Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(8): 1318-1330, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37308665

RESUMEN

Immune checkpoint blockade (ICB) targeting PD-1 and CTLA-4 has revolutionized cancer treatment. However, many cancers do not respond to ICB, prompting the search for additional strategies to achieve durable responses. G-protein-coupled receptors (GPCRs) are the most intensively studied drug targets but are underexplored in immuno-oncology. Here, we cross-integrated large singe-cell RNA-sequencing datasets from CD8+ T cells covering 19 distinct cancer types and identified an enrichment of Gαs-coupled GPCRs on exhausted CD8+ T cells. These include EP2, EP4, A2AR, ß1AR and ß2AR, all of which promote T cell dysfunction. We also developed transgenic mice expressing a chemogenetic CD8-restricted Gαs-DREADD to activate CD8-restricted Gαs signaling and show that a Gαs-PKA signaling axis promotes CD8+ T cell dysfunction and immunotherapy failure. These data indicate that Gαs-GPCRs are druggable immune checkpoints that might be targeted to enhance the response to ICB immunotherapies.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ratones , Animales , Transducción de Señal , Ratones Transgénicos , Inmunoterapia , Microambiente Tumoral
2.
Immunity ; 57(4): 859-875.e11, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38513665

RESUMEN

At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.


Asunto(s)
Interleucina-23 , Periodontitis , Humanos , Células Epiteliales , Inflamación , Receptor Toll-Like 5/metabolismo
3.
Stem Cells ; 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32896043

RESUMEN

Continuous integration of signals from the micro and macro-environment is necessary for somatic stem cells to adapt to changing conditions, maintain tissue homeostasis and activate repair mechanisms. G-protein coupled receptors (GPCRs) facilitate this integration by binding to numerous hormones, metabolites and inflammatory mediators, influencing a diverse network of pathways that regulate stem cell fate. This adaptive mechanism is particularly relevant for tissues that are exposed to environmental assault, like skin. The skin is maintained by a set of basal keratinocyte stem and progenitor cells located in the hair follicle and interfollicular epidermis, and several GPCRs and their signaling partners serve as makers and regulators of epidermal stem cell activity. GPCRs utilize heterotrimeric G protein dependent and independent pathways to translate extracellular signals into intracellular molecular cascades that dictate the activation of keratinocyte proliferative and differentiation networks, including Hedgehog GLI, Hippo YAP1 and WNT/ß-catenin, ultimately regulating stem cell identity. Dysregulation of GPCR signaling underlines numerous skin inflammatory diseases and cancer, with smoothened-driven basal cell carcinoma being a main example of a GPCR associated cancer. In this review, we discuss the impact of GPCRs and their signaling partners in skin keratinocyte biology, particularly in the regulation of the epidermal stem cell compartment.

4.
FASEB J ; 34(10): 13900-13917, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32830375

RESUMEN

The PKA-inhibitor (PKI) family members PKIα, PKIß, and PKIγ bind with high affinity to PKA and block its kinase activity, modulating the extent, and duration of PKA-mediated signaling events. While PKA is a well-known regulator of physiological and oncogenic events, the role of PKI proteins in these pathways has remained elusive. Here, by measuring activation of the MAPK pathway downstream of GPCR-Gαs-cAMP signaling, we show that the expression levels of PKI proteins can alter the balance of activation of two major cAMP targets: PKA and EPAC. Our results indicate that PKA maintains repressive control over MAPK signaling as well as a negative feedback on cAMP concentration. Overexpression of PKI and its subsequent repression of PKA dysregulates these signaling pathways, resulting in increased intracellular cAMP, and enhanced activation of EPAC and MAPK. We also find that amplifications of PKIA are common in prostate cancer and are associated with reduced progression free survival. Depletion of PKIA in prostate cancer cells leads to reduced migration, increased sensitivity to anoikis and reduced tumor growth. By altering PKA activity PKI can act as a molecular switch, driving GPCR-Gαs-cAMP signaling toward activation of EPAC-RAP1 and MAPK, ultimately modulating tumor growth.


Asunto(s)
Acetilcisteína/análogos & derivados , Eritromicina/análogos & derivados , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Neoplasias de la Próstata/metabolismo , Acetilcisteína/metabolismo , Animales , Línea Celular Tumoral , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Eritromicina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Retroalimentación Fisiológica , Femenino , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Ratones Desnudos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
5.
Mol Cell ; 49(1): 94-108, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23177739

RESUMEN

Activating mutations in GNAQ and GNA11, encoding members of the Gα(q) family of G protein α subunits, are the driver oncogenes in uveal melanoma, and mutations in Gq-linked G protein-coupled receptors have been identified recently in numerous human malignancies. How Gα(q) and its coupled receptors transduce mitogenic signals is still unclear because of the complexity of signaling events perturbed upon Gq activation. Using a synthetic-biology approach and a genome-wide RNAi screen, we found that a highly conserved guanine nucleotide exchange factor, Trio, is essential for activating Rho- and Rac-regulated signaling pathways acting on JNK and p38, and thereby transducing proliferative signals from Gα(q) to the nucleus independently of phospholipase C-ß. Indeed, whereas many biological responses elicited by Gq depend on the transient activation of second-messenger systems, Gq utilizes a hard-wired protein-protein-interaction-based signaling circuitry to achieve the sustained stimulation of proliferative pathways, thereby controlling normal and aberrant cell growth.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/fisiología , Mitosis , Proteínas Serina-Treonina Quinasas/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Factor de Transcripción AP-1/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Clozapina/análogos & derivados , Clozapina/farmacología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Activación Enzimática , Femenino , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Ratones , Ratones Desnudos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mitógenos/farmacología , Células 3T3 NIH , Trasplante de Neoplasias , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Receptores Acoplados a Proteínas G/genética
6.
Proc Natl Acad Sci U S A ; 115(3): E428-E437, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29282319

RESUMEN

Fibrous dysplasia (FD) is a disease caused by postzygotic activating mutations of GNAS (R201C and R201H) that encode the α-subunit of the Gs stimulatory protein. FD is characterized by the development of areas of abnormal fibroosseous tissue in the bones, resulting in skeletal deformities, fractures, and pain. Despite the well-defined genetic alterations underlying FD, whether GNAS activation is sufficient for FD initiation and the molecular and cellular consequences of GNAS mutations remains largely unresolved, and there are no currently available targeted therapeutic options for FD. Here, we have developed a conditional tetracycline (Tet)-inducible animal model expressing the GαsR201C in the skeletal stem cell (SSC) lineage (Tet-GαsR201C/Prrx1-Cre/LSL-rtTA-IRES-GFP mice), which develops typical FD bone lesions in both embryos and adult mice in less than 2 weeks following doxycycline (Dox) administration. Conditional GαsR201C expression promoted PKA activation and proliferation of SSCs along the osteogenic lineage but halted their differentiation to mature osteoblasts. Rather, as is seen clinically, areas of woven bone admixed with fibrous tissue were formed. GαsR201C caused the concomitant expression of receptor activator of nuclear factor kappa-B ligand (Rankl) that led to marked osteoclastogenesis and bone resorption. GαsR201C expression ablation by Dox withdrawal resulted in FD-like lesion regression, supporting the rationale for Gαs-targeted drugs to attempt FD cure. This model, which develops FD-like lesions that can form rapidly and revert on cessation of mutant Gαs expression, provides an opportunity to identify the molecular mechanism underlying FD initiation and progression and accelerate the development of new treatment options.


Asunto(s)
Displasia Fibrosa Ósea/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Antibacterianos/toxicidad , Desarrollo Óseo/efectos de los fármacos , Huesos/patología , Diferenciación Celular , Doxiciclina/toxicidad , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ratones , Mutación
7.
Mol Syst Biol ; 15(3): e8323, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30858180

RESUMEN

Most patients with advanced cancer eventually acquire resistance to targeted therapies, spurring extensive efforts to identify molecular events mediating therapy resistance. Many of these events involve synthetic rescue (SR) interactions, where the reduction in cancer cell viability caused by targeted gene inactivation is rescued by an adaptive alteration of another gene (the rescuer). Here, we perform a genome-wide in silico prediction of SR rescuer genes by analyzing tumor transcriptomics and survival data of 10,000 TCGA cancer patients. Predicted SR interactions are validated in new experimental screens. We show that SR interactions can successfully predict cancer patients' response and emerging resistance. Inhibiting predicted rescuer genes sensitizes resistant cancer cells to therapies synergistically, providing initial leads for developing combinatorial approaches to overcome resistance proactively. Finally, we show that the SR analysis of melanoma patients successfully identifies known mediators of resistance to immunotherapy and predicts novel rescuers.


Asunto(s)
Biología Computacional , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Melanoma/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunoterapia , Masculino , Melanoma/tratamiento farmacológico , Terapia Molecular Dirigida , Mutaciones Letales Sintéticas
8.
Carcinogenesis ; 37(10): 1014-25, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27538837

RESUMEN

The rising incidence of human papillomavirus (HPV)-associated malignancies, especially for oropharyngeal cancers, has highlighted the urgent need to understand how the interplay between high-risk HPV oncogenes and carcinogenic exposure results in squamous cell carcinoma (SCC) development. Here, we describe an inducible mouse model expressing high risk HPV-16 E6/E7 oncoproteins in adults, bypassing the impact of these viral genes during development. HPV-16 E6/E7 genes were targeted to the basal squamous epithelia in transgenic mice using a doxycycline inducible cytokeratin 5 promoter (cK5-rtTA) system. After doxycycline induction, both E6 and E7 were highly expressed, resulting in rapid epidermal hyperplasia with a remarkable expansion of the proliferative cell compartment to the suprabasal layers. Surprisingly, in spite of the massive growth of epithelial cells and their stem cell progenitors, HPV-E6/E7 expression was not sufficient to trigger mTOR activation, a key oncogenic driver in HPV-associated malignancies, and malignant progression to SCC. However, these mice develop SCC rapidly after a single exposure to a skin carcinogen, DMBA, which was increased by the prolonged exposure to a tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA). Thus, only few oncogenic hits may be sufficient to induce cancer in E6/E7 expressing cells. All HPV-E6/E7 expressing SCC lesions exhibited increased mTOR activation. Remarkably, rapamycin, an mTOR inhibitor, abolished tumor development when administered to HPV-E6/E7 mice prior to DMBA exposure. Our findings revealed that mTOR inhibition protects HPV-E6/E7 expressing tissues form SCC development upon carcinogen exposure, thus supporting the potential clinical use of mTOR inhibitors as a molecular targeted approach for prevention of HPV-associated malignancies.


Asunto(s)
Carcinógenos/toxicidad , Carcinoma de Células Escamosas/genética , Neoplasias Orofaríngeas/genética , Infecciones por Papillomavirus/genética , Serina-Treonina Quinasas TOR/biosíntesis , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Animales , Carcinoma de Células Escamosas/inducido químicamente , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/virología , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidad , Humanos , Ratones , Proteínas Oncogénicas Virales/genética , Neoplasias Orofaríngeas/inducido químicamente , Neoplasias Orofaríngeas/tratamiento farmacológico , Neoplasias Orofaríngeas/virología , Proteínas E7 de Papillomavirus/genética , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Ésteres del Forbol/toxicidad , Proteínas Represoras/genética , Sirolimus/administración & dosificación , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética
9.
Biochem J ; 469(1): 83-95, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25916169

RESUMEN

ST3Gal-II, a type II transmembrane protein, is the main mammalian sialyltransferase responsible for GD1a and GT1b ganglioside biosynthesis in brain. It contains two putative N-glycosylation sites (Asn(92) and Asn(211)). Whereas Asn(92) is only conserved in mammalian species, Asn(211) is highly conserved in mammals, birds and fish. The present study explores the occupancy and relevance for intracellular trafficking and enzyme activity of these potential N-glycosylations in human ST3Gal-II. We found that ST3Gal-II distributes along the Golgi complex, mainly in proximal compartments. By pharmacological, biochemical and site-directed mutagenesis, we observed that ST3Gal-II is mostly N-glycosylated at Asn(211) and that this co-translational modification is critical for its exit from the endoplasmic reticulum and proper Golgi localization. The individual N-glycosylation sites had different effects on ST3Gal-II enzymatic activity. Whereas the N-glycan at position Asn(211) seems to negatively influence the activity of the enzyme using both glycolipid and glycoprotein as acceptor substrates, the single N-glycan mutant at Asn(92) had only a moderate effect. Lastly, we demonstrated that the N-terminal ST3Gal-II domain containing the cytosolic, transmembrane and stem region (amino acids 1-51) is able to drive a protein reporter out of the endoplasmic reticulum and to retain it in the Golgi complex. This suggests that the C-terminal domain of ST3Gal-II depends on N-glycosylation to attain an optimum conformation for proper exit from the endoplasmic reticulum, but it does not represent an absolute requirement for Golgi complex retention of the enzyme.


Asunto(s)
Retículo Endoplásmico/enzimología , Aparato de Golgi/enzimología , Sialiltransferasas/metabolismo , Animales , Asparagina/genética , Asparagina/metabolismo , Células CHO , Cricetinae , Cricetulus , Retículo Endoplásmico/genética , Evolución Molecular , Glicosilación , Aparato de Golgi/genética , Humanos , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Sialiltransferasas/genética , beta-Galactosida alfa-2,3-Sialiltransferasa
10.
Bioconjug Chem ; 26(3): 396-404, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25642999

RESUMEN

A simple and effective method for synthesizing highly fluorescent, protein-based nanoparticles (Prodots) and their facile uptake into the cytoplasm of cells is described here. Prodots made from bovine serum albumin (nBSA), glucose oxidase (nGO), horseradish peroxidase (nHRP), catalase (nCatalase), and lipase (nLipase) were found to be 15-50 nm wide and have been characterized by gel electrophoresis, transmission electron microscopy (TEM), circular dichroism (CD), fluorescence spectroscopy, dynamic light scattering (DLS), and optical microscopic methods. Data showed that the secondary structure of the protein in Prodots is retained to a significant extent and specific activities of nGO, nHRP, nCatalase, and nLipase were 80%, 70%, 65%, and 50% of their respective unmodified enzyme activities. Calorimetric studies indicated that the denaturation temperatures of nGO and nBSA increased while those of other Prodots remained nearly unchanged, and accelerated storage half-lives of Prodots at 60 °C increased by 4- to 8-fold. Exposure of nGO and nBSA+ nGO to cells indicated rapid uptake within 1-3 h, accompanied by significant blebbing of the plasma membrane, but no uptake has been noted in the absence of nGO. The presence of nGO/glucose in the media facilitated the uptake, and hydrogen peroxide induced membrane permeability could be responsible for this rapid uptake of Prodots. In control studies, FITC alone did not enter the cell, BSA-FITC was not internalized even in the presence of nGO, and there has been no uptake of nBSA-FITC in the absence of nGO. These are the very first examples of very rapid cellular uptake of fluorescent nanoparticles into cells, particularly nanoparticles made from pure proteins. The current approach is a simple and efficient method for the preparation of bioactive, fluorescent protein nanoparticles of controllable size for cellular imaging, and cell uptake is under the control of two separate chemical triggers.


Asunto(s)
Membrana Celular , Fluoresceína-5-Isotiocianato/química , Colorantes Fluorescentes/química , Nanopartículas/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Línea Celular Tumoral , Membrana Celular/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Colorantes Fluorescentes/metabolismo , Humanos , Nanopartículas/metabolismo , Tamaño de la Partícula , Albúmina Sérica Bovina/metabolismo , Espectrometría de Fluorescencia/métodos
11.
J Invest Dermatol ; 144(6): 1311-1321.e7, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38103827

RESUMEN

Epithelial cells in the skin and other tissues rely on signals from their environment to maintain homeostasis and respond to injury, and GPCRs play a critical role in this communication. A better understanding of the GPCRs expressed in epithelial cells will contribute to understanding the relationship between cells and their niche and could lead to developing new therapies to modulate cell fate. This study used human primary keratinocytes as a model to investigate the specific GPCRs regulating epithelial cell proliferation and differentiation. We identified 3 key receptors-HCAR3, LTB4R, and GPR137-and found that knockdown of these receptors led to changes in numerous gene networks that are important for maintaining cell identity and promoting proliferation while inhibiting differentiation. Our study also revealed that the metabolite receptor HCAR3 regulates keratinocyte migration and cellular metabolism. Knockdown of HCAR3 led to reduced keratinocyte migration and respiration, which could be attributed to altered metabolite use and aberrant mitochondrial morphology caused by the absence of the receptor. This study contributes to understanding the complex interplay between GPCR signaling and epithelial cell fate decisions.


Asunto(s)
Movimiento Celular , Proliferación Celular , Respiración de la Célula , Queratinocitos , Receptores Acoplados a Proteínas G , Humanos , Queratinocitos/metabolismo , Queratinocitos/citología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Respiración de la Célula/fisiología , Transducción de Señal , Diferenciación Celular , Células Cultivadas , Receptores de Leucotrieno B4/metabolismo , Receptores de Leucotrieno B4/genética , Células Epiteliales/metabolismo , Receptores Nicotínicos
12.
bioRxiv ; 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37398171

RESUMEN

Epithelial cells in the skin and other tissues rely on signals from their environment to maintain homeostasis and respond to injury, and G protein-coupled receptors (GPCRs) play a critical role in this communication. A better understanding of the GPCRs expressed in epithelial cells will contribute to understanding the relationship between cells and their niche and could lead to developing new therapies to modulate cell fate. This study used human primary keratinocytes as a model to investigate the specific GPCRs regulating epithelial cell proliferation and differentiation. We identified three key receptors, hydroxycarboxylic acid-receptor 3 (HCAR3), leukotriene B4-receptor 1 (LTB4R), and G Protein-Coupled Receptor 137 (GPR137) and found that knockdown of these receptors led to changes in numerous gene networks that are important for maintaining cell identity and promoting proliferation while inhibiting differentiation. Our study also revealed that the metabolite receptor HCAR3 regulates keratinocyte migration and cellular metabolism. Knockdown of HCAR3 led to reduced keratinocyte migration and respiration, which could be attributed to altered metabolite use and aberrant mitochondrial morphology caused by the absence of the receptor. This study contributes to understanding the complex interplay between GPCR signaling and epithelial cell fate decisions.

13.
Arthritis Rheumatol ; 75(7): 1216-1228, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36704840

RESUMEN

OBJECTIVE: Photosensitivity is one of the most common manifestations of systemic lupus erythematosus (SLE), yet its pathogenesis is not well understood. The normal-appearing epidermis of patients with SLE exhibits increased ultraviolet B (UVB)-driven cell death that persists in cell culture. Here, we investigated the role of epigenetic modification and Hippo signaling in enhanced UVB-induced apoptosis seen in SLE keratinocytes. METHODS: We analyzed DNA methylation in cultured keratinocytes from SLE patients compared to keratinocytes from healthy controls (n = 6/group). Protein expression was validated in cultured keratinocytes using immunoblotting and immunofluorescence. An immortalized keratinocyte line overexpressing WWC1 was generated via lentiviral vector. WWC1-driven changes were inhibited using a large tumor suppressor kinase 1/2 (LATS1/2) inhibitor (TRULI) and small interfering RNA (siRNA). The interaction between the Yes-associated protein (YAP) and the transcriptional enhancer associate domain (TEAD) was inhibited by overexpression of an N/TERT cell line expressing a tetracycline-inducible green fluorescent protein-tagged protein that inhibits YAP-TEAD binding (TEADi). Apoptosis was assessed using cleaved caspase 3/7 and TUNEL staining. RESULTS: Hippo signaling was the top differentially methylated pathway in SLE versus control keratinocytes. SLE keratinocytes (n = 6) showed significant hypomethylation (Δß = -0.153) and thus overexpression of the Hippo regulator WWC1 (P = 0.002). WWC1 overexpression increased LATS1/2 kinase activation, leading to YAP cytoplasmic retention and altered proapoptotic transcription in SLE keratinocytes. Accordingly, UVB-mediated apoptosis in keratinocytes could be enhanced by WWC1 overexpression or YAP-TEAD inhibition, mimicking SLE keratinocytes. Importantly, inhibition of LATS1/2 with either the chemical inhibitor TRULI or siRNA effectively eliminated enhanced UVB-apoptosis in SLE keratinocytes. CONCLUSION: Our work unravels a novel driver of photosensitivity in SLE: overactive Hippo signaling in SLE keratinocytes restricts YAP transcriptional activity, leading to shifts that promote UVB apoptosis.


Asunto(s)
Vía de Señalización Hippo , Lupus Eritematoso Sistémico , Humanos , Queratinocitos/metabolismo , Lupus Eritematoso Sistémico/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
14.
J Invest Dermatol ; 142(1): 65-76.e7, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34293352

RESUMEN

Disruption of the transcriptional activity of the Hippo pathway members YAP1 and TAZ has become a major target for cancer treatment. However, detailed analysis of the effectiveness and networks affected by YAP1/TAZ transcriptional targeting is limited. In this study, we utilize TEAD inhibitor, an inhibitor of the binding of YAP1 and TAZ with their main transcriptional target TEAD in a mouse model of basal cell carcinoma, to unveil the consequences of YAP1/TAZ transcriptional blockage in cancer cells. Both TEAD inhibitor and YAP1/TAZ knockdown lead to reduced proliferation and increased differentiation of mouse basal cell carcinoma driven by oncogenic hedgehog-smoothened (SmoM2) activity. Although TEAD-transcriptional networks were essential to inactivate differentiation, this inactivation was found to be indirect and potentially mediated through the repression of KLF4 by SNAI2. By comparing the transcriptional effects of TEAD inhibition with those caused by YAP1/TAZ depletion, we determined YAP1/TAZ‒TEAD‒independent effects in cancer cells that impact STAT3 and NF-κB. Our results reveal the gene networks affected by targeting YAP1/TAZ‒TEAD in basal cell carcinoma tumors and expose the potential pitfalls for targeting TEAD transcription in cancer.


Asunto(s)
Carcinoma Basocelular/metabolismo , Erizos/metabolismo , Factores de Transcripción de Dominio TEA/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Animales , Carcinogénesis , Carcinoma Basocelular/genética , Diferenciación Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Vía de Señalización Hippo , Humanos , Factor 4 Similar a Kruppel/metabolismo , Ratones , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/genética , Proteínas Señalizadoras YAP/genética
15.
IUBMB Life ; 63(7): 513-20, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21698755

RESUMEN

Gangliosides constitute a large and heterogeneous family of acidic glycosphingolipids that contain one or more sialic acid residues and are expressed in nearly all vertebrate cells. Their de novo synthesis starts at the endoplasmic reticulum and is continued by a combination of glycosyltransferase activities at the Golgi complex, followed by vesicular delivery to the plasma membrane. At the cell surface, gangliosides participate in a variety of physiological as well as pathological processes. The cloning of genes for most of the glycosyltransferases responsible for ganglioside biosynthesis has produced a better understanding of the cellular and molecular basis of the ganglioside metabolism. In addition, the ability to delete groups of glycosphingolipid structures in mice has been enormously important in determining their physiological roles. Recently, a number of enzymes for ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane, which might contribute to modulate local glycolipid composition, and consequently, the cell function.


Asunto(s)
Gangliósidos/metabolismo , Redes y Vías Metabólicas/fisiología , Animales , Transporte Biológico , Conformación de Carbohidratos , Secuencia de Carbohidratos , Membrana Celular/metabolismo , Endocitosis , Exocitosis , Gangliósidos/química , Glicoesfingolípidos/química , Glicoesfingolípidos/metabolismo , Humanos , Datos de Secuencia Molecular
16.
Adv Exp Med Biol ; 720: 27-38, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21901616

RESUMEN

The human oral squamous epithelium plays an important role in maintaining a barrier function against mechanical, physical, and pathological injury. However, the self-renewing cells residing on the basement membrane of the epithelium can give rise to oral squamous cell carcinomas (OSCC), now the sixth most common cancer in the developed world, which is still associated with poor prognosis. This is due, in part, to the limited availability of well-defined culture systems for studying oral epithelial cell biology, which could advance our understanding of the molecular basis of OSCC. Here, we describe methods to successfully isolate large cultures of human oral epithelial cells and fibroblasts from small pieces of donor tissues for use in techniques such as three-dimensional cultures and animal grafts to validate genes suspected of playing a role in OSCC development and progression. Finally, the use of isolated oral epithelial cells in generating iPS cells is discussed which holds promise in the field of oral regenerative medicine.


Asunto(s)
Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/patología , Separación Celular , Células Cultivadas , Células Epiteliales/fisiología , Humanos , Queratinocitos/citología , Mucosa Bucal/citología , Células Madre/citología
17.
Aging (Albany NY) ; 13(4): 4747-4777, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33601339

RESUMEN

Senescent cells produce chronic inflammation that contributes to the diseases and debilities of aging. How this process is orchestrated in epithelial cells, the origin of human carcinomas, is poorly understood. We used human normal oral keratinocytes (NOKs) to elucidate senescence programs in a prototype primary mucosal epithelial cell that senesces spontaneously. While NOKs exhibit several typical facets of senescence, they also display distinct characteristics. These include expression of p21WAF1/CIP1 at early passages, making this common marker of senescence unreliable in NOKs. Transcriptome analysis by RNA-seq revealed specific commonalities with and differences from cancer cells, explicating the tumor avoidance role of senescence. Repression of DNA repair genes that correlated with downregulation of E2F1 mRNA and protein was observed for two donors; a divergent result was seen for the third. Using proteomic profiling of soluble (non-vesicular) and extracellular vesicle (EV) associated secretions, we propose additions to the senescence associated secretory phenotype, including HSP60, which localizes to the surface of EVs. Finally, EVs from senescent NOKs activate interferon pathway signaling in THP-1 monocytes in a STING-dependent manner and associate with mitochondrial and nuclear DNA. Our results highlight senescence changes in epithelial cells and how they might contribute to chronic inflammation and age-related diseases.


Asunto(s)
Senescencia Celular/fisiología , Células Epiteliales/fisiología , Perfilación de la Expresión Génica , Queratinocitos/metabolismo , Mucosa Bucal , Vesículas Extracelulares , Humanos , Análisis de Secuencia de ARN , Transducción de Señal
18.
Nat Cell Biol ; 23(5): 511-525, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33972733

RESUMEN

Epithelial cells rapidly adapt their behaviour in response to increasing tissue demands. However, the processes that finely control these cell decisions remain largely unknown. The postnatal period covering the transition between early tissue expansion and the establishment of adult homeostasis provides a convenient model with which to explore this question. Here, we demonstrate that the onset of homeostasis in the epithelium of the mouse oesophagus is guided by the progressive build-up of mechanical strain at the organ level. Single-cell RNA sequencing and whole-organ stretching experiments revealed that the mechanical stress experienced by the growing oesophagus triggers the emergence of a bright Krüppel-like factor 4 (KLF4) committed basal population, which balances cell proliferation and marks the transition towards homeostasis in a yes-associated protein (YAP)-dependent manner. Our results point to a simple mechanism whereby mechanical changes experienced at the whole-tissue level are integrated with those sensed at the cellular level to control epithelial cell fate.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Epiteliales/metabolismo , Homeostasis/fisiología , Animales , Epitelio/metabolismo , Mucosa Esofágica/metabolismo , Humanos , Factor 4 Similar a Kruppel , Ratones , Células Madre/metabolismo
19.
Cancers (Basel) ; 13(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34503205

RESUMEN

Head and neck squamous cell carcinoma remains challenging to treat with no improvement in survival rates over the past 50 years. Thus, there is an urgent need to discover more reliable therapeutic targets and biomarkers for HNSCC. Matriptase, a type-II transmembrane serine protease, induces malignant transformation in epithelial stem cells through proteolytic activation of pro-HGF and PAR-2, triggering PI3K-AKT-mTOR and NFKB signaling. The serine protease inhibitor lympho-epithelial Kazal-type-related inhibitor (LEKTI) inhibits the matriptase-driven proteolytic pathway, directly blocking kallikreins in epithelial differentiation. Hence, we hypothesized LEKTI could inhibit matriptase-dependent squamous cell carcinogenesis, thus implicating kallikreins in this process. Double-transgenic mice with simultaneous expression of matriptase and LEKTI under the keratin-5 promoter showed a prominent rescue of K5-Matriptase+/0 premalignant phenotype. Notably, in DMBA-induced SCC, heterotopic co-expression of LEKTI and matriptase delayed matriptase-driven tumor incidence and progression. Co-expression of LEKTI reverted altered Kallikrein-5 expression observed in the skin of K5-Matriptase+/0 mice, indicating that matriptase-dependent proteolytic pathway inhibition by LEKTI occurs through kallikreins. Moreover, we showed that Kallikrein-5 is necessary for PAR-2-mediated IL-8 release, YAP1-TAZ/TEAD activation, and matriptase-mediated oral squamous cell carcinoma migration. Collectively, our data identify a third signaling pathway for matriptase-dependent carcinogenesis in vivo. These findings are critical for the identification of more reliable biomarkers and effective therapeutic targets in Head and Neck cancer.

20.
Biochim Biophys Acta ; 1788(12): 2526-40, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19800863

RESUMEN

Gangliosides are glycolipids mainly present at the plasma membrane (PM). Antibodies to gangliosides have been associated with a wide range of neuropathy syndromes. Particularly, antibodies to GM1 ganglioside are present in patients with Guillain-Barré syndrome (GBS). We investigated the binding and intracellular fate of antibody to GM1 obtained from rabbits with experimental GBS in comparison with the transport of cholera toxin (CTx), which binds with high affinity to GM1. We demonstrated that antibody to GM1 is rapidly and specifically endocytosed in CHO-K1 cells. After internalization, the antibody transited sorting endosomes to accumulate at the recycling endosome. Endocytosed antibody to GM1 is recycled back to the PM and released into the culture medium. In CHO-K1 cells, antibody to GM1 colocalized with co-endocytosed CTx at early and recycling endosomes, but not in Golgi complex and endoplasmic reticulum, where CTx was also located. Antibody to GM1, in contraposition to CTx, showed a reduced internalization to recycling endosomes in COS-7 cells and neural cell lines SH-SY5Y and Neuro2A. Results from photobleaching studies revealed differences in the lateral mobility of antibody to GM1 in the PM of analyzed cell lines, suggesting a relationship between the efficiency of endocytosis and lateral mobility of GM1 at the PM. Taken together, results indicate that two different ligands of GM1 ganglioside (antibody and CTx) are differentially endocytosed and trafficked, providing the basis to gain further insight into the mechanisms that operate in the intracellular trafficking of glycosphingolipid-binding toxins and pathological effects of neuropathy-associated antibodies.


Asunto(s)
Autoanticuerpos/metabolismo , Toxina del Cólera/metabolismo , Células Epiteliales/metabolismo , Gangliósido G(M1)/metabolismo , Síndrome de Guillain-Barré/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Autoanticuerpos/inmunología , Autoanticuerpos/farmacología , Células CHO , Células COS , Chlorocebus aethiops , Toxina del Cólera/inmunología , Toxina del Cólera/farmacología , Cricetinae , Cricetulus , Endocitosis/inmunología , Células Epiteliales/inmunología , Gangliósido G(M1)/inmunología , Gangliósido G(M1)/farmacología , Síndrome de Guillain-Barré/inmunología , Humanos , Transporte de Proteínas/inmunología , Conejos , Vesículas Transportadoras/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA