bovei leaves and corms. The B. bovei extracts (BBE) were also investigated for in-vitro antioxidant, anticancer, and in-vivo acute toxicity (2000 mg/kg) activities. RESULTS: The chemical profiling of BBE revealed mainly fatty acids, phytosterol, alcohols, and hydrocarbon compounds. Namely, Linoleic acid, eliadic acid, palmitic acid, 22,23-dihydro-stigmasterol, and campesterol. The antioxidant activity of BBE ranged between 0.24-3.85 µg TE/mL based on different assays. The extracts also exhibited significant anticancer activity against DU-145 (prostate cancer cells), MCF-7 (human breast adenocarcinoma), and HeLa (human cervical cancer) cell lines with IC50 values ranging between 22.73-44.24 µg/mL. Rats fed on 2000 mg/kg dosage of BBE showed absence of any toxicological sign or serum biochemical changes. CONCLUSION: The detected phytochemicals and bioactivities of BBE scientifically backup the folkloric usage as an important source of nutraceuticals and alternative medicine for oxidative stress-related diseases and carcinogenesis inhibition.


Asunto(s)
Antioxidantes , Extractos Vegetales , Masculino , Ratas , Humanos , Animales , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/toxicidad , Extractos Vegetales/química , Metanol , Células HeLa , Fitoquímicos/farmacología , Fitoquímicos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA