Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chembiochem ; : e202400398, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030818

RESUMEN

Marine-derived fungi have emerged as a source for novel metabolites with a broad range of bioactivities. However, accessing the full potential of fungi under standard laboratory conditions remains challenging. LC-MS-based metabolomics in combination with varied culture conditions is a fast and powerful tool to detect new metabolites. Here, three developmental forms of the marine-derived fungus Aspergillus alliaceus were analyzed and 14 fungal metabolites, including new brominated polyketides (11-14) were isolated. Structure elucidation relied mainly on 1D and 2D NMR techniques and was supported by low- and high-resolution mass spectrometry and DFT-based computations. We sequenced the A. alliaceus genome, identified the bianthrone-producing biosynthetic gene cluster, and conducted expression analysis on genes involved in sexual development and biosynthesis. The NCI-60 cell line panel revealed selective in vitro activity against triple-negative breast cancer (TNBC) for the halogenated allianthrones and their full anti-proliferative and cytotoxic effects were evaluated in five TNBC cell lines.

2.
J Am Chem Soc ; 145(41): 22361-22365, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37813821

RESUMEN

Biosynthetic modifications of the 6/10-bicyclic hydrocarbon skeletons of the eunicellane family of diterpenoids are unknown. We explored the biosynthesis of a bacterial trans-eunicellane natural product, albireticulone A (3), and identified a novel isomerase that catalyzes cryptic isomerization in the biosynthetic pathway. We also assigned functions of two cytochromes P450 that oxidize the eunicellane skeleton, one of which was a naturally evolved non-functional P450 that, when genetically repaired, catalyzes allylic oxidation. Finally, we described the chemical susceptibility of the trans-eunicellane skeleton to undergo Cope rearrangement to yield inseparable atropisomers.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Diterpenos , Isomerismo , Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/metabolismo , Oxidación-Reducción , Bacterias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA