Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(6): 1375-1383, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150618

RESUMEN

Recent studies of the tumor genome seek to identify cancer pathways as groups of genes in which mutations are epistatic with one another or, specifically, "mutually exclusive." Here, we show that most mutations are mutually exclusive not due to pathway structure but to interactions with disease subtype and tumor mutation load. In particular, many cancer driver genes are mutated preferentially in tumors with few mutations overall, causing mutations in these cancer genes to appear mutually exclusive with numerous others. Researchers should view current epistasis maps with caution until we better understand the multiple cause-and-effect relationships among factors such as tumor subtype, positive selection for mutations, and gross tumor characteristics including mutational signatures and load.


Asunto(s)
Epistasis Genética/genética , Genes Relacionados con las Neoplasias/genética , Neoplasias/genética , Algoritmos , Biología Computacional/métodos , Epistasis Genética/fisiología , Genes Relacionados con las Neoplasias/fisiología , Humanos , Modelos Genéticos , Mutación/genética , Oncogenes/genética
2.
Cell ; 177(3): 572-586.e22, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30955884

RESUMEN

Drug resistance and relapse remain key challenges in pancreatic cancer. Here, we have used RNA sequencing (RNA-seq), chromatin immunoprecipitation (ChIP)-seq, and genome-wide CRISPR analysis to map the molecular dependencies of pancreatic cancer stem cells, highly therapy-resistant cells that preferentially drive tumorigenesis and progression. This integrated genomic approach revealed an unexpected utilization of immuno-regulatory signals by pancreatic cancer epithelial cells. In particular, the nuclear hormone receptor retinoic-acid-receptor-related orphan receptor gamma (RORγ), known to drive inflammation and T cell differentiation, was upregulated during pancreatic cancer progression, and its genetic or pharmacologic inhibition led to a striking defect in pancreatic cancer growth and a marked improvement in survival. Further, a large-scale retrospective analysis in patients revealed that RORγ expression may predict pancreatic cancer aggressiveness, as it positively correlated with advanced disease and metastasis. Collectively, these data identify an orthogonal co-option of immuno-regulatory signals by pancreatic cancer stem cells, suggesting that autoimmune drugs should be evaluated as novel treatment strategies for pancreatic cancer patients.


Asunto(s)
Adenocarcinoma/patología , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/patología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Diferenciación Celular , Epigénesis Genética , Biblioteca de Genes , Humanos , Ratones , Ratones Noqueados , Ratones SCID , Células Madre Neoplásicas/citología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina-10/antagonistas & inhibidores , Receptores de Interleucina-10/genética , Receptores de Interleucina-10/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transcriptoma , Células Tumorales Cultivadas
3.
Cell ; 173(7): 1562-1565, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29906441

RESUMEN

A major ambition of artificial intelligence lies in translating patient data to successful therapies. Machine learning models face particular challenges in biomedicine, however, including handling of extreme data heterogeneity and lack of mechanistic insight into predictions. Here, we argue for "visible" approaches that guide model structure with experimental biology.


Asunto(s)
Biología Computacional/métodos , Aprendizaje Automático , Algoritmos , Investigación Biomédica
4.
Cell ; 174(3): 505-520, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30053424

RESUMEN

Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.


Asunto(s)
Mapeo Cromosómico/métodos , Trastornos del Neurodesarrollo/genética , Biología de Sistemas/métodos , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Neurobiología/métodos , Neuropsiquiatría
5.
Cell ; 171(6): 1272-1283.e15, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29107334

RESUMEN

MHC-I molecules expose the intracellular protein content on the cell surface, allowing T cells to detect foreign or mutated peptides. The combination of six MHC-I alleles each individual carries defines the sub-peptidome that can be effectively presented. We applied this concept to human cancer, hypothesizing that oncogenic mutations could arise in gaps in personal MHC-I presentation. To validate this hypothesis, we developed and applied a residue-centric patient presentation score to 9,176 cancer patients across 1,018 recurrent oncogenic mutations. We found that patient MHC-I genotype-based scores could predict which mutations were more likely to emerge in their tumor. Accordingly, poor presentation of a mutation across patients was correlated with higher frequency among tumors. These results support that MHC-I genotype-restricted immunoediting during tumor formation shapes the landscape of oncogenic mutations observed in clinically diagnosed tumors and paves the way for predicting personal cancer susceptibilities from knowledge of MHC-I genotype.


Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Mutación , Neoplasias/inmunología , Línea Celular Tumoral , Simulación por Computador , Femenino , Células HeLa , Humanos , Masculino , Monitorización Inmunológica , Proteoma
6.
Cell ; 157(3): 534-8, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24766803

RESUMEN

Modern genomics is very efficient at mapping genes and gene networks, but how to transform these maps into predictive models of the cell remains unclear. Recent progress in computer science, embodied by intelligent agents such as Siri, inspires an approach for moving from networks to multiscale models able to predict a range of cellular phenotypes and answer biological questions.


Asunto(s)
Inteligencia Artificial , Ontologías Biológicas , Biología Celular , Modelos Biológicos , Biología Celular/tendencias , Redes Reguladoras de Genes , Procesamiento de Lenguaje Natural , Biología de Sistemas
7.
Mol Cell ; 81(12): 2656-2668.e8, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33930332

RESUMEN

A deficient interferon (IFN) response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated as a determinant of severe coronavirus disease 2019 (COVID-19). To identify the molecular effectors that govern IFN control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human IFN-stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors inhibiting viral entry, RNA binding proteins suppressing viral RNA synthesis, and a highly enriched cluster of endoplasmic reticulum (ER)/Golgi-resident ISGs inhibiting viral assembly/egress. These included broad-acting antiviral ISGs and eight ISGs that specifically inhibited SARS-CoV-2 and SARS-CoV-1 replication. Among the broad-acting ISGs was BST2/tetherin, which impeded viral release and is antagonized by SARS-CoV-2 Orf7a protein. Overall, these data illuminate a set of ISGs that underlie innate immune control of SARS-CoV-2/SARS-CoV-1 infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.


Asunto(s)
Antígenos CD/genética , Interacciones Huésped-Patógeno/genética , Factores Reguladores del Interferón/genética , Interferón Tipo I/genética , SARS-CoV-2/genética , Proteínas Virales/genética , Animales , Antígenos CD/química , Antígenos CD/inmunología , Sitios de Unión , Línea Celular Tumoral , Chlorocebus aethiops , Retículo Endoplásmico/genética , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/virología , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Regulación de la Expresión Génica , Aparato de Golgi/genética , Aparato de Golgi/inmunología , Aparato de Golgi/virología , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Factores Reguladores del Interferón/clasificación , Factores Reguladores del Interferón/inmunología , Interferón Tipo I/inmunología , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/inmunología , Transducción de Señal , Células Vero , Proteínas Virales/química , Proteínas Virales/inmunología , Internalización del Virus , Liberación del Virus/genética , Liberación del Virus/inmunología , Replicación Viral/genética , Replicación Viral/inmunología
8.
Cell ; 151(6): 1161-2, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23217702

RESUMEN

An accurate prediction of how extrinsic stimuli influence changes in gene expression has been challenging. In this issue, Nagano and colleagues successfully model genome-wide mRNA expression changes under variable environmental conditions in rice, raising hopes that scientists will soon be able to predict genome-wide transcriptional responses in a variety of organisms in uncontrolled real-world settings.

9.
Cell ; 148(3): 543-55, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22304920

RESUMEN

The transcription factor ATF2 elicits oncogenic activities in melanoma and tumor suppressor activities in nonmalignant skin cancer. Here, we identify that ATF2 tumor suppressor function is determined by its ability to localize at the mitochondria, where it alters membrane permeability following genotoxic stress. The ability of ATF2 to reach the mitochondria is determined by PKCε, which directs ATF2 nuclear localization. Genotoxic stress attenuates PKCε effect on ATF2; enables ATF2 nuclear export and localization at the mitochondria, where it perturbs the HK1-VDAC1 complex; increases mitochondrial permeability; and promotes apoptosis. Significantly, high levels of PKCε, as seen in melanoma cells, block ATF2 nuclear export and function at the mitochondria, thereby attenuating apoptosis following exposure to genotoxic stress. In melanoma tumor samples, high PKCε levels associate with poor prognosis. Overall, our findings provide the framework for understanding how subcellular localization enables ATF2 oncogenic or tumor suppressor functions.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Apoptosis , Melanoma/metabolismo , Mitocondrias/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Línea Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citosol/metabolismo , Daño del ADN , Fibroblastos/metabolismo , Hexoquinasa/metabolismo , Humanos , Pronóstico , Transporte de Proteínas , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
10.
Nature ; 600(7889): 536-542, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819669

RESUMEN

The cell is a multi-scale structure with modular organization across at least four orders of magnitude1. Two central approaches for mapping this structure-protein fluorescent imaging and protein biophysical association-each generate extensive datasets, but of distinct qualities and resolutions that are typically treated separately2,3. Here we integrate immunofluorescence images in the Human Protein Atlas4 with affinity purifications in BioPlex5 to create a unified hierarchical map of human cell architecture. Integration is achieved by configuring each approach as a general measure of protein distance, then calibrating the two measures using machine learning. The map, known as the multi-scale integrated cell (MuSIC 1.0), resolves 69 subcellular systems, of which approximately half are to our knowledge undocumented. Accordingly, we perform 134 additional affinity purifications and validate subunit associations for the majority of systems. The map reveals a pre-ribosomal RNA processing assembly and accessory factors, which we show govern rRNA maturation, and functional roles for SRRM1 and FAM120C in chromatin and RPS3A in splicing. By integration across scales, MuSIC increases the resolution of imaging while giving protein interactions a spatial dimension, paving the way to incorporate diverse types of data in proteome-wide cell maps.


Asunto(s)
Cromosomas , Proteoma , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Cromatina/genética , Cromosomas/metabolismo , Humanos , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteoma/metabolismo , ARN Ribosómico , Proteínas de Unión al ARN/genética
11.
Cell ; 144(6): 860-3, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21414478

RESUMEN

A major difficulty in the analysis of complex biological systems is dealing with the low signal-to-noise inherent to nearly all large biological datasets. We discuss powerful bioinformatic concepts for boosting signal-to-noise through external knowledge incorporated in processing units we call filters and integrators. These concepts are illustrated in four landmark studies that have provided model implementations of filters, integrators, or both.


Asunto(s)
Procesamiento de Señales Asistido por Computador , Algoritmos , Enfermedad/genética , Redes Reguladoras de Genes , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Proteínas/metabolismo , Transducción de Señal
12.
Mol Cell ; 71(6): 882-895, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241605

RESUMEN

Age-associated changes to the mammalian DNA methylome are well documented and thought to promote diseases of aging, such as cancer. Recent studies have identified collections of individual methylation sites whose aggregate methylation status measures chronological age, referred to as the DNA methylation clock. DNA methylation may also have value as a biomarker of healthy versus unhealthy aging and disease risk; in other words, a biological clock. Here we consider the relationship between the chronological and biological clocks, their underlying mechanisms, potential consequences, and their utility as biomarkers and as targets for intervention to promote healthy aging and longevity.


Asunto(s)
Envejecimiento/genética , Senescencia Celular/genética , Metilación de ADN/genética , Animales , Relojes Biológicos/genética , Senescencia Celular/fisiología , Islas de CpG/genética , Epigénesis Genética/genética , Humanos , Longevidad/genética
13.
Mol Cell ; 69(2): 321-333.e3, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29351850

RESUMEN

We have developed a highly parallel strategy, systematic gene-to-phenotype arrays (SGPAs), to comprehensively map the genetic landscape driving molecular phenotypes of interest. By this approach, a complete yeast genetic mutant array is crossed with fluorescent reporters and imaged on membranes at high density and contrast. Importantly, SGPA enables quantification of phenotypes that are not readily detectable in ordinary genetic analysis of cell fitness. We benchmark SGPA by examining two fundamental biological phenotypes: first, we explore glucose repression, in which SGPA identifies a requirement for the Mediator complex and a role for the CDK8/kinase module in regulating transcription. Second, we examine selective protein quality control, in which SGPA identifies most known quality control factors along with U34 tRNA modification, which acts independently of proteasomal degradation to limit misfolded protein production. Integration of SGPA with other fluorescent readouts will enable genetic dissection of a wide range of biological pathways and conditions.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Quinasa 8 Dependiente de Ciclina/genética , Redes Reguladoras de Genes , Genotipo , Complejo Mediador/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Mol Cell ; 69(2): 306-320.e4, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29351849

RESUMEN

Endoplasmic reticulum (ER)-associated degradation (ERAD) removes misfolded proteins from the ER membrane and lumen by the ubiquitin-proteasome pathway. Retrotranslocation of ubiquitinated substrates to the cytosol is a universal feature of ERAD that requires the Cdc48 AAA-ATPase. Despite intense efforts, the mechanism of ER exit, particularly for integral membrane (ERAD-M) substrates, has remained unclear. Using a self-ubiquitinating substrate (SUS), which undergoes normal retrotranslocation independently of known ERAD factors, and the new SPOCK (single plate orf compendium kit) micro-library to query all yeast genes, we found the rhomboid derlin Dfm1 was required for retrotranslocation of both HRD and DOA ERAD pathway integral membrane substrates. Dfm1 recruited Cdc48 to the ER membrane with its unique SHP motifs, and it catalyzed substrate extraction through its conserved rhomboid motifs. Surprisingly, dfm1Δ can undergo rapid suppression, restoring wild-type ERAD-M. This unexpected suppression explained earlier studies ruling out Dfm1, and it revealed an ancillary ERAD-M retrotranslocation pathway requiring Hrd1.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteínas de la Membrana/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteína que Contiene Valosina/metabolismo
15.
Mol Cell ; 69(4): 699-708.e7, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29452643

RESUMEN

The metabolic pathways fueling tumor growth have been well characterized, but the specific impact of transforming events on network topology and enzyme essentiality remains poorly understood. To this end, we performed combinatorial CRISPR-Cas9 screens on a set of 51 carbohydrate metabolism genes that represent glycolysis and the pentose phosphate pathway (PPP). This high-throughput methodology enabled systems-level interrogation of metabolic gene dispensability, interactions, and compensation across multiple cell types. The metabolic impact of specific combinatorial knockouts was validated using 13C and 2H isotope tracing, and these assays together revealed key nodes controlling redox homeostasis along the KEAP-NRF2 signaling axis. Specifically, targeting KEAP1 in combination with oxidative PPP genes mitigated the deleterious effects of these knockouts on growth rates. These results demonstrate how our integrated framework, combining genetic, transcriptomic, and flux measurements, can improve elucidation of metabolic network alterations and guide precision targeting of metabolic vulnerabilities based on tumor genetics.


Asunto(s)
Sistemas CRISPR-Cas , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Redes y Vías Metabólicas , Factor 2 Relacionado con NF-E2/metabolismo , Transcriptoma , Glucólisis , Células HeLa , Homeostasis , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/genética , Oxidación-Reducción , Vía de Pentosa Fosfato , Transducción de Señal
16.
Bioinformatics ; 40(Suppl 1): i160-i168, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940147

RESUMEN

MOTIVATION: Predicting cancer drug response requires a comprehensive assessment of many mutations present across a tumor genome. While current drug response models generally use a binary mutated/unmutated indicator for each gene, not all mutations in a gene are equivalent. RESULTS: Here, we construct and evaluate a series of predictive models based on leading methods for quantitative mutation scoring. Such methods include VEST4 and CADD, which score the impact of a mutation on gene function, and CHASMplus, which scores the likelihood a mutation drives cancer. The resulting predictive models capture cellular responses to dabrafenib, which targets BRAF-V600 mutations, whereas models based on binary mutation status do not. Performance improvements generalize to other drugs, extending genetic indications for PIK3CA, ERBB2, EGFR, PARP1, and ABL1 inhibitors. Introducing quantitative mutation features in drug response models increases performance and mechanistic understanding. AVAILABILITY AND IMPLEMENTATION: Code and example datasets are available at https://github.com/pgwall/qms.


Asunto(s)
Antineoplásicos , Mutación , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Imidazoles/farmacología , Oximas/farmacología , Biología Computacional/métodos
17.
Bioinformatics ; 40(Suppl 2): ii105-ii110, 2024 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-39230695

RESUMEN

The data deluge in biology calls for computational approaches that can integrate multiple datasets of different types to build a holistic view of biological processes or structures of interest. An emerging paradigm in this domain is the unsupervised learning of data embeddings that can be used for downstream clustering and classification tasks. While such approaches for integrating data of similar types are becoming common, there is scarcer work on consolidating different data modalities such as network and image information. Here, we introduce DICE (Data Integration through Contrastive Embedding), a contrastive learning model for multi-modal data integration. We apply this model to study the subcellular organization of proteins by integrating protein-protein interaction data and protein image data measured in HEK293 cells. We demonstrate the advantage of data integration over any single modality and show that our framework outperforms previous integration approaches. Availability: https://github.com/raminass/protein-contrastive Contact: raminass@gmail.com.


Asunto(s)
Biología Computacional , Humanos , Células HEK293 , Biología Computacional/métodos , Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo , Proteínas/química , Aprendizaje Automático no Supervisado
18.
Cell ; 140(5): 744-52, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20211142

RESUMEN

Combinatorial interactions among transcription factors are critical to directing tissue-specific gene expression. To build a global atlas of these combinations, we have screened for physical interactions among the majority of human and mouse DNA-binding transcription factors (TFs). The complete networks contain 762 human and 877 mouse interactions. Analysis of the networks reveals that highly connected TFs are broadly expressed across tissues, and that roughly half of the measured interactions are conserved between mouse and human. The data highlight the importance of TF combinations for determining cell fate, and they lead to the identification of a SMAD3/FLI1 complex expressed during development of immunity. The availability of large TF combinatorial networks in both human and mouse will provide many opportunities to study gene regulation, tissue differentiation, and mammalian evolution.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Evolución Molecular , Humanos , Ratones , Monocitos/citología , Especificidad de Órganos , Proteína smad3/metabolismo , Transactivadores/metabolismo
19.
Mol Cell ; 65(4): 761-774.e5, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28132844

RESUMEN

We have developed a general progressive procedure, Active Interaction Mapping, to guide assembly of the hierarchy of functions encoding any biological system. Using this process, we assemble an ontology of functions comprising autophagy, a central recycling process implicated in numerous diseases. A first-generation model, built from existing gene networks in Saccharomyces, captures most known autophagy components in broad relation to vesicle transport, cell cycle, and stress response. Systematic analysis identifies synthetic-lethal interactions as most informative for further experiments; consequently, we saturate the model with 156,364 such measurements across autophagy-activating conditions. These targeted interactions provide more information about autophagy than all previous datasets, producing a second-generation ontology of 220 functions. Approximately half are previously unknown; we confirm roles for Gyp1 at the phagophore-assembly site, Atg24 in cargo engulfment, Atg26 in cytoplasm-to-vacuole targeting, and Ssd1, Did4, and others in selective and non-selective autophagy. The procedure and autophagy hierarchy are at http://atgo.ucsd.edu/.


Asunto(s)
Autofagia/genética , Redes Reguladoras de Genes , Genómica/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Biología de Sistemas/métodos , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Bases de Datos Genéticas , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Regulación Fúngica de la Expresión Génica , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Humanos , Modelos Genéticos , Pichia/genética , Pichia/metabolismo , Mapas de Interacción de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Integración de Sistemas
20.
Bioinformatics ; 39(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36882166

RESUMEN

MOTIVATION: The investigation of sets of genes using biological pathways is a common task for researchers and is supported by a wide variety of software tools. This type of analysis generates hypotheses about the biological processes that are active or modulated in a specific experimental context. RESULTS: The Network Data Exchange Integrated Query (NDEx IQuery) is a new tool for network and pathway-based gene set interpretation that complements or extends existing resources. It combines novel sources of pathways, integration with Cytoscape, and the ability to store and share analysis results. The NDEx IQuery web application performs multiple gene set analyses based on diverse pathways and networks stored in NDEx. These include curated pathways from WikiPathways and SIGNOR, published pathway figures from the last 27 years, machine-assembled networks using the INDRA system, and the new NCI-PID v2.0, an updated version of the popular NCI Pathway Interaction Database. NDEx IQuery's integration with MSigDB and cBioPortal now provides pathway analysis in the context of these two resources. AVAILABILITY AND IMPLEMENTATION: NDEx IQuery is available at https://www.ndexbio.org/iquery and is implemented in Javascript and Java.


Asunto(s)
Biología Computacional , Programas Informáticos , Biología Computacional/métodos , Mapas de Interacción de Proteínas , Publicaciones , Bases de Datos Factuales , Internet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA