Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmaceutics ; 15(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38004617

RESUMEN

Polysaccharide aerogels have emerged as a highly promising technology in the field of oral drug delivery. These nanoporous, ultralight materials, derived from natural polysaccharides such as cellulose, starch, or chitin, have significant potential in colonic drug delivery due to their unique properties. The particular degradability of polysaccharide-based materials by the colonic microbiota makes them attractive to produce systems to load, protect, and release drugs in a controlled manner, with the capability to precisely target the colon. This would allow the local treatment of gastrointestinal pathologies such as colon cancer or inflammatory bowel diseases. Despite their great potential, these applications of polysaccharide aerogels have not been widely explored. This review aims to consolidate the available knowledge on the use of polysaccharides for oral drug delivery and their performance, the production methods for polysaccharide-based aerogels, the drug loading possibilities, and the capacity of these nanostructured systems to target colonic regions.

2.
Pharmaceutics ; 15(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38004583

RESUMEN

A newly produced silk fibroin (SF) aerogel particulate system using a supercritical carbon dioxide (scCO2)-assisted drying technology is herein proposed for biomedical applications. Different concentrations of silk fibroin (3%, 5%, and 7% (w/v)) were explored to investigate the potential of this technology to produce size- and porosity-controlled particles. Laser diffraction, helium pycnometry, nitrogen adsorption-desorption analysis and Fourier Transform Infrared with Attenuated Total Reflectance (FTIR-ATR) spectroscopy were performed to characterize the physicochemical properties of the material. The enzymatic degradation profile of the SF aerogel particles was evaluated by immersion in protease XIV solution, and the biological properties by cell viability and cell proliferation assays. The obtained aerogel particles were mesoporous with high and concentration dependent specific surface area (203-326 m2/g). They displayed significant antioxidant activity and sustained degradation in the presence of protease XIV enzyme. The in vitro assessment using human dermal fibroblasts (HDF) confirm the particles' biocompatibility, as well as the enhancement in cell viability and proliferation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA